

ISSN 2414-3146

Received 25 April 2024 Accepted 10 May 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; coordination compound; bis-tris; supramolecular structure; very strong hydrogen bonds.

CCDC reference: 2355145

Structural data: full structural data are available from iucrdata.iucr.org

Chlorido(2-{(2-hydroxyethyl)[tris(hydroxymethyl)methyl]amino}ethanolato- $\kappa^5 N, O, O', O'', O'''$)copper(II)

Monserrat Fortis-Valera,^a Rosa Elena Arroyo-Carmona,^a Aarón Pérez-Benítez^a and Sylvain Bernès^b*

^aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico, and ^bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico. *Correspondence e-mail: sylvain_bernes@hotmail.com

The title complex, $[Cu(C_8H_{18}NO_5)Cl]$ or $[Cu(H_4bis-tris)Cl]$, was obtained starting from the previously reported $[Cu(H_5bis-tris)Cl]Cl$ compound. The deprotonation of the aminopolyol ligand H₅bis-tris {[bis(2-hydroxyethyl) amino]tris(hydroxymethyl)methane, $C_8H_{19}NO_5$ } promotes the formation of a very strong O-H···O intermolecular hydrogen bond, characterized by an H···O separation of 1.553 (19) Å and an O-H···O angle of 178 (4)°. The remaining hydroxy groups are also engaged in hydrogen bonds, forming $R_2^2(8)$, $R_4^4(16)$, $R_4^4(20)$ and $R_4^4(22)$ ring motifs, which stabilize the triperiodic supramolecular network.

Structure description

Aminopolyol [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane, generally abbreviated H₅bis-tris, is able to coordinate first-row late transition metals and lanthanides (Nicholson *et al.*, 2001). This molecule behaves systematically as a chelating pentadentate ligand, through the tertiary N atom and four of the five alcohol arms. The metal coordination sphere is then completed with an ancillary ligand, frequently an aqua or a chlorido ligand. Furthermore, depending on the reaction conditions, H₅bis-tris can be deprotonated, affording chelating anions. While anions $(H_{5-n}bis-tris)^{n-}$ with n = 2 to 4 have been determined by X-ray structure analysis in several compounds (*e.g.* Stamatatos *et al.*, 2009), it seems that to date the anionic ligand with n = 1, $(H_4bis-tris)^-$, has been observed only once: Kirillova *et al.* (2017) reported a crystal structure comprising $[Cu(H_5bis-tris)(inic)]^+$ and $[Cu(H_4bis-tris)(inic)]$ entities, where inic stands for the isonicotinate anion. We now report the structure of the second complex where $(H_4bis-$

Figure 1

Molecular structure of the title compound, with displacement ellipsoids for non-H atoms at the 60% probability level. The inset is an overlay calculated with Mercury (Macrae *et al.*, 2020), comparing the shape of $[Cu(H_5 bis-tris)Cl]^+$ (blue) and the title complex $[Cu(H_4 bis-tris)Cl]$ (red). The crystal structure of $[Cu(H_5 bis-tris)Cl]Cl$ has been published (Inomata *et al.*, 2004; CCDC refcode FIPRAY); however, the authors did not deposit a CIF file at that time. A CSD communication for this compound was thus used for the fit (FIPRAY01; Fortis-Valera *et al.*, 2018).

tris)⁻ acts as a ligand, namely [Cu(H₄bis-tris)Cl], which was obtained serendipitously from [Cu(H₅bis-tris)Cl]⁺Cl (Inomata *et al.*, 2004).

The new Cu^{II} molecular complex displays the expected distorted octahedral shape (Fig. 1). Since all H atoms could be located from electron-difference maps, the deprotonated

Figure 2

The supramolecular framework based on intermolecular $O-H \cdots (O, Cl)$ hydrogen bonds (dashed blue lines) corresponding to entries 1–3 in Table 1. The inset shows single crystals suitable for X-ray diffraction.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

		,		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots Cl1^{i}$	0.83 (2)	2.24 (2)	3.068 (2)	174 (4)
$O2-H2\cdots O5^{ii}$	0.86 (2)	1.55 (2)	2.408 (3)	178 (4)
O3−H3···O4 ⁱⁱⁱ	0.82(2)	2.00 (2)	2.758 (3)	154 (4)
$O4-H4\cdots O1^{iv}$	0.82 (2)	1.85 (2)	2.663 (3)	171 (4)
0 1	(1) 1	. 3 . 1 . (. 1	1 . 3

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$. (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$. (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$. (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

alcohol group was clearly identified as being O5. Moreover, the anion formula for $(H_4\text{bis-tris})^-$ is consistent with the charge balance in the complex. The tetragonal distortion resulting from the Jahn–Teller effect for Cu^{II} increases bond lengths Cu1–O3 and Cu1–O4 [2.361 (3) and 2.436 (2) Å] in comparison with bond lengths in the equatorial plane N1/O2/O5/Cl1 [1.943 (2) to 2.2812 (10) Å]. The shape of the neutral molecule [Cu(H₄bis-tris)Cl] is actually close to that observed for the cation [Cu(H₅bis-tris)Cl]⁺: a molecular overlay gives a root-mean-square (r.m.s.) deviation of 0.28 Å and a maximum deviation of 0.91 Å (Fig. 1, inset).

The space group and the network of hydrogen bonds are however modified upon deprotonation of H₅bis-tris. In the new complex, all hydroxy groups are donors for hydrogen bonding, and the deprotonated hydroxy group, O5, is an acceptor (Table 1). The latter is engaged in the strongest interaction, O2-H2···O5, with a very short H2···O5 distance of 1.553 (19) Å and with an angle O2-H2···O5 = 178 (4)°. Indeed, only few shorter intermolecular H···O separations

Figure 3

The supramolecular framework based on intermolecular $O-H\cdots O$ hydrogen bonds (dashed blue lines) corresponding to entries 2–4 in Table 1.

can be retrieved from the Cambridge Structural Database (CSD v. 5.45, updated March 2024; Groom *et al.*, 2016) for $CH_2-CH_2-O\cdots H-O$ fragments (see, for example: Yilmaz *et al.*, 2002). Together with contact $O3-H3\cdots O4$, $R_2^2(8)$ ring motifs are formed in the crystal structure. Combined with another hydrogen bond involving the non-coordinating alcohol group, $O1-H1\cdots Cl1$, a diperiodic framework is formed parallel to (101), based on $R_2^2(8)$ and $R_4^4(22)$ supramolecular motifs (Fig. 2). The last hydrogen bond, $O4-H4\cdots O1$, expands the supramolecular network through the formation of centrosymmetric $R_4^4(16)$ and $R_4^4(20)$ rings (Fig. 3), affording a stable triperiodic crystal structure.

Synthesis and crystallization

Single crystals of the title complex were unexpectedly obtained in an attempt to substitute the chlorido ligand in $[Cu(H_5bis-tris)Cl]^+$ by a heterocyclic compound. Complex $[Cu(H_5bis-tris)Cl]^+Cl^-$ (1 mmol, 0.343 g) and fluconazole (1 mmol, 0.307 g) were dissolved in ethanol (70% *v/v* solution, 15 ml). The mixture was heated to 323 K under stirring for 20 min, and filtered to eliminate a blue precipitate. The resulting solution was evaporated over 3 days, affording a blue product. The crude product was recrystallized in methanol, giving sky-blue crystals used for the diffraction study (see Fig. 2, inset).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Dr Marcos Flores Alamo (Facultad de Química, UNAM, Mexico) for the data collection.

Funding information

Funding for this research was provided by: Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (grant No. 00030 to Grupos de investigación interdisciplinaria 2023); Consejo Nacional de Ciencia y Tecnología (scholarship No. 1064640 to MF-V).

References

Fortis-Valera, M., Bernès, S., Arroyo-Carmona, R. E. & Pérez-Benítez, A. (2018). CSD Communication (refcode FIPRAY01). CCDC, Cambridge, England

Table 1	2
---------	---

Experimental details.

Crystal data	
Chemical formula	$[Cu(C_8H_{18}NO_5)Cl]$
M _r	307.22
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	109
a, b, c (Å)	7.2605 (9), 10.4221 (14), 14.668 (2)
β (°)	94.366 (12)
$V(A^3)$	1106.7 (3)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.22
Crystal size (mm)	$0.17\times0.06\times0.04$
Data collection	
Diffractomator	Vaalibur Atlaa Comini
Absorption correction	Analytical (Crus Alis PRO: Digaku
Absorption correction	OD, 2022)
T_{\min}, T_{\max}	0.848, 0.917
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5523, 2582, 2002
R _{int}	0.046
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.694
Refinement	
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.048 0.130 1.05
No of reflections	2582
No. of parameters	157
No of restraints	4
H-atom treatment	H atoms treated by a mixture of
ri-atom reatment	independent and constrained
$\Delta \rho_{\text{max}} \Delta \rho_{\text{max}} (e \text{ Å}^{-3})$	1.18 -1.17
$\rightarrow r$ max, $\rightarrow r$ min ($\sim r$	1110, 111/

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), XP in SHELXTL-Plus (Sheldrick, 2008), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Inomata, Y., Gochou, Y., Nogami, M., Howell, F. S. & Takeuchi, T. (2004). J. Mol. Struct. 702, 61–70.
- Kirillova, M. V., Santos, C. I. M., André, V., Fernandes, T. A., Dias, S. S. P. & Kirillov, A. M. (2017). *Inorg. Chem. Front.* 4, 968–977.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* 53, 226–235.
- Nicholson, K. N., Twamley, B. & Wood, S. (2001). Acta Cryst. E57, o1133–o1135.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stamatatos, T. C., Abboud, K. A. & Christou, G. (2009). *Dalton Trans.* pp. 41–50.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Yilmaz, V. T., Andac, O., Karadag, A. & Harrison, W. T. A. (2002). J. Mol. Struct. 641, 119–124.

full crystallographic data

IUCrData (2024). 9, x240439 [https://doi.org/10.1107/S2414314624004395]

Chlorido(2-{(2-hydroxyethyl)[tris(hydroxymethyl)methyl]amino}ethanolato- $\kappa^5 N, O, O', O'', O'''$)copper(II)

Monserrat Fortis-Valera, Rosa Elena Arroyo-Carmona, Aarón Pérez-Benítez and Sylvain Bernès

 $Chlorido(2-\{(2-hydroxyethyl)[tris(hydroxymethyl)methyl]amino\}ethanolato-\kappa^5N, O, O', O'', O''') copper(II)$

Crystal data

[Cu(C₈H₁₈NO₅)Cl] $M_r = 307.22$ Monoclinic, $P2_1/n$ a = 7.2605 (9) Å b = 10.4221 (14) Å c = 14.668 (2) Å $\beta = 94.366$ (12)° V = 1106.7 (3) Å³ Z = 4F(000) = 636

Data collection

Xcalibur, Atlas, Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.4685 pixels mm⁻¹ ω scans Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2022) $T_{\min} = 0.848$, $T_{\max} = 0.917$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.130$ S = 1.052582 reflections 157 parameters 4 restraints 0 constraints Primary atom site location: dual $D_x = 1.844 \text{ Mg m}^{-3}$ Melting point: 435 K Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1395 reflections $\theta = 3.4-29.6^{\circ}$ $\mu = 2.22 \text{ mm}^{-1}$ T = 109 KPrism, blue $0.17 \times 0.06 \times 0.04 \text{ mm}$

5523 measured reflections 2582 independent reflections 2002 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 29.6^\circ, \ \theta_{min} = 3.4^\circ$ $h = -9 \rightarrow 10$ $k = -14 \rightarrow 13$ $l = -18 \rightarrow 18$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0646P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.17 \text{ e } \text{Å}^{-3}$

Special details

Refinement. Methylene H atoms were refined using a riding model (C—H: 0.99 Å); hydroxy H atoms (H1, H2, H3, H4) were located from electron-difference maps and were refined freely, with the O—H bond lengths restrained to 0.85 (2) Å.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.22842 (5)	0.75373 (4)	0.75931 (3)	0.00775 (16)
Cl1	0.31899 (12)	0.76196 (8)	0.61387 (6)	0.0145 (2)
O1	0.2269 (3)	0.8024 (2)	1.09572 (16)	0.0130 (5)
H1	0.116 (3)	0.790 (4)	1.103 (3)	0.019*
O2	0.3908 (3)	0.6168 (2)	0.80600 (16)	0.0096 (5)
H2	0.407 (5)	0.539 (2)	0.790 (3)	0.014*
O3	0.4592 (3)	0.8730 (2)	0.84389 (17)	0.0143 (5)
Н3	0.462 (5)	0.9507 (19)	0.836 (3)	0.022*
O4	-0.0338 (3)	0.6104 (2)	0.72784 (16)	0.0104 (5)
H4	-0.113 (4)	0.641 (4)	0.692 (2)	0.016*
O5	0.0620 (3)	0.8995 (2)	0.74310 (16)	0.0111 (5)
N1	0.1319 (4)	0.7390 (2)	0.8869 (2)	0.0075 (6)
C1	0.3128 (5)	0.7294 (3)	0.9443 (2)	0.0080 (7)
C2	0.2964 (5)	0.6976 (3)	1.0446 (2)	0.0121 (7)
H2A	0.213089	0.622927	1.048817	0.015*
H2B	0.419525	0.672641	1.072706	0.015*
C3	0.4235 (4)	0.6194 (3)	0.9021 (2)	0.0109 (7)
H3A	0.557130	0.631837	0.918562	0.013*
H3B	0.386836	0.536144	0.927768	0.013*
C4	0.4244 (4)	0.8542 (3)	0.9372 (2)	0.0104 (7)
H4A	0.353726	0.927666	0.959330	0.012*
H4B	0.542532	0.847779	0.975361	0.012*
C5	0.0232 (4)	0.6181 (3)	0.8917 (2)	0.0096 (7)
H5A	-0.039617	0.617991	0.949336	0.012*
H5B	0.109414	0.544400	0.893907	0.012*
C6	-0.1206 (4)	0.5993 (3)	0.8123 (2)	0.0118 (7)
H6A	-0.178021	0.513531	0.816363	0.014*
H6B	-0.218735	0.664857	0.814672	0.014*
C7	0.0172 (4)	0.8544 (3)	0.9019 (2)	0.0094 (7)
H7A	0.095096	0.922177	0.932473	0.011*
H7B	-0.081487	0.832157	0.942142	0.011*
C8	-0.0692 (4)	0.9044 (3)	0.8101 (2)	0.0114 (7)
H8A	-0.177933	0.851406	0.789966	0.014*
H8B	-0.111298	0.993927	0.817219	0.014*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0099 (3)	0.0069 (2)	0.0065 (2)	0.00093 (15)	0.00096 (17)	0.00036 (15)
Cl1	0.0135 (4)	0.0219 (5)	0.0084 (4)	0.0024 (3)	0.0025 (3)	0.0011 (3)
01	0.0108 (11)	0.0173 (13)	0.0108 (13)	-0.0005 (11)	0.0007 (9)	-0.0040 (11)

O2	0.0163 (11)	0.0046 (11)	0.0080 (12)	0.0047 (10)	0.0018 (9)	-0.0025 (10)
O3	0.0218 (12)	0.0108 (11)	0.0110 (13)	-0.0061 (11)	0.0049 (10)	0.0006 (11)
O4	0.0128 (11)	0.0111 (12)	0.0073 (12)	-0.0009 (10)	-0.0007 (9)	0.0000 (10)
05	0.0154 (11)	0.0085 (11)	0.0100 (12)	0.0031 (10)	0.0037 (9)	0.0011 (10)
N1	0.0095 (13)	0.0039 (13)	0.0088 (14)	0.0006 (10)	-0.0011 (11)	-0.0011 (11)
C1	0.0085 (15)	0.0082 (15)	0.0070 (16)	-0.0009 (13)	-0.0022 (12)	-0.0015 (13)
C2	0.0128 (16)	0.0119 (16)	0.0114 (18)	0.0007 (14)	-0.0012 (13)	-0.0009 (15)
C3	0.0114 (15)	0.0090 (16)	0.0121 (18)	0.0007 (14)	-0.0011 (12)	0.0020 (14)
C4	0.0120 (15)	0.0078 (16)	0.0112 (18)	-0.0019 (14)	0.0001 (12)	-0.0028 (13)
C5	0.0119 (15)	0.0090 (15)	0.0075 (16)	-0.0004 (14)	-0.0013 (12)	0.0018 (14)
C6	0.0137 (15)	0.0113 (16)	0.0101 (17)	-0.0055 (14)	-0.0015 (12)	0.0021 (14)
C7	0.0102 (15)	0.0105 (16)	0.0076 (17)	0.0038 (13)	0.0010 (12)	0.0011 (13)
C8	0.0124 (15)	0.0115 (16)	0.0102 (17)	0.0004 (14)	0.0012 (12)	0.0014 (14)

Geometric parameters (Å, °)

Cu1—O2	1.943 (2)	C1—C4	1.540 (4)	
Cu1—O5	1.944 (2)	C1—C3	1.556 (5)	
Cu1—N1	2.054 (3)	C2—H2A	0.9900	
Cu1—Cl1	2.2812 (10)	C2—H2B	0.9900	
Cu1—O3	2.361 (3)	С3—НЗА	0.9900	
Cu1—O4	2.436 (2)	С3—Н3В	0.9900	
O1—C2	1.438 (4)	C4—H4A	0.9900	
01—H1	0.833 (19)	C4—H4B	0.9900	
O2—C3	1.412 (4)	C5—C6	1.516 (4)	
O2—H2	0.856 (19)	C5—H5A	0.9900	
O3—C4	1.425 (4)	C5—H5B	0.9900	
О3—Н3	0.818 (19)	С6—Н6А	0.9900	
O4—C6	1.437 (4)	C6—H6B	0.9900	
O4—H4	0.819 (18)	C7—C8	1.534 (5)	
O5—C8	1.420 (4)	C7—H7A	0.9900	
N1C7	1.489 (4)	С7—Н7В	0.9900	
N1—C5	1.491 (4)	C8—H8A	0.9900	
N1—C1	1.509 (4)	C8—H8B	0.9900	
C1—C2	1.522 (5)			
O2—Cu1—O5	166.42 (10)	C1—C2—H2A	108.9	
O2—Cu1—N1	82.17 (10)	O1—C2—H2B	108.9	
O5—Cu1—N1	85.29 (10)	C1—C2—H2B	108.9	
O2—Cu1—Cl1	98.45 (7)	H2A—C2—H2B	107.7	
O5—Cu1—Cl1	94.41 (7)	O2—C3—C1	111.0 (3)	
N1—Cu1—Cl1	176.13 (8)	O2—C3—H3A	109.4	
O2—Cu1—O3	79.29 (9)	C1—C3—H3A	109.4	
O5—Cu1—O3	93.57 (9)	O2—C3—H3B	109.4	
N1—Cu1—O3	80.70 (10)	C1—C3—H3B	109.4	
Cl1—Cu1—O3	103.18 (7)	НЗА—СЗ—НЗВ	108.0	
O2—Cu1—O4	93.48 (9)	O3—C4—C1	108.3 (3)	
O5—Cu1—O4	89.25 (9)	O3—C4—H4A	110.0	

N1—Cu1—O4	79.10 (10)	C1—C4—H4A	110.0
Cl1—Cu1—O4	97.04 (6)	O3—C4—H4B	110.0
O3—Cu1—O4	159.29 (9)	C1—C4—H4B	110.0
C2—O1—H1	110 (3)	H4A—C4—H4B	108.4
C3—O2—Cu1	112.91 (19)	N1—C5—C6	114.1 (3)
C3—O2—H2	106 (3)	N1—C5—H5A	108.7
Cu1—O2—H2	134 (3)	C6—C5—H5A	108.7
C4—O3—Cu1	105.16 (18)	N1—C5—H5B	108.7
С4—О3—Н3	106 (3)	C6—C5—H5B	108.7
Cu1—O3—H3	118 (3)	H5A—C5—H5B	107.6
C6—O4—Cu1	105.88 (18)	O4—C6—C5	109.3 (3)
C6—O4—H4	105 (3)	O4—C6—H6A	109.8
Cu1—O4—H4	113 (3)	С5—С6—Н6А	109.8
C8—O5—Cu1	112.74 (19)	O4—C6—H6B	109.8
C7—N1—C5	111.8 (3)	С5—С6—Н6В	109.8
C7—N1—C1	116.3 (3)	H6A—C6—H6B	108.3
C5—N1—C1	111.1 (2)	N1—C7—C8	109.9 (3)
C7—N1—Cu1	107.9 (2)	N1—C7—H7A	109.7
C5—N1—Cu1	109.0 (2)	С8—С7—Н7А	109.7
C1—N1—Cu1	99.8 (2)	N1—C7—H7B	109.7
N1—C1—C2	115.2 (3)	С8—С7—Н7В	109.7
N1—C1—C4	110.3 (3)	H7A—C7—H7B	108.2
C2—C1—C4	109.3 (3)	O5—C8—C7	110.1 (3)
N1—C1—C3	106.3 (3)	O5—C8—H8A	109.6
C2—C1—C3	107.7 (3)	C7—C8—H8A	109.6
C4—C1—C3	107.8 (3)	O5—C8—H8B	109.6
O1—C2—C1	113.2 (3)	C7—C8—H8B	109.6
O1—C2—H2A	108.9	H8A—C8—H8B	108.1
C7—N1—C1—C2	72.7 (4)	C4—C1—C3—O2	-82.8 (3)
C5—N1—C1—C2	-56.7 (4)	Cu1—O3—C4—C1	22.4 (3)
Cu1—N1—C1—C2	-171.5 (2)	N1-C1-C4-O3	-60.1 (3)
C7—N1—C1—C4	-51.5 (4)	C2-C1-C4-O3	172.3 (3)
C5—N1—C1—C4	179.1 (3)	C3—C1—C4—O3	55.5 (3)
Cu1—N1—C1—C4	64.2 (3)	C7—N1—C5—C6	69.7 (4)
C7—N1—C1—C3	-168.1 (3)	C1—N1—C5—C6	-158.5 (3)
C5—N1—C1—C3	62.5 (3)	Cu1—N1—C5—C6	-49.5 (3)
Cu1—N1—C1—C3	-52.3 (3)	Cu1—O4—C6—C5	-28.5 (3)
N1-C1-C2-01	-72.4 (3)	N1-C5-C6-O4	53.5 (4)
C4—C1—C2—O1	52.4 (4)	C5—N1—C7—C8	-91.3 (3)
C3—C1—C2—O1	169.2 (2)	C1—N1—C7—C8	139.7 (3)
Cu1—O2—C3—C1	2.2 (3)	Cu1—N1—C7—C8	28.6 (3)
N1—C1—C3—O2	35.5 (3)	Cu1—O5—C8—C7	34.4 (3)
C2—C1—C3—O2	159.4 (3)	N1—C7—C8—O5	-41.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D··· A	D—H···A	
O1—H1···Cl1 ⁱ	0.83 (2)	2.24 (2)	3.068 (2)	174 (4)	
O2—H2…O5 ⁱⁱ	0.86 (2)	1.55 (2)	2.408 (3)	178 (4)	
O3—H3…O4 ⁱⁱⁱ	0.82 (2)	2.00 (2)	2.758 (3)	154 (4)	
O4—H4···O1 ^{iv}	0.82 (2)	1.85 (2)	2.663 (3)	171 (4)	
C4—H4 B ···Cl1 ^v	0.99	2.97	3.906 (3)	157	
C5—H5A····Cl1 ⁱ	0.99	2.97	3.887 (4)	155	
C7—H7B····Cl1 ⁱ	0.99	2.85	3.727 (3)	148	
C8—H8 <i>B</i> ····O1 ^{vi}	0.99	2.65	3.577 (4)	157	

Symmetry codes: (i) *x*-1/2, -*y*+3/2, *z*+1/2; (ii) -*x*+1/2, *y*-1/2, -*z*+3/2; (iii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iv) *x*-1/2, -*y*+3/2, *z*-1/2; (v) *x*+1/2, -*y*+3/2, *z*+1/2; (v) -*x*, -*y*+2, -*z*+2.