metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Chlorido­(2-{(2-hy­dr­oxy­eth­yl)[tris­­(hy­dr­oxy­meth­yl)meth­yl]amino}­ethano­lato-κ5N,O,O′,O′′,O′′′)copper(II)

crossmark logo

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 April 2024; accepted 10 May 2024; online 24 May 2024)

The title complex, [Cu(C8H18NO5)Cl] or [Cu(H4bis-tris­)Cl], was obtained starting from the previously reported [Cu(H5bis-tris­)Cl]Cl compound. The deprotonation of the amino­polyol ligand H5bis-tris {[bis­(2-hy­droxy­eth­yl)amino]­tris­(hy­droxy­meth­yl)methane, C8H19NO5} promotes the formation of a very strong O—H⋯O inter­molecular hydrogen bond, characterized by an H⋯O separation of 1.553 (19) Å and an O—H⋯O angle of 178 (4)°. The remaining hy­droxy groups are also engaged in hydrogen bonds, forming R22(8), R44(16), R44(20) and R44(22) ring motifs, which stabilize the triperiodic supra­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Amino­polyol [bis­(2-hy­droxy­eth­yl)amino]­tris­(hy­droxy­meth­yl)methane, generally abbrev­iated H5bis-tris­, is able to coordinate first-row late transition metals and lanthanides (Nicholson et al., 2001[Nicholson, K. N., Twamley, B. & Wood, S. (2001). Acta Cryst. E57, o1133-o1135.]). This mol­ecule behaves systematically as a chelating penta­dentate ligand, through the tertiary N atom and four of the five alcohol arms. The metal coordination sphere is then completed with an ancillary ligand, frequently an aqua or a chlorido ligand. Furthermore, depending on the reaction conditions, H5bis-tris can be deprotonated, affording chelating anions. While anions (H5–nbis-tris­)n with n = 2 to 4 have been determined by X-ray structure analysis in several compounds (e.g. Stamatatos et al., 2009[Stamatatos, T. C., Abboud, K. A. & Christou, G. (2009). Dalton Trans. pp. 41-50.]), it seems that to date the anionic ligand with n = 1, (H4bis-tris­), has been observed only once: Kirillova et al. (2017[Kirillova, M. V., Santos, C. I. M., André, V., Fernandes, T. A., Dias, S. S. P. & Kirillov, A. M. (2017). Inorg. Chem. Front. 4, 968-977.]) reported a crystal structure comprising [Cu(H5bis-tris­)(inic)]+ and [Cu(H4bis-tris­)(inic)] entities, where inic stands for the isonicotinate anion. We now report the structure of the second complex where (H4bis-tris­) acts as a ligand, namely [Cu(H4bis-tris­)Cl], which was obtained serendipitously from [Cu(H5bis-tris­)Cl]+Cl (Inomata et al., 2004[Inomata, Y., Gochou, Y., Nogami, M., Howell, F. S. & Takeuchi, T. (2004). J. Mol. Struct. 702, 61-70.]).

The new CuII mol­ecular complex displays the expected distorted octa­hedral shape (Fig. 1[link]). Since all H atoms could be located from electron-difference maps, the deprotonated alcohol group was clearly identified as being O5. Moreover, the anion formula for (H4bis-tris­) is consistent with the charge balance in the complex. The tetra­gonal distortion resulting from the Jahn–Teller effect for CuII increases bond lengths Cu1—O3 and Cu1—O4 [2.361 (3) and 2.436 (2) Å] in comparison with bond lengths in the equatorial plane N1/O2/O5/Cl1 [1.943 (2) to 2.2812 (10) Å]. The shape of the neutral mol­ecule [Cu(H4bis-tris­)Cl] is actually close to that observed for the cation [Cu(H5bis-tris­)Cl]+: a mol­ecular overlay gives a root-mean-square (r.m.s.) deviation of 0.28 Å and a maximum deviation of 0.91 Å (Fig. 1[link], inset).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids for non-H atoms at the 60% probability level. The inset is an overlay calculated with Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), comparing the shape of [Cu(H5bis-tris­)Cl]+ (blue) and the title complex [Cu(H4bis-tris­)Cl] (red). The crystal structure of [Cu(H5bis-tris­)Cl]Cl has been published (Inomata et al., 2004[Inomata, Y., Gochou, Y., Nogami, M., Howell, F. S. & Takeuchi, T. (2004). J. Mol. Struct. 702, 61-70.]; CCDC refcode FIPRAY); however, the authors did not deposit a CIF file at that time. A CSD communication for this compound was thus used for the fit (FIPRAY01; Fortis-Valera et al., 2018[Fortis-Valera, M., Bernès, S., Arroyo-Carmona, R. E. & Pérez-Benítez, A. (2018). CSD Communication (refcode FIPRAY01). CCDC, Cambridge, England]).

The space group and the network of hydrogen bonds are however modified upon deprotonation of H5bis-tris­. In the new complex, all hy­droxy groups are donors for hydrogen bonding, and the deprotonated hy­droxy group, O5, is an acceptor (Table 1[link]). The latter is engaged in the strongest inter­action, O2—H2⋯O5, with a very short H2⋯O5 distance of 1.553 (19) Å and with an angle O2—H2⋯O5 = 178 (4)°. Indeed, only few shorter inter­molecular H⋯O separations can be retrieved from the Cambridge Structural Database (CSD v. 5.45, updated March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for CH2—CH2—O⋯H—O fragments (see, for example: Yilmaz et al., 2002[Yilmaz, V. T., Andac, O., Karadag, A. & Harrison, W. T. A. (2002). J. Mol. Struct. 641, 119-124.]). Together with contact O3—H3⋯O4, [R_{2}^{2}](8) ring motifs are formed in the crystal structure. Combined with another hydrogen bond involving the non-coordinating alcohol group, O1—H1⋯Cl1, a diperiodic framework is formed parallel to (101), based on [R_{2}^{2}](8) and [R_{4}^{4}](22) supra­molecular motifs (Fig. 2[link]). The last hydrogen bond, O4—H4⋯O1, expands the supra­molecular network through the formation of centrosymmetric [R_{4}^{4}](16) and [R_{4}^{4}](20) rings (Fig. 3[link]), affording a stable triperiodic crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1i 0.83 (2) 2.24 (2) 3.068 (2) 174 (4)
O2—H2⋯O5ii 0.86 (2) 1.55 (2) 2.408 (3) 178 (4)
O3—H3⋯O4iii 0.82 (2) 2.00 (2) 2.758 (3) 154 (4)
O4—H4⋯O1iv 0.82 (2) 1.85 (2) 2.663 (3) 171 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The supra­molecular framework based on inter­molecular O—H⋯(O, Cl) hydrogen bonds (dashed blue lines) corresponding to entries 1–3 in Table 1[link]. The inset shows single crystals suitable for X-ray diffraction.
[Figure 3]
Figure 3
The supra­molecular framework based on inter­molecular O—H⋯O hydrogen bonds (dashed blue lines) corresponding to entries 2–4 in Table 1[link].

Synthesis and crystallization

Single crystals of the title complex were unexpectedly obtained in an attempt to substitute the chlorido ligand in [Cu(H5bis-tris­)Cl]+ by a heterocyclic compound. Complex [Cu(H5bis-tris­)Cl]+Cl (1 mmol, 0.343 g) and fluconazole (1 mmol, 0.307 g) were dissolved in ethanol (70% v/v solution, 15 ml). The mixture was heated to 323 K under stirring for 20 min, and filtered to eliminate a blue precipitate. The resulting solution was evaporated over 3 days, affording a blue product. The crude product was recrystallized in methanol, giving sky-blue crystals used for the diffraction study (see Fig. 2[link], inset).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C8H18NO5)Cl]
Mr 307.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 109
a, b, c (Å) 7.2605 (9), 10.4221 (14), 14.668 (2)
β (°) 94.366 (12)
V3) 1106.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.22
Crystal size (mm) 0.17 × 0.06 × 0.04
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.848, 0.917
No. of measured, independent and observed [I > 2σ(I)] reflections 5523, 2582, 2002
Rint 0.046
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.05
No. of reflections 2582
No. of parameters 157
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.18, −1.17
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Chlorido(2-{(2-hydroxyethyl)[tris(hydroxymethyl)methyl]amino}ethanolato-κ5N,O,O',O'',O''')copper(II) top
Crystal data top
[Cu(C8H18NO5)Cl]Dx = 1.844 Mg m3
Mr = 307.22Melting point: 435 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2605 (9) ÅCell parameters from 1395 reflections
b = 10.4221 (14) Åθ = 3.4–29.6°
c = 14.668 (2) ŵ = 2.22 mm1
β = 94.366 (12)°T = 109 K
V = 1106.7 (3) Å3Prism, blue
Z = 40.17 × 0.06 × 0.04 mm
F(000) = 636
Data collection top
Xcalibur, Atlas, Gemini
diffractometer
2582 independent reflections
Radiation source: Enhance (Mo) X-ray Source2002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.4685 pixels mm-1θmax = 29.6°, θmin = 3.4°
ω scansh = 910
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2022)
k = 1413
Tmin = 0.848, Tmax = 0.917l = 1818
5523 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
2582 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 1.18 e Å3
4 restraintsΔρmin = 1.17 e Å3
0 constraints
Special details top

Refinement. Methylene H atoms were refined using a riding model (C—H: 0.99 Å); hydroxy H atoms (H1, H2, H3, H4) were located from electron-difference maps and were refined freely, with the O—H bond lengths restrained to 0.85 (2) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.22842 (5)0.75373 (4)0.75931 (3)0.00775 (16)
Cl10.31899 (12)0.76196 (8)0.61387 (6)0.0145 (2)
O10.2269 (3)0.8024 (2)1.09572 (16)0.0130 (5)
H10.116 (3)0.790 (4)1.103 (3)0.019*
O20.3908 (3)0.6168 (2)0.80600 (16)0.0096 (5)
H20.407 (5)0.539 (2)0.790 (3)0.014*
O30.4592 (3)0.8730 (2)0.84389 (17)0.0143 (5)
H30.462 (5)0.9507 (19)0.836 (3)0.022*
O40.0338 (3)0.6104 (2)0.72784 (16)0.0104 (5)
H40.113 (4)0.641 (4)0.692 (2)0.016*
O50.0620 (3)0.8995 (2)0.74310 (16)0.0111 (5)
N10.1319 (4)0.7390 (2)0.8869 (2)0.0075 (6)
C10.3128 (5)0.7294 (3)0.9443 (2)0.0080 (7)
C20.2964 (5)0.6976 (3)1.0446 (2)0.0121 (7)
H2A0.2130890.6229271.0488170.015*
H2B0.4195250.6726411.0727060.015*
C30.4235 (4)0.6194 (3)0.9021 (2)0.0109 (7)
H3A0.5571300.6318370.9185620.013*
H3B0.3868360.5361440.9277680.013*
C40.4244 (4)0.8542 (3)0.9372 (2)0.0104 (7)
H4A0.3537260.9276660.9593300.012*
H4B0.5425320.8477790.9753610.012*
C50.0232 (4)0.6181 (3)0.8917 (2)0.0096 (7)
H5A0.0396170.6179910.9493360.012*
H5B0.1094140.5444000.8939070.012*
C60.1206 (4)0.5993 (3)0.8123 (2)0.0118 (7)
H6A0.1780210.5135310.8163630.014*
H6B0.2187350.6648570.8146720.014*
C70.0172 (4)0.8544 (3)0.9019 (2)0.0094 (7)
H7A0.0950960.9221770.9324730.011*
H7B0.0814870.8321570.9421420.011*
C80.0692 (4)0.9044 (3)0.8101 (2)0.0114 (7)
H8A0.1779330.8514060.7899660.014*
H8B0.1112980.9939270.8172190.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0099 (3)0.0069 (2)0.0065 (2)0.00093 (15)0.00096 (17)0.00036 (15)
Cl10.0135 (4)0.0219 (5)0.0084 (4)0.0024 (3)0.0025 (3)0.0011 (3)
O10.0108 (11)0.0173 (13)0.0108 (13)0.0005 (11)0.0007 (9)0.0040 (11)
O20.0163 (11)0.0046 (11)0.0080 (12)0.0047 (10)0.0018 (9)0.0025 (10)
O30.0218 (12)0.0108 (11)0.0110 (13)0.0061 (11)0.0049 (10)0.0006 (11)
O40.0128 (11)0.0111 (12)0.0073 (12)0.0009 (10)0.0007 (9)0.0000 (10)
O50.0154 (11)0.0085 (11)0.0100 (12)0.0031 (10)0.0037 (9)0.0011 (10)
N10.0095 (13)0.0039 (13)0.0088 (14)0.0006 (10)0.0011 (11)0.0011 (11)
C10.0085 (15)0.0082 (15)0.0070 (16)0.0009 (13)0.0022 (12)0.0015 (13)
C20.0128 (16)0.0119 (16)0.0114 (18)0.0007 (14)0.0012 (13)0.0009 (15)
C30.0114 (15)0.0090 (16)0.0121 (18)0.0007 (14)0.0011 (12)0.0020 (14)
C40.0120 (15)0.0078 (16)0.0112 (18)0.0019 (14)0.0001 (12)0.0028 (13)
C50.0119 (15)0.0090 (15)0.0075 (16)0.0004 (14)0.0013 (12)0.0018 (14)
C60.0137 (15)0.0113 (16)0.0101 (17)0.0055 (14)0.0015 (12)0.0021 (14)
C70.0102 (15)0.0105 (16)0.0076 (17)0.0038 (13)0.0010 (12)0.0011 (13)
C80.0124 (15)0.0115 (16)0.0102 (17)0.0004 (14)0.0012 (12)0.0014 (14)
Geometric parameters (Å, º) top
Cu1—O21.943 (2)C1—C41.540 (4)
Cu1—O51.944 (2)C1—C31.556 (5)
Cu1—N12.054 (3)C2—H2A0.9900
Cu1—Cl12.2812 (10)C2—H2B0.9900
Cu1—O32.361 (3)C3—H3A0.9900
Cu1—O42.436 (2)C3—H3B0.9900
O1—C21.438 (4)C4—H4A0.9900
O1—H10.833 (19)C4—H4B0.9900
O2—C31.412 (4)C5—C61.516 (4)
O2—H20.856 (19)C5—H5A0.9900
O3—C41.425 (4)C5—H5B0.9900
O3—H30.818 (19)C6—H6A0.9900
O4—C61.437 (4)C6—H6B0.9900
O4—H40.819 (18)C7—C81.534 (5)
O5—C81.420 (4)C7—H7A0.9900
N1—C71.489 (4)C7—H7B0.9900
N1—C51.491 (4)C8—H8A0.9900
N1—C11.509 (4)C8—H8B0.9900
C1—C21.522 (5)
O2—Cu1—O5166.42 (10)C1—C2—H2A108.9
O2—Cu1—N182.17 (10)O1—C2—H2B108.9
O5—Cu1—N185.29 (10)C1—C2—H2B108.9
O2—Cu1—Cl198.45 (7)H2A—C2—H2B107.7
O5—Cu1—Cl194.41 (7)O2—C3—C1111.0 (3)
N1—Cu1—Cl1176.13 (8)O2—C3—H3A109.4
O2—Cu1—O379.29 (9)C1—C3—H3A109.4
O5—Cu1—O393.57 (9)O2—C3—H3B109.4
N1—Cu1—O380.70 (10)C1—C3—H3B109.4
Cl1—Cu1—O3103.18 (7)H3A—C3—H3B108.0
O2—Cu1—O493.48 (9)O3—C4—C1108.3 (3)
O5—Cu1—O489.25 (9)O3—C4—H4A110.0
N1—Cu1—O479.10 (10)C1—C4—H4A110.0
Cl1—Cu1—O497.04 (6)O3—C4—H4B110.0
O3—Cu1—O4159.29 (9)C1—C4—H4B110.0
C2—O1—H1110 (3)H4A—C4—H4B108.4
C3—O2—Cu1112.91 (19)N1—C5—C6114.1 (3)
C3—O2—H2106 (3)N1—C5—H5A108.7
Cu1—O2—H2134 (3)C6—C5—H5A108.7
C4—O3—Cu1105.16 (18)N1—C5—H5B108.7
C4—O3—H3106 (3)C6—C5—H5B108.7
Cu1—O3—H3118 (3)H5A—C5—H5B107.6
C6—O4—Cu1105.88 (18)O4—C6—C5109.3 (3)
C6—O4—H4105 (3)O4—C6—H6A109.8
Cu1—O4—H4113 (3)C5—C6—H6A109.8
C8—O5—Cu1112.74 (19)O4—C6—H6B109.8
C7—N1—C5111.8 (3)C5—C6—H6B109.8
C7—N1—C1116.3 (3)H6A—C6—H6B108.3
C5—N1—C1111.1 (2)N1—C7—C8109.9 (3)
C7—N1—Cu1107.9 (2)N1—C7—H7A109.7
C5—N1—Cu1109.0 (2)C8—C7—H7A109.7
C1—N1—Cu199.8 (2)N1—C7—H7B109.7
N1—C1—C2115.2 (3)C8—C7—H7B109.7
N1—C1—C4110.3 (3)H7A—C7—H7B108.2
C2—C1—C4109.3 (3)O5—C8—C7110.1 (3)
N1—C1—C3106.3 (3)O5—C8—H8A109.6
C2—C1—C3107.7 (3)C7—C8—H8A109.6
C4—C1—C3107.8 (3)O5—C8—H8B109.6
O1—C2—C1113.2 (3)C7—C8—H8B109.6
O1—C2—H2A108.9H8A—C8—H8B108.1
C7—N1—C1—C272.7 (4)C4—C1—C3—O282.8 (3)
C5—N1—C1—C256.7 (4)Cu1—O3—C4—C122.4 (3)
Cu1—N1—C1—C2171.5 (2)N1—C1—C4—O360.1 (3)
C7—N1—C1—C451.5 (4)C2—C1—C4—O3172.3 (3)
C5—N1—C1—C4179.1 (3)C3—C1—C4—O355.5 (3)
Cu1—N1—C1—C464.2 (3)C7—N1—C5—C669.7 (4)
C7—N1—C1—C3168.1 (3)C1—N1—C5—C6158.5 (3)
C5—N1—C1—C362.5 (3)Cu1—N1—C5—C649.5 (3)
Cu1—N1—C1—C352.3 (3)Cu1—O4—C6—C528.5 (3)
N1—C1—C2—O172.4 (3)N1—C5—C6—O453.5 (4)
C4—C1—C2—O152.4 (4)C5—N1—C7—C891.3 (3)
C3—C1—C2—O1169.2 (2)C1—N1—C7—C8139.7 (3)
Cu1—O2—C3—C12.2 (3)Cu1—N1—C7—C828.6 (3)
N1—C1—C3—O235.5 (3)Cu1—O5—C8—C734.4 (3)
C2—C1—C3—O2159.4 (3)N1—C7—C8—O541.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl1i0.83 (2)2.24 (2)3.068 (2)174 (4)
O2—H2···O5ii0.86 (2)1.55 (2)2.408 (3)178 (4)
O3—H3···O4iii0.82 (2)2.00 (2)2.758 (3)154 (4)
O4—H4···O1iv0.82 (2)1.85 (2)2.663 (3)171 (4)
C4—H4B···Cl1v0.992.973.906 (3)157
C5—H5A···Cl1i0.992.973.887 (4)155
C7—H7B···Cl1i0.992.853.727 (3)148
C8—H8B···O1vi0.992.653.577 (4)157
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x1/2, y+3/2, z1/2; (v) x+1/2, y+3/2, z+1/2; (vi) x, y+2, z+2.
 

Acknowledgements

The authors thank Dr Marcos Flores Alamo (Facultad de Química, UNAM, Mexico) for the data collection.

Funding information

Funding for this research was provided by: Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (grant No. 00030 to Grupos de investigación interdisciplinaria 2023); Consejo Nacional de Ciencia y Tecnología (scholarship No. 1064640 to MF-V).

References

First citationFortis-Valera, M., Bernès, S., Arroyo-Carmona, R. E. & Pérez-Benítez, A. (2018). CSD Communication (refcode FIPRAY01). CCDC, Cambridge, England  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationInomata, Y., Gochou, Y., Nogami, M., Howell, F. S. & Takeuchi, T. (2004). J. Mol. Struct. 702, 61–70.  CSD CrossRef CAS Google Scholar
First citationKirillova, M. V., Santos, C. I. M., André, V., Fernandes, T. A., Dias, S. S. P. & Kirillov, A. M. (2017). Inorg. Chem. Front. 4, 968–977.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNicholson, K. N., Twamley, B. & Wood, S. (2001). Acta Cryst. E57, o1133–o1135.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStamatatos, T. C., Abboud, K. A. & Christou, G. (2009). Dalton Trans. pp. 41–50.  CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYilmaz, V. T., Andac, O., Karadag, A. & Harrison, W. T. A. (2002). J. Mol. Struct. 641, 119–124.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146