metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-tert-butyl­diiso­thio­cyanato­tin(IV)

crossmark logo

aChemistry, Osnabrück University, Barabarstr. 7, 49069 Osnabrück, Germany
*Correspondence e-mail: hreuter@uos.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 12 December 2024; accepted 24 December 2024; online 7 January 2025)

The title compound, [Sn(C4H9)2(NCS)2], which crystallizes with one and a half mol­ecules in the asymmetric unit, represents a new structure type for inter­molecular sulfur⋯tin inter­actions, which is characterized by an anti­parallel (A) arrangement of the dipole moments of the individual mol­ecules. In the resulting zigzag chains, the mol­ecules are related to each other by mirror planes (m) and twofold rotation axes (2), both perpendicular to the propagation plane, while translation is realized via a glide plane in direction of the crystallographic c axis, a combination of symmetry elements unique in the structural chemistry of diorganotin(IV) dihalides and pseudohalides, R2SnX2 with X = Hal or NCS. Its characteristics are subsumed in the term Am2c for this kind of inter­molecular association pattern. The tilting of the NSnN-planes in relation to the propagation plane is described in terms of spherical coordinates.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As linear, polyatomic pseudo-halide ion, the thio­cyanate ion, NCS, is able to replace mono-atomic, spherical halide atoms in many compounds, which in the case of diorgano­tin(IV) dihalides, R2SnHal2, leads to the formation of the so-called diorganotin(IV) diiso­thio­cynates, R2Sn(NCS)2, as the pseudo-halide ion binds to the ‘hard’ tin atom via its ‘hard’ nitro­gen atom in accordance with the HSAB principle.

In terms of structural chemistry these compounds are of special inter­est with regard to their inter­molecular inter­actions, which for steric reasons can only take place via the ‘soft’ sulfur atoms. In case of the methyl and ethyl compounds (Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]), these inter­actions result in a chain-like arrangement of the individual mol­ecules with a parallel orientation of their dipole moments while the phenyl compound (Pancratz et al., 2024[Pancratz, A.-K., Kamrowski, A. & Reuter, H. (2024). IUCrData, 9, x241093.]) represents a di-periodic coordination polymer in which the mol­ecules have lost their individuality. In search of a mol­ecular diiso­cyanate we have prepared for the first time the title tert-butyl compound because the bulky tert-butyl substituents prevent an inter­molecular association in the comparable dichloride (Dakternieks et al., 1994[Dakternieks, D., Jurkschat, K. & Tiekink, E. R. T. (1994). Main Group Met. Chem. 17, 471-480.]).

The title compound, tBu2Sn(NCS)2, crystallizes in the ortho­rhom­bic space group Pbcm with 12 mol­ecules in the unit cell and one and a half mol­ecules in the asymmetric unit (Fig. 1[link]). The half mol­ecule results from a crystallographic mirror plane that bis­ects the tin atom and the two tert-butyl groups with order/disorder of the hydrogen atoms of the affected methyl group.

[Figure 1]
Figure 1
Ball-and-stick model of the tetra­hedral environment of the two crystallographically independent tBu2Sn(NCS)2 mol­ecules with atom numbering given for the asymmetric unit and orientation of the crystallographic mirror plane, m, in the mol­ecule of Sn1. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn as displacement ellipsoids at the 40% probability level. Disorder of the hydrogen atoms attached to C123 is shown by dashed bonds in the case of the second hydrogen-atom orientation.

The carbon–carbon bond lengths within the tert-butyl groups [C—C = 1.514 (7)–1.530 (4) Å, mean value = 1.525 (6) Å] are only slightly shorter than the value given in literature [d(Csp3—CH3) = 1.534 (11) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.])]. The mean bond angles of 110.1 (4)° between the methyl groups correspond very well with tetra­hedrally coordinated, sp3-hybridized carbon atoms. With the tin–carbon–carbon bond angles, it is noticeable that in each tert-butyl group two angles are smaller [mean value: 107.1 (4)°] than the third one [mean value: 110.1 (9)°].

The bond lengths and angles describing the coordination sphere of the tin atoms, however, have very unusual values. Thus, the Sn—C distances of 2.214 (4)–2.227 (3) Å [mean value: 2.221 (6) Å] are quite long and the bond angles of 157.3 (2)/157.2 (2)° between the tert-butyl groups are greatly widened in comparison with the corresponding values [2.149 (4)/2.151 (4) Å, 133.1 (2)°] in the crystal structure of the parent compound di-tert-butyl­tin(IV) dichloride, tBu2SnCl2 (Dakternieks et al., 1994[Dakternieks, D., Jurkschat, K. & Tiekink, E. R. T. (1994). Main Group Met. Chem. 17, 471-480.]). The same applies to the bond angles between the inorganic ligands which are considerably smaller in the title compound [84.4 (1)°/84.7 (1)°] than in the dichloride [101.86 (5)°], an effect that can be attributed to the smaller size of the nitro­gen atoms in comparison with the chloride ions. Similar changes of bond angles are found in compounds R2SnX2 with R = Me and Et, respectively when comparing X = Cl and X = NCS. For R = Me, 〈(C—Sn—C) changes from 142.2 (4)° for X = Cl (Reuter & Pawlak, 2001[Reuter, H. & Pawlak, R. (2001). Z. Kristallogr. 216, 56-59.]) to 147.6 (1)° (Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]) and 〈(X—Sn—X) from 98.60 (9)° to 86.08 (8)° for X = NCS (Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.][Britton, D. (2006). Acta Cryst. C62, m93-m94.])], and for R = Et, 〈(C—Sn—C) changes from 134.0 (6)° for X = Cl (Alcock & Sawyer, 1977[Alcock, N. W. & Sawyer, J. F. (1977). J. Chem. Soc., Dalton Trans, pp. 1090-1095.]) to 153.03 (6)° for X = NCS (Britton, 2006) and 〈(X—Sn—X) from 96.0 (1)° to 83.57 (8)° for X = NCS. The tin–carbon bond lengths, however, differ only slightly in the compounds in question.

The bond lengths [mean N—C = 1.103 (3) Å, mean C—S = 1.627 (4) Å] and angles [mean 〈(N—C—S = 178.5 (3)°] within the almost linear iso­thio­cyanate groups are only slightly affected by their coordination behavior (Table 1[link]) and almost identical with the values found in the other structurally determined diiso­thio­cyanates [R = Me, Et (Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]), R = Ph (Pancratz et al., 2024[Pancratz, A.-K., Kamrowski, A. & Reuter, H. (2024). IUCrData, 9, x241093.])]. These values correspond very well with a formal carbon–nitro­gen triple [d(Csp—N) = 1.155 (12) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.])] and a carbon–sulfur single [d(Csp—S) = 1.630 (14) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.])] bond. Their coordination to the tin atoms via the nitro­gen atoms is characterized by a mean tin–nitro­gen distance of 2.176 (5) Å over all four NCS groups but the Sn—N—C bond angles show a greater variance. Three of the four bond angles are around 174.5 (8)° while one only reaches 167.0 (2)° (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Sn1—N1 2.180 (3) Sn1—C111 2.224 (4)
Sn2—N2 2.172 (3) S1—Sn2 3.1519 (9)
Sn2—N3 2.175 (3) S2—Sn1 3.1312 (9)
Sn1—C121 2.214 (4) S3—Sn2i 3.1355 (9)
       
C1—N1—Sn1 174.6 (2) C3—N3—Sn2 167.0 (2)
C2—N2—Sn2 175.2 (3)    
Symmetry code: (i) [x, -y+{\script{1\over 2}}, -z].

Despite the widening of the bond angles between the tert-butyl groups, inter­molecular tin–sulfur distances [3.1312 (9)–3.1519 (9) Å] are of the same order of magnitude as in the corresponding methyl [3.146 (1) Å] and ethyl [3.060 (1) Å] compounds (Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]) and thus significantly longer than in Ph2Sn(NCS)2 [2.7224 (5) Å; Pancratz et al., 2024[Pancratz, A.-K., Kamrowski, A. & Reuter, H. (2024). IUCrData, 9, x241093.]]. In relation to the sum (2.43 Å) of the covalent radii (Cordero et al., 2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]) of tin (1.39 Å) and sulfur (1.04 Å), these secondary tin–sulfur contact lengths of around 3.1 Å are quite long (+0.67 Å = + 28%) but in relation to the sum (3.97 Å) of the van der Waals radii (Mantina et al., 2009[Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806-5812.]) of tin (2.17 Å) and sulfur (1.80 Å) quite short (–0.87 Å = 22%). In summary, these secondary contacts lead to a chain-like arrangement of the individual mol­ecules with anti-parallel arrangement of the dipole moments and carbon–sulfur⋯tin angles of 99.8 (1)–100.7 (1)° (Fig. 2[link]).

[Figure 2]
Figure 2
Schematic, ball-and-stick representation of the anti­parallel, chain-like arrangement of the dipole moments (red arrows of arbitrary units, orientation assumed in the direction of the center point between the two nitro­gen atoms) of the tBu2Sn(NCS)2 mol­ecules as a result of the tin⋯sulfur inter­actions (dashed sticks in gray) and their relation to the crystallographic symmetry elements: mirror plane = m, green line; twofold rotation axis perpendicular to the gray propagation plane = 2, blue arrow; axial glide plane = c, dashed line, violet; above = top view on the propagation plane with organic groups omitted for clarity, below = side view; values in square brackets = distances (Å) of the tin atoms from the glide plane; atom color code used: Sn = bronze, N = blue, C = black, S = yellow, H = white; symmetry transformations used to generate equivalent atoms: (1) x, y, [{1\over 2}] − z; (2) x, [{1\over 2}] − y, [{1\over 2}] + z; (3) x, [{1\over 2}] − y, 1 − z.

Within the zigzag-chains the two mol­ecules are related to each other by a sequence of mirror planes, m, and twofold rotation axes, 2, all perpendicular to the propagation plane parallel to the crystallographic a and b axes, while translation of the mol­ecules is arranged via the glide plane c from which the tin atoms are at different distances (Fig. 2[link]). The repeat unit therefore corresponds to the length of the c axis = 36.0164 (9) Å. According to the classification scheme developed earlier (Ye & Reuter, 2012[Ye, F. & Reuter, H. (2012). Acta Cryst. C68, m104-m108.]) based on the parallel (P) or anti-parallel (A) arrangement of the dipole moments and the symmetry elements involved in the inter­molecular association, the present structure type can be denoted as Am2c.

In the structural chemistry of diorganotin dihalides, R2SnHal2, anti-parallel arrangements of the dipole moments into zigzag chains are relatively common, but do not occur in the present combination (2, m) of symmetry elements: Me2SnCl2 = Amm21 (Reuter & Pawlak, 2001[Reuter, H. & Pawlak, R. (2001). Z. Kristallogr. 216, 56-59.]), Et2SnBr2 = A221 (Alcock & Saywer, 1977), nBu2SnCl2 = A21 (Sawyer, 1988[Sawyer, J. F. (1988). Acta Cryst. C44, 633-636.]), Et2SnCl2 = Ac (Alcock & Sawyer, 1977[Alcock, N. W. & Sawyer, J. F. (1977). J. Chem. Soc., Dalton Trans, pp. 1090-1095.]).

As can easily be seen in Figs. 1[link] and 2[link], the N—Sn—N planes of the two mol­ecules are not coplanar to the propagation plane. Qu­anti­tatively, the out-of-plane orientation of these planes can be described in terms of spherical coordination systems defined by the radial distance r, the polar angle Θ and the azimuthal angle φ (Fig. 3[link]): with the tin atom as origin, r as the lengths of the normal vector NNSnN, Θ as the angle between this normal vector and the polar axis z (= the crystallographic a axis) and φ as the angle of rotation around the polar axis z in the meridional xy plane (= plane through Sn and coplanar to the propagation plane bc). The corresponding values are Θ = 10.77°, φ = 270° for the NSnN plane of Sn1, and Θ = 8.26°, φ = 303.09° for the NSnN plane of Sn2.

[Figure 3]
Figure 3
Spherical coordinate system used to calculate the spherical coordinates Θ and φ in order to characterize the tilting of the NSnN-planes of both mol­ecules in relation to the propagation plane (gray), arbitrary values for the authoritative normal vector NNSnN (blue); for clarity the positions of the organic ligands are only indicated by short sticks.

Including the organic residuals into account the sinusoidal chains have an almost rectangular cross-section (Fig. 4[link]) of about 9.65 × 10.45 Å and are arranged in the direction of the b axis whereby the wave crest of the one chain engaged in the wave valley of the other one (Fig. 5[link]). For an inter­pretation of the secondary contacts in terms of 3c–4e bonds see Alcock & Sawyer (1977[Alcock, N. W. & Sawyer, J. F. (1977). J. Chem. Soc., Dalton Trans, pp. 1090-1095.]).

[Figure 4]
Figure 4
Detail of the chain-like arrangement of the tBu2Sn(NCS)2 mol­ecules as space-filling model with dimensions in Å; left side = side view looking down the b axis, right side = front view; atoms are represented as single-colored or truncated, two-colored spheres according to their van der Waals radii and cut-offs based on the inter­section of the two spheres with cut-off faces showing the color of the inter­penetrating atom, inter­molecular tin⋯sulfur contacts are visualized as dashed sticks in gray; atom color code used: Sn = bronze, N = blue, C = black, S = yellow, H = white.
[Figure 5]
Figure 5
Ball-and-stick representation showing the mol­ecule packing and inter­locking of the chains formed when looking down the a axis; inter­molecular tin⋯sulfur contacts are shown as dashed sticks in gray.

Synthesis and crystallization

The synthesis was carried out according to a published protocol from sodium thio­cyanate and di-tert-butyl­tin(IV) dichloride, tBu2SnCl2, (Kandil & Allred, 1970[Kandil, S. A. & Allred, A. L. (1970). J. Chem. Soc. A, pp. 2987-2992.]) in ethanol (molar ratio 1:2): colorless, needle-like single crystals were obtained after recrystallization from toluene solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Sn(C4H9)2(NCS)2]
Mr 349.07
Crystal system, space group Orthorhombic, Pbcm
Temperature (K) 100
a, b, c (Å) 9.6669 (3), 11.9440 (4), 36.0164 (9)
V3) 4158.5 (2)
Z 12
Radiation type Mo Kα
μ (mm−1) 2.12
Crystal size (mm) 0.18 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.697, 0.891
No. of measured, independent and observed [I > 2σ(I)] reflections 169441, 5093, 4052
Rint 0.104
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.067, 1.12
No. of reflections 5093
No. of parameters 225
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −1.01
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2019).]), Mercury (Macrae et al. (2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), POVRAY (Povray, 2004[Povray (2004). POVRAY. Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Di-tert-butyldiisothiocyanatotin(IV) top
Crystal data top
[Sn(C4H9)2(NCS)2]Dx = 1.673 Mg m3
Mr = 349.07Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcmCell parameters from 9996 reflections
a = 9.6669 (3) Åθ = 2.4–29.2°
b = 11.9440 (4) ŵ = 2.12 mm1
c = 36.0164 (9) ÅT = 100 K
V = 4158.5 (2) Å3Plate, colourless
Z = 120.18 × 0.12 × 0.06 mm
F(000) = 2088
Data collection top
Bruker APEXII CCD
diffractometer
4052 reflections with I > 2σ(I)
φ and ω scansRint = 0.104
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.0°, θmin = 2.1°
Tmin = 0.697, Tmax = 0.891h = 1212
169441 measured reflectionsk = 1515
5093 independent reflectionsl = 4747
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0162P)2 + 7.7574P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.62 e Å3
5093 reflectionsΔρmin = 1.01 e Å3
225 parametersExtinction correction: SHELXL2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00019 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were geometrically placed (C—H = 0.98 Å) and refined as riding atoms. The Uiso vaules for the H atoms were contrained to be the same for all atoms attached to a particular carbon atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.71338 (3)0.31769 (2)0.25000.01406 (8)
C1110.4833 (4)0.3193 (4)0.25000.0186 (9)
C1120.4302 (5)0.4399 (4)0.25000.0220 (10)
H1110.32890.43930.25000.030 (5)*
H1120.46360.47820.22770.030 (5)*
C1130.4340 (3)0.2588 (3)0.21517 (10)0.0264 (8)
H1140.46630.18100.21570.030 (5)*
H1150.47130.29640.19320.030 (5)*
H1160.33270.26000.21420.030 (5)*
C1210.9254 (5)0.3877 (4)0.25000.0204 (10)
C1220.9991 (3)0.3436 (3)0.21538 (10)0.0272 (8)
H1241.09430.37180.21490.039 (6)*
H1250.95000.36920.19310.039 (6)*
H1261.00020.26160.21590.039 (6)*
C1230.9251 (5)0.5145 (4)0.25000.0302 (11)
H1210.86250.54170.26940.039 (6)*0.5
H1220.89360.54180.22580.039 (6)*0.5
H1231.01890.54200.25480.039 (6)*0.5
N10.7446 (3)0.1848 (2)0.20936 (8)0.0187 (6)
C10.7531 (3)0.1200 (3)0.18662 (9)0.0173 (6)
S10.76537 (10)0.02369 (7)0.15494 (2)0.0272 (2)
Sn20.76789 (2)0.17360 (2)0.08292 (2)0.01418 (7)
C2110.5510 (3)0.1151 (3)0.07802 (9)0.0199 (7)
C2120.5441 (4)0.0125 (3)0.07864 (10)0.0311 (8)
H2110.58160.04010.10220.037 (4)*
H2120.59860.04270.05800.037 (4)*
H2130.44760.03650.07610.037 (4)*
C2130.4912 (3)0.1599 (3)0.04175 (10)0.0269 (8)
H2140.39490.13520.03920.037 (4)*
H2150.54550.13140.02080.037 (4)*
H2160.49450.24190.04190.037 (4)*
C2140.4711 (3)0.1641 (3)0.11074 (10)0.0259 (8)
H2170.47500.24600.10970.037 (4)*
H2180.51240.13810.13400.037 (4)*
H2190.37440.13960.10950.037 (4)*
C2210.9969 (3)0.1591 (3)0.08795 (9)0.0179 (6)
C2221.0614 (3)0.2197 (3)0.05478 (10)0.0244 (7)
H2211.16240.21680.05670.030 (3)*
H2221.03100.29800.05460.030 (3)*
H2231.03210.18320.03170.030 (3)*
C2231.0396 (3)0.0371 (3)0.08825 (9)0.0242 (7)
H2241.01020.00140.06510.030 (3)*
H2250.99590.00090.10930.030 (3)*
H2261.14040.03190.09060.030 (3)*
C2241.0400 (3)0.2158 (3)0.12421 (10)0.0253 (8)
H2270.99740.17670.14520.030 (3)*
H2281.00920.29400.12400.030 (3)*
H2291.14090.21320.12660.030 (3)*
N20.7361 (3)0.3049 (2)0.12375 (8)0.0188 (6)
C20.7134 (3)0.3682 (3)0.14610 (9)0.0162 (6)
S20.68141 (10)0.46205 (7)0.17794 (2)0.0266 (2)
N30.7594 (2)0.3092 (2)0.04267 (7)0.0165 (5)
C30.7802 (3)0.3744 (3)0.02045 (9)0.0169 (6)
S30.80855 (9)0.46981 (7)0.01082 (2)0.02275 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01571 (14)0.01359 (16)0.01288 (16)0.00193 (11)0.0000.000
C1110.0151 (19)0.014 (2)0.026 (3)0.0000 (17)0.0000.000
C1120.022 (2)0.019 (2)0.025 (3)0.0045 (18)0.0000.000
C1130.0204 (15)0.0235 (18)0.035 (2)0.0015 (13)0.0095 (14)0.0094 (16)
C1210.025 (2)0.019 (2)0.018 (2)0.0062 (18)0.0000.000
C1220.0235 (15)0.035 (2)0.0227 (18)0.0030 (14)0.0054 (14)0.0016 (16)
C1230.035 (3)0.025 (3)0.030 (3)0.010 (2)0.0000.000
N10.0214 (12)0.0194 (15)0.0152 (14)0.0004 (11)0.0017 (10)0.0047 (11)
C10.0181 (14)0.0176 (16)0.0162 (16)0.0007 (12)0.0007 (12)0.0057 (14)
S10.0499 (5)0.0171 (4)0.0147 (4)0.0030 (4)0.0006 (4)0.0018 (3)
Sn20.01568 (10)0.01317 (11)0.01369 (12)0.00127 (8)0.00043 (7)0.00038 (8)
C2110.0165 (14)0.0216 (17)0.0216 (17)0.0045 (12)0.0005 (12)0.0006 (14)
C2120.0357 (19)0.027 (2)0.030 (2)0.0129 (16)0.0020 (16)0.0025 (16)
C2130.0198 (15)0.039 (2)0.0220 (18)0.0028 (14)0.0047 (13)0.0009 (16)
C2140.0218 (15)0.032 (2)0.0239 (19)0.0044 (14)0.0062 (13)0.0030 (15)
C2210.0159 (13)0.0193 (16)0.0184 (17)0.0027 (12)0.0013 (12)0.0033 (13)
C2220.0194 (15)0.0260 (19)0.028 (2)0.0009 (13)0.0052 (14)0.0009 (15)
C2230.0262 (17)0.0254 (19)0.0211 (18)0.0105 (14)0.0016 (13)0.0025 (14)
C2240.0207 (16)0.0287 (19)0.0264 (19)0.0039 (13)0.0053 (13)0.0094 (15)
N20.0205 (12)0.0184 (14)0.0176 (15)0.0020 (10)0.0025 (11)0.0044 (12)
C20.0175 (14)0.0151 (15)0.0159 (17)0.0008 (12)0.0010 (12)0.0079 (13)
S20.0458 (5)0.0190 (4)0.0149 (4)0.0104 (4)0.0003 (4)0.0016 (3)
N30.0167 (12)0.0187 (14)0.0140 (14)0.0002 (10)0.0017 (10)0.0032 (11)
C30.0159 (13)0.0163 (16)0.0185 (17)0.0025 (12)0.0020 (12)0.0079 (13)
S30.0336 (4)0.0198 (4)0.0149 (4)0.0062 (3)0.0004 (3)0.0011 (3)
Geometric parameters (Å, º) top
Sn1—N1i2.180 (3)Sn2—C2212.227 (3)
Sn1—N12.180 (3)C211—C2121.525 (5)
Sn2—N22.172 (3)C211—C2131.526 (5)
Sn2—N32.175 (3)C211—C2141.526 (4)
Sn1—C1212.214 (4)C212—H2110.9800
Sn1—C1112.224 (4)C212—H2120.9800
S1—Sn23.1519 (9)C212—H2130.9800
S2—Sn13.1312 (9)C213—H2140.9800
S3—Sn2ii3.1355 (9)C213—H2150.9800
C111—C1131.524 (4)C213—H2160.9800
C111—C113i1.524 (4)C214—H2170.9800
C111—C1121.529 (6)C214—H2180.9800
C112—H1110.9800C214—H2190.9800
C112—H1120.9799C221—C2231.514 (4)
C113—H1140.9800C221—C2241.529 (4)
C113—H1150.9800C221—C2221.530 (4)
C113—H1160.9800C222—H2210.9800
C121—C1231.514 (7)C222—H2220.9800
C121—C122i1.529 (4)C222—H2230.9800
C121—C1221.530 (4)C223—H2240.9800
C122—H1240.9800C223—H2250.9800
C122—H1250.9800C223—H2260.9800
C122—H1260.9800C224—H2270.9800
C123—H1210.9800C224—H2280.9800
C123—H1220.9800C224—H2290.9800
C123—H1230.9800N2—C21.126 (4)
N1—C11.130 (4)C2—S21.633 (3)
C1—S11.625 (3)N3—C31.134 (4)
Sn2—C2112.217 (3)C3—S31.625 (3)
N1i—Sn1—N184.35 (13)C211—Sn2—S183.05 (9)
N1i—Sn1—C12198.45 (11)C221—Sn2—S184.07 (8)
N1—Sn1—C12198.45 (11)C212—C211—C213110.3 (3)
N1i—Sn1—C11198.31 (10)C212—C211—C214110.5 (3)
N1—Sn1—C11198.31 (10)C213—C211—C214109.5 (3)
C121—Sn1—C111157.3 (2)C212—C211—Sn2110.8 (2)
N1i—Sn1—S2166.19 (7)C213—C211—Sn2108.4 (2)
N1—Sn1—S281.84 (7)C214—C211—Sn2107.2 (2)
C121—Sn1—S283.30 (7)C211—C212—H211109.5
C111—Sn1—S284.06 (6)C211—C212—H212109.5
C113—C111—C113i110.8 (4)H211—C212—H212109.5
C113—C111—C112110.0 (2)C211—C212—H213109.5
C113i—C111—C112110.0 (2)H211—C212—H213109.5
C113—C111—Sn1108.0 (2)H212—C212—H213109.5
C113i—C111—Sn1108.0 (2)C211—C213—H214109.5
C112—C111—Sn1110.1 (3)C211—C213—H215109.5
C111—C112—H111109.2H214—C213—H215109.5
C111—C112—H112109.2C211—C213—H216109.5
H111—C112—H112109.4H214—C213—H216109.5
C111—C113—H114109.5H215—C213—H216109.5
C111—C113—H115109.5C211—C214—H217109.5
H114—C113—H115109.5C211—C214—H218109.5
C111—C113—H116109.5H217—C214—H218109.5
H114—C113—H116109.5C211—C214—H219109.5
H115—C113—H116109.5H217—C214—H219109.5
C123—C121—C122i110.2 (3)H218—C214—H219109.5
C123—C121—C122110.2 (3)C223—C221—C224110.2 (3)
C122i—C121—C122109.2 (4)C223—C221—C222110.5 (3)
C123—C121—Sn1112.1 (3)C224—C221—C222110.2 (3)
C122i—C121—Sn1107.5 (2)C223—C221—Sn2110.3 (2)
C122—C121—Sn1107.5 (2)C224—C221—Sn2107.8 (2)
C121—C122—H124109.5C222—C221—Sn2107.8 (2)
C121—C122—H125109.5C221—C222—H221109.5
H124—C122—H125109.5C221—C222—H222109.5
C121—C122—H126109.5H221—C222—H222109.5
H124—C122—H126109.5C221—C222—H223109.5
H125—C122—H126109.5H221—C222—H223109.5
C121—C123—H121109.5H222—C222—H223109.5
C121—C123—H122109.5C221—C223—H224109.5
H121—C123—H122109.5C221—C223—H225109.5
C121—C123—H123109.5H224—C223—H225109.5
H121—C123—H123109.5C221—C223—H226109.5
H122—C123—H123109.5H224—C223—H226109.5
C1—N1—Sn1174.6 (2)H225—C223—H226109.5
C1—S1—Sn2100.2 (1)C221—C224—H227109.5
C2—N2—Sn2175.2 (3)C221—C224—H228109.5
C3—N3—Sn2167.0 (2)H227—C224—H228109.5
N2—Sn2—N384.73 (10)C221—C224—H229109.5
N2—Sn2—C21198.51 (11)H227—C224—H229109.5
N3—Sn2—C21198.41 (10)H228—C224—H229109.5
N2—Sn2—C22198.13 (10)N1—C1—S1178.2 (3)
N3—Sn2—C22198.59 (10)N2—C2—S2178.8 (3)
C211—Sn2—C221157.2 (1)C2—S2—Sn1100.7 (1)
N2—Sn2—S181.48 (7)N3—C3—S3178.8 (3)
N3—Sn2—S1166.20 (7)C3—S3—Sn2ii99.8 (1)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1/2, z.
 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by the Deutsche Forschungsgemeinschaft (DFG).

References

First citationAlcock, N. W. & Sawyer, J. F. (1977). J. Chem. Soc., Dalton Trans, pp. 1090–1095.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2019).  Google Scholar
First citationBritton, D. (2006). Acta Cryst. C62, m93–m94.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationDakternieks, D., Jurkschat, K. & Tiekink, E. R. T. (1994). Main Group Met. Chem. 17, 471–480.  CAS Google Scholar
First citationKandil, S. A. & Allred, A. L. (1970). J. Chem. Soc. A, pp. 2987–2992.  CrossRef Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806–5812.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPancratz, A.-K., Kamrowski, A. & Reuter, H. (2024). IUCrData, 9, x241093.  Google Scholar
First citationPovray (2004). POVRAY. Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia.  Google Scholar
First citationReuter, H. & Pawlak, R. (2001). Z. Kristallogr. 216, 56–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationSawyer, J. F. (1988). Acta Cryst. C44, 633–636.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, F. & Reuter, H. (2012). Acta Cryst. C68, m104–m108.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146