

ISSN 2414-3146

Received 12 December 2024 Accepted 24 December 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; isothiocyanate; intermolecular interactions; spherical coordinates; titling.

CCDC reference: 2412795

Structural data: full structural data are available from iucrdata.iucr.org

Di-tert-butyldiisothiocyanatotin(IV)

Anne Kamrowski and Hans Reuter*

Chemistry, Osnabrück University, Barabarstr. 7, 49069 Osnabrück, Germany. *Correspondence e-mail: hreuter@uos.de

The title compound, $[Sn(C_4H_9)_2(NCS)_2]$, which crystallizes with one and a half molecules in the asymmetric unit, represents a new structure type for intermolecular sulfur...tin interactions, which is characterized by an antiparallel (*A*) arrangement of the dipole moments of the individual molecules. In the resulting zigzag chains, the molecules are related to each other by mirror planes (*m*) and twofold rotation axes (2), both perpendicular to the propagation plane, while translation is realized *via* a glide plane in direction of the crystallographic *c* axis, a combination of symmetry elements unique in the structural chemistry of diorganotin(IV) dihalides and pseudohalides, R_2SnX_2 with X = Hal or NCS. Its characteristics are subsumed in the term Am2c for this kind of intermolecular association pattern. The tilting of the NSnN-planes in relation to the propagation plane is described in terms of spherical coordinates.

Structure description

As linear, polyatomic pseudo-halide ion, the thiocyanate ion, NCS⁻, is able to replace mono-atomic, spherical halide atoms in many compounds, which in the case of diorganotin(IV) dihalides, R_2 SnHal₂, leads to the formation of the so-called diorganotin(IV) diisothiocynates, R_2 Sn(NCS)₂, as the pseudo-halide ion binds to the 'hard' tin atom via its 'hard' nitrogen atom in accordance with the HSAB principle.

In terms of structural chemistry these compounds are of special interest with regard to their intermolecular interactions, which for steric reasons can only take place *via* the 'soft' sulfur atoms. In case of the methyl and ethyl compounds (Britton, 2006), these interactions result in a chain-like arrangement of the individual molecules with a parallel orientation of their dipole moments while the phenyl compound (Pancratz *et al.*, 2024) represents a di-periodic coordination polymer in which the molecules have lost their individuality. In search of a molecular *diisocyanate* we have prepared for the first time the title *tert*-butyl compound because the bulky *tert*-butyl substituents prevent an intermolecular association in the comparable *dichloride* (Dakternieks *et al.*, 1994).

The title compound, ^{*t*}Bu₂Sn(NCS)₂, crystallizes in the orthorhombic space group *Pbcm* with 12 molecules in the unit cell and one and a half molecules in the asymmetric unit (Fig. 1). The half molecule results from a crystallographic mirror plane that bisects the tin atom and the two *tert*-butyl groups with order/disorder of the hydrogen atoms of the affected methyl group.

The carbon–carbon bond lengths within the *tert*-butyl groups [C-C = 1.514 (7)–1.530 (4) Å, mean value = 1.525 (6) Å] are only slightly shorter than the value given in literature $[d(Csp^3-CH_3) = 1.534 (11) Å$ (Allen *et al.*, 1987)]. The mean bond angles of 110.1 (4)° between the methyl groups correspond very well with tetrahedrally coordinated, sp^3 -hybridized carbon atoms. With the tin–carbon–carbon bond angles, it is noticeable that in each *tert*-butyl group two angles are smaller [mean value: 107.1 (4)°] than the third one [mean value: 110.1 (9)°].

The bond lengths and angles describing the coordination sphere of the tin atoms, however, have very unusual values. Thus, the Sn-C distances of 2.214 (4)–2.227 (3) Å [mean value: 2.221 (6) Å] are quite long and the bond angles of 157.3 (2)/157.2 (2)° between the *tert*-butyl groups are greatly widened in comparison with the corresponding values [2.149 (4)/2.151 (4) Å, 133.1 (2)°] in the crystal structure of the parent compound di-*tert*-butyltin(IV) dichloride, ^tBu₂SnCl₂ (Dakternieks *et al.*, 1994). The same applies to the bond angles between the inorganic ligands which are considerably smaller in the title compound [84.4 (1)°/84.7 (1)°] than in the dichloride [101.86 (5)°], an effect that can be attributed to the smaller size of the nitrogen atoms in comparison with the chloride ions. Similar changes of bond angles are found in compounds R_2 Sn X_2 with R = Me and Et, respectively when

Figure 1

Ball-and-stick model of the tetrahedral environment of the two crystallographically independent ${}^{t}Bu_{2}Sn(NCS)_{2}$ molecules with atom numbering given for the asymmetric unit and orientation of the crystallographic mirror plane, *m*, in the molecule of Sn1. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn as displacement ellipsoids at the 40% probability level. Disorder of the hydrogen atoms attached to C123 is shown by dashed bonds in the case of the second hydrogen-atom orientation.

0	1 ()	/	
Sn1-N1	2.180 (3)	Sn1-C111	2.224 (4)
Sn2-N2	2.172 (3)	S1-Sn2	3.1519 (9)
Sn2-N3	2.175 (3)	S2-Sn1	3.1312 (9)
Sn1-C121	2.214 (4)	S3-Sn2 ⁱ	3.1355 (9)
C1-N1-Sn1	174.6 (2)	C3-N3-Sn2	167.0 (2)
C2-N2-Sn2	175.2 (3)		

Symmetry code: (i) $x, -y + \frac{1}{2}, -z$.

comparing X = Cl and X = NCS. For R = Me, $\langle (\text{C}-\text{Sn}-\text{C})$ changes from 142.2 (4)° for X = Cl (Reuter & Pawlak, 2001) to 147.6 (1)° (Britton, 2006) and $\langle (X-\text{Sn}-X)$ from 98.60 (9)° to 86.08 (8)° for X = NCS (Britton, 2006)], and for R = Et, $\langle (\text{C}-\text{Sn}-\text{C})$ changes from 134.0 (6)° for X = Cl (Alcock & Sawyer, 1977) to 153.03 (6)° for X = NCS (Britton, 2006) and $\langle (X-\text{Sn}-X)$ from 96.0 (1)° to 83.57 (8)° for X = NCS. The tin–carbon bond lengths, however, differ only slightly in the compounds in question.

The bond lengths [mean N–C = 1.103 (3) Å, mean C–S = 1.627 (4) Å] and angles [mean $\langle (N-C-S = 178.5 (3)^{\circ}]$ within the almost linear isothiocyanate groups are only slightly affected by their coordination behavior (Table 1) and almost identical with the values found in the other structurally determined *diisothiocyanates* [R = Me, Et (Britton, 2006), R = Ph (Pancratz *et al.*, 2024)]. These values correspond very well with a formal carbon–nitrogen triple [d(Csp-N) = 1.155 (12) Å (Allen *et al.*, 1987)] and a carbon–sulfur single [$d(C_{sp}-S)$ = 1.630 (14) Å (Allen *et al.*, 1987)] bond. Their coordination to the tin atoms *via* the nitrogen atoms is characterized by a mean tin–nitrogen distance of 2.176 (5) Å over all four NCS groups but the Sn–N–C bond angles show a greater variance. Three of the four bond angles are around 174.5 (8)° while one only reaches 167.0 (2)° (Table 1).

Despite the widening of the bond angles between the tertbutyl groups, intermolecular tin-sulfur distances [3.1312 (9)-3.1519 (9) Å] are of the same order of magnitude as in the corresponding methyl [3.146(1) Å] and ethyl [3.060(1) Å]compounds (Britton, 2006) and thus significantly longer than in Ph₂Sn(NCS₁₂ [2.7224 (5) Å; Pancratz et al., 2024]. In relation to the sum (2.43 Å) of the covalent radii (Cordero et al., 2008) of tin (1.39 Å) and sulfur (1.04 Å), these secondary tinsulfur contact lengths of around 3.1 Å are quite long (+0.67 Å = + 28%) but in relation to the sum (3.97 Å) of the van der Waals radii (Mantina et al., 2009) of tin (2.17 Å) and sulfur (1.80 Å) quite short (-0.87 Å = 22%). In summary, these secondary contacts lead to a chain-like arrangement of the individual molecules with anti-parallel arrangement of the dipole moments and carbon-sulfur...tin angles of 99.8 (1)-100.7 (1)° (Fig. 2).

Within the zigzag-chains the two molecules are related to each other by a sequence of mirror planes, m, and twofold rotation axes, 2, all perpendicular to the propagation plane parallel to the crystallographic a and b axes, while translation of the molecules is arranged *via* the glide plane c from which the tin atoms are at different distances (Fig. 2). The repeat unit therefore corresponds to the length of the c axis =

Figure 2

Schematic, ball-and-stick representation of the antiparallel, chain-like arrangement of the dipole moments (red arrows of arbitrary units, orientation assumed in the direction of the center point between the two nitrogen atoms) of the 'Bu₂Sn(NCS)₂ molecules as a result of the tin···sulfur interactions (dashed sticks in gray) and their relation to the crystallographic symmetry elements: mirror plane = m, green line; twofold rotation axis perpendicular to the gray propagation plane = 2, blue arrow; axial glide plane = c, dashed line, violet; above = top view on the propagation plane with organic groups omitted for clarity, below = side view; values in square brackets = distances (Å) of the tin atoms from the glide plane; atom color code used: Sn = bronze, N = blue, C = black, S = yellow, H = white; symmetry transformations used to generate equivalent atoms: (1) x, y, $\frac{1}{2}$ – z; (2) x, $\frac{1}{2}$ – y, $\frac{1}{2}$ + z; (3) x, $\frac{1}{2}$ – y, 1 – z.

36.0164 (9) Å. According to the classification scheme developed earlier (Ye & Reuter, 2012) based on the parallel (P) or anti-parallel (A) arrangement of the dipole moments and the symmetry elements involved in the intermolecular association, the present structure type can be denoted as Am2c.

In the structural chemistry of diorganotin dihalides, R_2 SnHal₂, anti-parallel arrangements of the dipole moments into zigzag chains are relatively common, but do not occur in the present combination (2, *m*) of symmetry elements: Me₂SnCl₂ = $Amm2_1$ (Reuter & Pawlak, 2001), Et₂SnBr₂ = $A22_1$ (Alcock & Saywer, 1977), ^{*n*}Bu₂SnCl₂ = $A2_1$ (Sawyer, 1988), Et₂SnCl₂ = Ac (Alcock & Sawyer, 1977).

As can easily be seen in Figs. 1 and 2, the N-Sn-N planes of the two molecules are not coplanar to the propagation plane. Quantitatively, the out-of-plane orientation of these

Figure 3

Spherical coordinate system used to calculate the spherical coordinates Θ and φ in order to characterize the tilting of the NSnN-planes of both molecules in relation to the propagation plane (gray), arbitrary values for the authoritative normal vector $N_{\rm NSnN}$ (blue); for clarity the positions of the organic ligands are only indicated by short sticks.

Figure 4

Detail of the chain-like arrangement of the ${}^{t}Bu_{2}Sn(NCS)_{2}$ molecules as space-filling model with dimensions in Å; left side = side view looking down the *b* axis, right side = front view; atoms are represented as single-colored or truncated, two-colored spheres according to their van der Waals radii and cut-offs based on the intersection of the two spheres with cut-off faces showing the color of the interpenetrating atom, intermolecular tin···sulfur contacts are visualized as dashed sticks in gray; atom color code used: Sn = bronze, N = blue, C = black, S = yellow, H = white.

planes can be described in terms of spherical coordination systems defined by the radial distance *r*, the polar angle Θ and the azimuthal angle φ (Fig. 3): with the tin atom as origin, *r* as the lengths of the normal vector N_{NSnN} , Θ as the angle between this normal vector and the polar axis *z* (= the crystallographic *a* axis) and φ as the angle of rotation around the polar axis *z* in the meridional *xy* plane (= plane through Sn and coplanar to the propagation plane *bc*). The corresponding values are $\Theta = 10.77^\circ$, $\varphi = 270^\circ$ for the NSnN plane of Sn1, and $\Theta = 8.26^\circ$, $\varphi = 303.09^\circ$ for the NSnN plane of Sn2.

Including the organic residuals into account the sinusoidal chains have an almost rectangular cross-section (Fig. 4) of about 9.65×10.45 Å and are arranged in the direction of the *b* axis whereby the wave crest of the one chain engaged in the wave valley of the other one (Fig. 5). For an interpretation of the secondary contacts in terms of 3c-4*e* bonds see Alcock & Sawyer (1977).

Synthesis and crystallization

The synthesis was carried out according to a published protocol from sodium thiocyanate and di-*tert*-butyltin(IV) dichloride, ^{*t*}Bu₂SnCl₂, (Kandil & Allred, 1970) in ethanol (molar ratio 1:2): colorless, needle-like single crystals were obtained after recrystallization from toluene solution.

Figure 5

Ball-and-stick representation showing the molecule packing and interlocking of the chains formed when looking down the a axis; intermolecular tin $\cdot \cdot \cdot$ sulfur contacts are shown as dashed sticks in gray.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by the Deutsche Forschungsgemeinschaft (DFG).

References

- Alcock, N. W. & Sawyer, J. F. (1977). J. Chem. Soc., Dalton Trans, pp. 1090–1095.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2019).
- Britton, D. (2006). Acta Cryst. C62, m93-m94.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). *Dalton Trans.* pp. 2832–2838.
- Dakternieks, D., Jurkschat, K. & Tiekink, E. R. T. (1994). Main Group Met. Chem. 17, 471–480.
- Kandil, S. A. & Allred, A. L. (1970). J. Chem. Soc. A, pp. 2987-2992.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806–5812.
- Pancratz, A.-K., Kamrowski, A. & Reuter, H. (2024). *IUCrData*, 9, x241093.

Table 2

Experimental details.

Crystal data	
Chemical formula	$[Sn(C_4H_9)_2(NCS)_2]$
M _r	349.07
Crystal system, space group	Orthorhombic, Pbcm
Temperature (K)	100
a, b, c (Å)	9.6669 (3), 11.9440 (4), 36.0164 (9)
$V(Å^3)$	4158.5 (2)
Ζ	12
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	2.12
Crystal size (mm)	$0.18 \times 0.12 \times 0.06$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.697, 0.891
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	169441, 5093, 4052
R _{int}	0.104
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.661
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.067, 1.12
No. of reflections	5093
No. of parameters	225
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.62, -1.01

Computer programs: *APEX2* and *SAINT* (Bruker, 2009), *SHELXS97* (Sheldrick 2008), *SHELXL2014/7* (Sheldrick, 2015), *DIAMOND* (Brandenburg, 2006), *Mercury* (Macrae et al. (2020), *POVRAY* (Povray, 2004) and *publCIF* (Westrip, 2010).

Povray (2004). *POVRAY*. Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia.

Reuter, H. & Pawlak, R. (2001). Z. Kristallogr. 216, 56-59.

Sawyer, J. F. (1988). Acta Cryst. C44, 633-636.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Ye, F. & Reuter, H. (2012). Acta Cryst. C68, m104-m108.

full crystallographic data

IUCrData (2025). 10, x241244 [https://doi.org/10.1107/S2414314624012446]

Di-tert-butyldiisothiocyanatotin(IV)

Anne Kamrowski and Hans Reuter

Di-tert-butyldiisothiocyanatotin(IV)

Crystal data $[Sn(C_4H_9)_2(NCS)_2]$ $D_{\rm x} = 1.673 {\rm Mg} {\rm m}^{-3}$ $M_r = 349.07$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9996 reflections Orthorhombic, Pbcm $\theta = 2.4 - 29.2^{\circ}$ a = 9.6669 (3) Å $\mu = 2.12 \text{ mm}^{-1}$ *b* = 11.9440 (4) Å c = 36.0164 (9) Å T = 100 KV = 4158.5 (2) Å³ Plate, colourless Z = 12 $0.18 \times 0.12 \times 0.06 \text{ mm}$ F(000) = 2088Data collection Bruker APEXII CCD 5093 independent reflections diffractometer 4052 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{\rm int} = 0.104$ Absorption correction: multi-scan $\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$ $h = -12 \rightarrow 12$ (SADABS; Krause et al., 2015) $T_{\rm min} = 0.697, T_{\rm max} = 0.891$ $k = -15 \rightarrow 15$ 169441 measured reflections $l = -47 \rightarrow 47$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0162P)^2 + 7.7574P]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.067$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.12	$\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$
5093 reflections	$\Delta \rho_{\rm min} = -1.01 \text{ e } \text{\AA}^{-3}$
225 parameters	Extinction correction: SHELXL2014/7
0 restraints	(Sheldrick 2015),
Primary atom site location: structure-invariant	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
direct methods	Extinction coefficient: 0.00019 (2)
Hydrogen site location: mixed	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were geometrically placed (C—H = 0.98 Å) and refined as riding atoms. The U_{iso} values for the H atoms were contrained to be the same for all atoms attached to a particular carbon atom.

	x	v	Z	$U_{\rm iso}*/U_{ea}$	Occ. (<1)
Sn1	0 71338 (3)	0 31769 (2)	0.2500	0.01406 (8)	
C111	0.4833(4)	0.3193(4)	0.2500	0.01460 (0)	
C112	0.4302(5)	0.3199(4) 0.4399(4)	0.2500	0.0100(9)	
H111	0.3289	0.4393	0.2500	0.0220(10)	
H112	0.4636	0.4782	0.2277	$0.030(5)^{*}$	
C113	0.4340(3)	0.2588(3)	0.21517(10)	0.0264(8)	
H114	0.4663	0.1810	0.2157	0.030 (5)*	
H115	0.4713	0.2964	0.1932	0.030 (5)*	
H116	0.3327	0.2600	0.2142	0.030 (5)*	
C121	0.9254 (5)	0.3877 (4)	0.2500	0.0204 (10)	
C122	0.9991 (3)	0.3436 (3)	0.21538 (10)	0.0272 (8)	
H124	1.0943	0.3718	0.2149	0.039 (6)*	
H125	0.9500	0.3692	0.1931	0.039 (6)*	
H126	1.0002	0.2616	0.2159	0.039 (6)*	
C123	0.9251 (5)	0.5145 (4)	0.2500	0.0302 (11)	
H121	0.8625	0.5417	0.2694	0.039 (6)*	0.5
H122	0.8936	0.5418	0.2258	0.039 (6)*	0.5
H123	1.0189	0.5420	0.2548	0.039 (6)*	0.5
N1	0.7446 (3)	0.1848 (2)	0.20936 (8)	0.0187 (6)	
C1	0.7531 (3)	0.1200 (3)	0.18662 (9)	0.0173 (6)	
S 1	0.76537 (10)	0.02369 (7)	0.15494 (2)	0.0272 (2)	
Sn2	0.76789 (2)	0.17360 (2)	0.08292 (2)	0.01418 (7)	
C211	0.5510 (3)	0.1151 (3)	0.07802 (9)	0.0199 (7)	
C212	0.5441 (4)	-0.0125 (3)	0.07864 (10)	0.0311 (8)	
H211	0.5816	-0.0401	0.1022	0.037 (4)*	
H212	0.5986	-0.0427	0.0580	0.037 (4)*	
H213	0.4476	-0.0365	0.0761	0.037 (4)*	
C213	0.4912 (3)	0.1599 (3)	0.04175 (10)	0.0269 (8)	
H214	0.3949	0.1352	0.0392	0.037 (4)*	
H215	0.5455	0.1314	0.0208	0.037 (4)*	
H216	0.4945	0.2419	0.0419	0.037 (4)*	
C214	0.4711 (3)	0.1641 (3)	0.11074 (10)	0.0259 (8)	
H217	0.4750	0.2460	0.1097	0.037 (4)*	
H218	0.5124	0.1381	0.1340	0.037 (4)*	
H219	0.3744	0.1396	0.1095	0.037 (4)*	
C221	0.9969 (3)	0.1591 (3)	0.08795 (9)	0.0179 (6)	
C222	1.0614 (3)	0.2197 (3)	0.05478 (10)	0.0244 (7)	
H221	1.1624	0.2168	0.0567	0.030 (3)*	
H222	1.0310	0.2980	0.0546	0.030 (3)*	
H223	1.0321	0.1832	0.0317	0.030 (3)*	
C223	1.0396 (3)	0.0371 (3)	0.08825 (9)	0.0242 (7)	
H224	1.0102	0.0014	0.0651	0.030 (3)*	
H225	0.9959	-0.0009	0.1093	0.030 (3)*	
H226	1.1404	0.0319	0.0906	0.030 (3)*	
C224	1.0400 (3)	0.2158 (3)	0.12421 (10)	0.0253 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H227	0.9974	0.1767	0.1452	0.030 (3)*
H228	1.0092	0.2940	0.1240	0.030 (3)*
H229	1.1409	0.2132	0.1266	0.030 (3)*
N2	0.7361 (3)	0.3049 (2)	0.12375 (8)	0.0188 (6)
C2	0.7134 (3)	0.3682 (3)	0.14610 (9)	0.0162 (6)
S2	0.68141 (10)	0.46205 (7)	0.17794 (2)	0.0266 (2)
N3	0.7594 (2)	0.3092 (2)	0.04267 (7)	0.0165 (5)
C3	0.7802 (3)	0.3744 (3)	0.02045 (9)	0.0169 (6)
S3	0.80855 (9)	0.46981 (7)	-0.01082 (2)	0.02275 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01571 (14)	0.01359 (16)	0.01288 (16)	0.00193 (11)	0.000	0.000
C111	0.0151 (19)	0.014 (2)	0.026 (3)	0.0000 (17)	0.000	0.000
C112	0.022 (2)	0.019 (2)	0.025 (3)	0.0045 (18)	0.000	0.000
C113	0.0204 (15)	0.0235 (18)	0.035 (2)	0.0015 (13)	-0.0095 (14)	-0.0094 (16)
C121	0.025 (2)	0.019 (2)	0.018 (2)	-0.0062 (18)	0.000	0.000
C122	0.0235 (15)	0.035 (2)	0.0227 (18)	-0.0030 (14)	0.0054 (14)	0.0016 (16)
C123	0.035 (3)	0.025 (3)	0.030 (3)	-0.010(2)	0.000	0.000
N1	0.0214 (12)	0.0194 (15)	0.0152 (14)	0.0004 (11)	-0.0017 (10)	0.0047 (11)
C1	0.0181 (14)	0.0176 (16)	0.0162 (16)	0.0007 (12)	-0.0007 (12)	0.0057 (14)
S 1	0.0499 (5)	0.0171 (4)	0.0147 (4)	0.0030 (4)	0.0006 (4)	-0.0018 (3)
Sn2	0.01568 (10)	0.01317 (11)	0.01369 (12)	0.00127 (8)	-0.00043 (7)	-0.00038 (8)
C211	0.0165 (14)	0.0216 (17)	0.0216 (17)	-0.0045 (12)	0.0005 (12)	0.0006 (14)
C212	0.0357 (19)	0.027 (2)	0.030 (2)	-0.0129 (16)	0.0020 (16)	-0.0025 (16)
C213	0.0198 (15)	0.039 (2)	0.0220 (18)	-0.0028 (14)	-0.0047 (13)	0.0009 (16)
C214	0.0218 (15)	0.032 (2)	0.0239 (19)	-0.0044 (14)	0.0062 (13)	0.0030 (15)
C221	0.0159 (13)	0.0193 (16)	0.0184 (17)	0.0027 (12)	-0.0013 (12)	-0.0033 (13)
C222	0.0194 (15)	0.0260 (19)	0.028 (2)	0.0009 (13)	0.0052 (14)	0.0009 (15)
C223	0.0262 (17)	0.0254 (19)	0.0211 (18)	0.0105 (14)	-0.0016 (13)	-0.0025 (14)
C224	0.0207 (16)	0.0287 (19)	0.0264 (19)	0.0039 (13)	-0.0053 (13)	-0.0094 (15)
N2	0.0205 (12)	0.0184 (14)	0.0176 (15)	-0.0020 (10)	-0.0025 (11)	0.0044 (12)
C2	0.0175 (14)	0.0151 (15)	0.0159 (17)	0.0008 (12)	-0.0010 (12)	0.0079 (13)
S2	0.0458 (5)	0.0190 (4)	0.0149 (4)	0.0104 (4)	0.0003 (4)	-0.0016 (3)
N3	0.0167 (12)	0.0187 (14)	0.0140 (14)	0.0002 (10)	-0.0017 (10)	-0.0032 (11)
C3	0.0159 (13)	0.0163 (16)	0.0185 (17)	0.0025 (12)	-0.0020 (12)	-0.0079 (13)
S3	0.0336 (4)	0.0198 (4)	0.0149 (4)	-0.0062 (3)	0.0004 (3)	0.0011 (3)

Geometric parameters (Å, °)

Sn1—N1 ⁱ	2.180 (3)	Sn2—C221	2.227 (3)	
Sn1—N1	2.180 (3)	C211—C212	1.525 (5)	
Sn2—N2	2.172 (3)	C211—C213	1.526 (5)	
Sn2—N3	2.175 (3)	C211—C214	1.526 (4)	
Sn1—C121	2.214 (4)	C212—H211	0.9800	
Sn1—C111	2.224 (4)	C212—H212	0.9800	
S1—Sn2	3.1519 (9)	C212—H213	0.9800	

S2—Sn1	3.1312 (9)	C213—H214	0.9800
S3—Sn2 ⁱⁱ	3.1355 (9)	C213—H215	0.9800
C111—C113	1.524 (4)	C213—H216	0.9800
C111—C113 ⁱ	1.524 (4)	C214—H217	0.9800
C111—C112	1.529 (6)	C214—H218	0.9800
C112—H111	0.9800	C214—H219	0.9800
C112—H112	0.9799	C221—C223	1.514 (4)
С113—Н114	0.9800	C221—C224	1.529 (4)
C113—H115	0.9800	C221—C222	1.530 (4)
C113—H116	0.9800	C222—H221	0.9800
$C_{121} - C_{123}$	1 514 (7)	С222—Н222	0.9800
$C_{121} - C_{122}$	1.529 (4)	C222—H223	0.9800
$C_{121} - C_{122}$	1.529(1) 1.530(4)	C223—H224	0.9800
C122—H124	0.9800	C223—H225	0.9800
C122_H125	0.9800	C223—H226	0.9800
C122—H126	0.9800	C224—H227	0.9800
C122_H121	0.9800	C224 H228	0.9800
C123_H122	0.9800	C224 H229	0.9800
C123—H123	0.9800	N2C2	1 126 (4)
N1 C1	1.130(4)	$C_2 = S_2$	1.120(4) 1.633(3)
C1 = S1	1.625 (3)	N3_C3	1.035(3) 1.134(4)
$Sn^2 = C^{211}$	2,217(3)	C_3 S_3	1.625 (3)
5112-0211	2.217 (3)	65-55	1.025(3)
N1 ⁱ —Sn1—N1	84.35 (13)	C211—Sn2—S1	83.05 (9)
$N1^{i}$ — $Sn1$ — $C121$	98.45 (11)	C221 - Sn2 - S1	84.07 (8)
N1—Sn1—C121	98.45 (11)	C212—C211—C213	110.3 (3)
$N1^{i}$ — $Sn1$ — $C111$	98.31 (10)	C212—C211—C214	110.5 (3)
N1—Sn1—C111	98.31 (10)	C213—C211—C214	109.5 (3)
C121—Sn1—C111	157.3 (2)	C212—C211—Sn2	110.8 (2)
$N1^{i}$ Sn1 S2	166.19 (7)	C213—C211—Sn2	108.4 (2)
N1—Sn1—S2	81.84 (7)	$C_{214} - C_{211} - S_{n2}$	107.2 (2)
$C_{121} = S_{11} = S_{22}$	83.30(7)	$C_{211} - C_{212} - H_{211}$	109.5
C_{111} Sn1 S2	84.06 (6)	$C_{211} - C_{212} - H_{212}$	109.5
$C_{113} - C_{111} - C_{113^{i}}$	110 8 (4)	$H_{211} - C_{212} - H_{212}$	109.5
C_{113} $-C_{111}$ $-C_{112}$	110.0(2)	C211 - C212 - H213	109.5
$C_{113^{i}}$ C_{111} C_{112}	110.0(2)	H211—C212—H213	109.5
C_{113} C_{111} S_{n1}	108.0(2)	H212—C212—H213	109.5
C_{113}^{i} C_{111}^{i} S_{n1}^{i}	108.0(2)	C_{211} C_{213} H_{214}	109.5
C112— $C111$ — $Sn1$	100.0(2) 1101(3)	C211 - C213 - H215	109.5
C111—C112—H111	109.2	H214—C213—H215	109.5
$C_{111} = C_{112} = H_{112}$	109.2	$C_{211} - C_{213} - H_{216}$	109.5
H111—C112—H112	109.2	H214—C213—H216	109.5
C111—C113—H114	109.1	H215-C213-H216	109.5
$C_{111} = C_{113} = H_{115}$	109.5	$C_{211} - C_{214} + H_{217}$	109.5
H114_C113_H115	109.5	$C_{211} = C_{214} = H_{217}$	109.5
C111—C113—H116	109.5	H217—C214—H218	109.5
H114_C113_H116	109.5	C_{211} C_{214} H_{210}	109.5
Н115_С113_Н116	109.5	H217_C214_H219	109.5
	107.5	11217 0217 11217	107.5

C123—C121—C122 ⁱ	110.2 (3)	H218—C214—H219	109.5
C123—C121—C122	110.2 (3)	C223—C221—C224	110.2 (3)
C122 ⁱ —C121—C122	109.2 (4)	C223—C221—C222	110.5 (3)
C123—C121—Sn1	112.1 (3)	C224—C221—C222	110.2 (3)
C122 ⁱ —C121—Sn1	107.5 (2)	C223—C221—Sn2	110.3 (2)
C122—C121—Sn1	107.5 (2)	C224—C221—Sn2	107.8 (2)
C121—C122—H124	109.5	C222—C221—Sn2	107.8 (2)
С121—С122—Н125	109.5	C221—C222—H221	109.5
H124—C122—H125	109.5	C221—C222—H222	109.5
С121—С122—Н126	109.5	H221—C222—H222	109.5
H124—C122—H126	109.5	С221—С222—Н223	109.5
H125—C122—H126	109.5	H221—C222—H223	109.5
C121—C123—H121	109.5	H222—C222—H223	109.5
C121—C123—H122	109.5	C221—C223—H224	109.5
H121—C123—H122	109.5	С221—С223—Н225	109.5
С121—С123—Н123	109.5	H224—C223—H225	109.5
H121—C123—H123	109.5	С221—С223—Н226	109.5
H122—C123—H123	109.5	H224—C223—H226	109.5
C1—N1—Sn1	174.6 (2)	H225—C223—H226	109.5
C1—S1—Sn2	100.2 (1)	C221—C224—H227	109.5
C2—N2—Sn2	175.2 (3)	C221—C224—H228	109.5
C3—N3—Sn2	167.0 (2)	H227—C224—H228	109.5
N2—Sn2—N3	84.73 (10)	C221—C224—H229	109.5
N2—Sn2—C211	98.51 (11)	H227—C224—H229	109.5
N3—Sn2—C211	98.41 (10)	H228—C224—H229	109.5
N2—Sn2—C221	98.13 (10)	N1—C1—S1	178.2 (3)
N3—Sn2—C221	98.59 (10)	N2—C2—S2	178.8 (3)
C211—Sn2—C221	157.2 (1)	C2—S2—Sn1	100.7 (1)
N2—Sn2—S1	81.48 (7)	N3—C3—S3	178.8 (3)
N3—Sn2—S1	166.20 (7)	C3—S3—Sn2 ⁱⁱ	99.8 (1)

Symmetry codes: (i) x, y, -z+1/2; (ii) x, -y+1/2, -z.