metal-organic compounds
(η6-Benzene)chlorido[2-(pyridin-2-yl)quinoline-κ2N,N′]ruthenium(II) tetrafluoridoborate
aDepartment of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India, bDepartment of Chemistry, North Eastern Hill University, Shillong 793 022, India, and cDepartment of Chemistry, Anna University Regional Campus, Madurai 625 019, Tamil Nadu, India
*Correspondence e-mail: rajendiran@cutn.ac.in
The title compound, [RuCl(C6H6)(C14H10N2)]BF4 or [Ru(η6-benzene)(L)Cl]+BF4− [where L denotes the 2-(pyridin-2-yl)quinoline ligand], crystallizes in the monoclinic P21/c. The coordination environment around RuII is best described as pseudo-octahedral, resembling the familiar half-sandwich ‘three-legged piano-stool’ shape. In the coordination sphere, the η6-binding benzene ligand coordinates with the central RuII atom occupying the ‘seat’ of the stool with a metal-to-centroid distance of 1.695 (17) Å, while the chelate ligand L coordinates with its N atoms and, together with the Cl ligand, defines the ‘legs’ of the stool. Apart from Coulombic forces, C—H⋯F and C—H⋯Cl hydrogen-bonding interactions consolidate the crystal packing.
Keywords: ruthenium(II); 2-(pyridin-2-yl)quinoline; η6-benzene; crystal structure.
CCDC reference: 2407332
Structure description
Ruthenium complexes exhibit a plethora of applications in the domains of medicinal chemistry (Casini & Pöthig, 2024; Rajendiran et al., 2012; Chan et al., 2017; Puckett & Barton, 2007), catalysis (Chavarot et al., 2003; Ngo & Do, 2020; Hamelin et al., 2007), and materials chemistry (Ryabov et al., 2005; Huisman et al., 2016; Vatsa & Padhi, 2021). Understanding their structural properties provides new insight into the design of novel ruthenium(II) complexes and predict their structure–activity relationships. In this context, the mononuclear mixed-ligand ruthenium(II) complex, [Ru(η6-benzene)(L)Cl]+BF4− [where L is 2-(pyridin-2-yl)quinolone] has been synthesized and characterized by single-crystal X-ray analysis in the present work.
The distinctive half-sandwich, ‘three-legged piano-stool’ geometry of the complex cation of the title compound (Fig. 1) is characteristic of numerous η6-binding arene–ruthenium(II) complexes (Khamrang et al., 2016; Zamisa et al., 2024). The ‘legs’ of the stool are defined by two σ-bonding N atoms from the chelating ligand L and the chlorido ligand, while the ‘seat’ is defined by the π-bonded benzene. The RuII-to-benzene(centroid) distance is 1.695 (17) Å and is comparable with other complexes containing N,N′-chelating ligands (Kelani et al., 2023, 2024; Tsolis et al., 2018). The Ru1—N1py bond [2.086 (3) Å] is slightly shorter than the Ru1—N2qn bond [2.147 (3) Å], revealing the pyridyl (py) N atom more firmly coordinates the central RuII atom than the quinolone (qn) N atom. The bidentate ligand has a bite angle of N1—Ru1—N2 = 76.42 (10)°. A similar type of coordination is observed in the of [((2,2′-bipyridyl)(η6-p-cymene)iodido)ruthenium(II)] hexafluoridophosphate (Kelani et al., 2023). The chlorido ligand bonds to the RuII atom with a distance of 2.3840 (9) Å. Except for the Ru—Cl bond, all other bonds are slightly longer than in the structure of the related complex [Ru(η6-p-cymene)LCl]+(PF6)− (Tsolis et al., 2018).
In the crystal, intermolecular C—H⋯F and C—H⋯Cl hydrogen bonding (Table 1) plays a crucial role in the crystal packing (Fig. 2).
Synthesis and crystallization
[Ru(η6-benzene)Cl]2 (0.12 g, 0.2 mmol) and L (2-(pyridin-2-yl)quinolone) (0.1 g, 0.4 mmol) were suspended in methanol (20 ml) and stirred at room temperature for 2 h. A solution of NaBF4 (200 mg, 0.60 mmol) in methanol (10 ml) was added to the initially orange solution, which changed color to yellow. After 24 h, the solution was evaporated, and the solid obtained was filtered off. The residue was washed with diethyl ether (40 ml) and dried under vacuum. The obtained product was recrystallized from a DCM:hexane mixture to give orange crystals. Yield: 65%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2407332
https://doi.org/10.1107/S2414314624012409/wm4225sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624012409/wm4225Isup2.hkl
[RuCl(C6H6)(C14H10N2)]BF4 | F(000) = 1008 |
Mr = 507.68 | Dx = 1.752 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4191 (3) Å | Cell parameters from 4311 reflections |
b = 23.1476 (9) Å | θ = 3.4–28.7° |
c = 9.9079 (3) Å | µ = 1.00 mm−1 |
β = 94.709 (3)° | T = 293 K |
V = 1924.35 (12) Å3 | Block, orange |
Z = 4 | 0.65 × 0.50 × 0.41 mm |
Agilent Xcalibur, Atlas, Gemini diffractometer | 3815 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
ω scans | θmax = 28.7°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | h = −10→11 |
Tmin = 0.507, Tmax = 0.578 | k = −29→31 |
8112 measured reflections | l = −13→7 |
4311 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0353P)2 + 2.2897P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.001 |
4311 reflections | Δρmax = 0.92 e Å−3 |
262 parameters | Δρmin = −0.66 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.36590 (3) | 0.35365 (2) | 0.55140 (2) | 0.03087 (9) | |
Cl1 | 0.48682 (11) | 0.26281 (4) | 0.60853 (11) | 0.0510 (2) | |
F2 | 0.0921 (4) | 0.5390 (2) | 0.8475 (3) | 0.1168 (14) | |
F3 | 0.1988 (4) | 0.60983 (16) | 0.7391 (5) | 0.1201 (14) | |
F4 | 0.3426 (3) | 0.53126 (16) | 0.7890 (3) | 0.0961 (10) | |
F1 | 0.1343 (5) | 0.53076 (17) | 0.6300 (3) | 0.1116 (13) | |
C19 | 0.3184 (6) | 0.3211 (2) | 0.3438 (4) | 0.0585 (11) | |
H19 | 0.342384 | 0.285320 | 0.307946 | 0.070* | |
N2 | 0.2831 (3) | 0.35589 (11) | 0.7506 (3) | 0.0313 (5) | |
N1 | 0.5548 (3) | 0.39139 (12) | 0.6693 (3) | 0.0353 (6) | |
C14 | 0.1411 (4) | 0.33333 (14) | 0.7897 (3) | 0.0335 (7) | |
C18 | 0.4281 (5) | 0.3648 (2) | 0.3419 (4) | 0.0543 (10) | |
H18 | 0.524933 | 0.358972 | 0.305041 | 0.065* | |
C9 | 0.0871 (4) | 0.34711 (15) | 0.9181 (3) | 0.0395 (8) | |
C11 | −0.1533 (4) | 0.29144 (18) | 0.8644 (4) | 0.0514 (10) | |
H11 | −0.251959 | 0.278213 | 0.887140 | 0.062* | |
C20 | 0.1737 (5) | 0.3286 (2) | 0.3972 (4) | 0.0630 (12) | |
H20 | 0.100838 | 0.298376 | 0.395571 | 0.076* | |
C2 | 0.8103 (4) | 0.43585 (16) | 0.6985 (4) | 0.0473 (9) | |
H2 | 0.905866 | 0.445181 | 0.662876 | 0.057* | |
C12 | −0.0967 (4) | 0.27603 (17) | 0.7396 (4) | 0.0477 (9) | |
H12 | −0.157907 | 0.251981 | 0.680845 | 0.057* | |
C5 | 0.5283 (4) | 0.40623 (14) | 0.7969 (3) | 0.0353 (7) | |
C3 | 0.7831 (4) | 0.45260 (17) | 0.8276 (4) | 0.0500 (9) | |
H3 | 0.858559 | 0.474045 | 0.879990 | 0.060* | |
C8 | 0.1852 (5) | 0.38125 (18) | 1.0081 (4) | 0.0493 (9) | |
H8 | 0.151892 | 0.391143 | 1.092283 | 0.059* | |
C1 | 0.6957 (4) | 0.40530 (16) | 0.6226 (4) | 0.0430 (8) | |
H1 | 0.715866 | 0.393750 | 0.535760 | 0.052* | |
C13 | 0.0473 (4) | 0.29590 (16) | 0.7031 (4) | 0.0402 (8) | |
H13 | 0.083432 | 0.284658 | 0.620893 | 0.048* | |
C10 | −0.0633 (5) | 0.32567 (17) | 0.9513 (4) | 0.0487 (9) | |
H10 | −0.100441 | 0.335336 | 1.034212 | 0.058* | |
C6 | 0.3742 (4) | 0.38674 (15) | 0.8414 (3) | 0.0368 (7) | |
B1 | 0.1919 (5) | 0.5506 (2) | 0.7530 (4) | 0.0497 (10) | |
C15 | 0.1378 (5) | 0.3804 (3) | 0.4524 (4) | 0.0678 (14) | |
H15 | 0.041196 | 0.384661 | 0.490554 | 0.081* | |
C16 | 0.2430 (7) | 0.4273 (2) | 0.4530 (4) | 0.0717 (15) | |
H16 | 0.216515 | 0.462854 | 0.488844 | 0.086* | |
C7 | 0.3287 (5) | 0.39968 (17) | 0.9715 (4) | 0.0462 (9) | |
H7 | 0.396377 | 0.420705 | 1.031986 | 0.055* | |
C4 | 0.6408 (4) | 0.43679 (17) | 0.8778 (4) | 0.0480 (9) | |
H4 | 0.620830 | 0.446693 | 0.965746 | 0.058* | |
C17 | 0.3906 (6) | 0.4190 (2) | 0.3973 (4) | 0.0636 (12) | |
H17 | 0.463368 | 0.449282 | 0.397155 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.03032 (14) | 0.03298 (15) | 0.02952 (14) | 0.00145 (11) | 0.00382 (9) | −0.00114 (10) |
Cl1 | 0.0498 (5) | 0.0383 (5) | 0.0662 (6) | 0.0080 (4) | 0.0128 (4) | 0.0086 (4) |
F2 | 0.083 (2) | 0.191 (4) | 0.082 (2) | −0.038 (2) | 0.0366 (18) | −0.001 (2) |
F3 | 0.093 (2) | 0.080 (2) | 0.189 (4) | −0.005 (2) | 0.020 (3) | −0.010 (3) |
F4 | 0.0582 (16) | 0.126 (3) | 0.104 (2) | 0.0188 (18) | 0.0070 (16) | 0.032 (2) |
F1 | 0.127 (3) | 0.142 (3) | 0.0637 (18) | 0.040 (2) | −0.0099 (18) | −0.036 (2) |
C19 | 0.081 (3) | 0.059 (3) | 0.0349 (18) | 0.000 (2) | 0.0039 (19) | −0.0128 (19) |
N2 | 0.0278 (12) | 0.0352 (14) | 0.0311 (13) | 0.0034 (11) | 0.0027 (10) | 0.0024 (11) |
N1 | 0.0332 (14) | 0.0358 (14) | 0.0365 (14) | −0.0014 (12) | −0.0003 (11) | 0.0022 (12) |
C14 | 0.0297 (15) | 0.0352 (16) | 0.0363 (16) | 0.0080 (13) | 0.0057 (12) | 0.0051 (13) |
C18 | 0.047 (2) | 0.084 (3) | 0.0326 (17) | 0.001 (2) | 0.0095 (16) | 0.0049 (19) |
C9 | 0.0412 (18) | 0.0405 (18) | 0.0382 (17) | 0.0108 (15) | 0.0110 (14) | 0.0080 (15) |
C11 | 0.0379 (19) | 0.055 (2) | 0.063 (2) | 0.0042 (18) | 0.0152 (18) | 0.014 (2) |
C20 | 0.055 (2) | 0.094 (4) | 0.038 (2) | −0.020 (3) | −0.0052 (18) | −0.004 (2) |
C2 | 0.0336 (18) | 0.044 (2) | 0.064 (2) | −0.0069 (16) | 0.0032 (16) | 0.0088 (18) |
C12 | 0.0335 (17) | 0.051 (2) | 0.059 (2) | −0.0013 (16) | 0.0058 (16) | 0.0022 (18) |
C5 | 0.0346 (16) | 0.0353 (16) | 0.0354 (16) | 0.0029 (14) | −0.0009 (13) | 0.0014 (13) |
C3 | 0.0398 (19) | 0.047 (2) | 0.061 (2) | −0.0090 (17) | −0.0110 (17) | 0.0007 (18) |
C8 | 0.058 (2) | 0.058 (2) | 0.0327 (17) | 0.005 (2) | 0.0105 (16) | −0.0035 (17) |
C1 | 0.0388 (18) | 0.045 (2) | 0.0455 (19) | −0.0018 (16) | 0.0074 (15) | 0.0033 (16) |
C13 | 0.0346 (17) | 0.0446 (19) | 0.0418 (17) | 0.0023 (15) | 0.0057 (14) | 0.0029 (15) |
C10 | 0.048 (2) | 0.051 (2) | 0.051 (2) | 0.0099 (18) | 0.0216 (17) | 0.0095 (18) |
C6 | 0.0369 (17) | 0.0393 (18) | 0.0336 (16) | 0.0032 (14) | 0.0003 (13) | 0.0012 (14) |
B1 | 0.042 (2) | 0.068 (3) | 0.040 (2) | −0.004 (2) | 0.0067 (17) | −0.002 (2) |
C15 | 0.041 (2) | 0.117 (4) | 0.045 (2) | 0.025 (3) | 0.0020 (17) | 0.019 (3) |
C16 | 0.111 (4) | 0.060 (3) | 0.042 (2) | 0.046 (3) | −0.004 (2) | 0.008 (2) |
C7 | 0.052 (2) | 0.053 (2) | 0.0335 (17) | −0.0034 (18) | 0.0034 (15) | −0.0065 (16) |
C4 | 0.047 (2) | 0.051 (2) | 0.0445 (19) | −0.0037 (18) | −0.0065 (16) | −0.0047 (17) |
C17 | 0.086 (3) | 0.055 (3) | 0.047 (2) | −0.021 (2) | −0.013 (2) | 0.020 (2) |
Ru1—N1 | 2.086 (3) | C11—C12 | 1.407 (5) |
Ru1—N2 | 2.147 (3) | C11—H11 | 0.9300 |
Ru1—C17 | 2.172 (4) | C20—C15 | 1.361 (8) |
Ru1—C15 | 2.173 (4) | C20—H20 | 0.9300 |
Ru1—C16 | 2.183 (4) | C2—C1 | 1.371 (5) |
Ru1—C19 | 2.196 (4) | C2—C3 | 1.373 (6) |
Ru1—C18 | 2.197 (4) | C2—H2 | 0.9300 |
Ru1—C20 | 2.209 (4) | C12—C13 | 1.373 (5) |
Ru1—Cl1 | 2.3840 (9) | C12—H12 | 0.9300 |
F2—B1 | 1.336 (5) | C5—C4 | 1.384 (5) |
F3—B1 | 1.381 (6) | C5—C6 | 1.474 (5) |
F4—B1 | 1.365 (5) | C3—C4 | 1.384 (5) |
F1—B1 | 1.354 (5) | C3—H3 | 0.9300 |
C19—C18 | 1.371 (6) | C8—C7 | 1.359 (5) |
C19—C20 | 1.379 (6) | C8—H8 | 0.9300 |
C19—H19 | 0.9300 | C1—H1 | 0.9300 |
N2—C6 | 1.340 (4) | C13—H13 | 0.9300 |
N2—C14 | 1.388 (4) | C10—H10 | 0.9300 |
N1—C5 | 1.346 (4) | C6—C7 | 1.407 (5) |
N1—C1 | 1.347 (4) | C15—C16 | 1.403 (7) |
C14—C13 | 1.414 (5) | C15—H15 | 0.9300 |
C14—C9 | 1.423 (4) | C16—C17 | 1.413 (7) |
C18—C17 | 1.416 (6) | C16—H16 | 0.9300 |
C18—H18 | 0.9300 | C7—H7 | 0.9300 |
C9—C8 | 1.407 (5) | C4—H4 | 0.9300 |
C9—C10 | 1.423 (5) | C17—H17 | 0.9300 |
C11—C10 | 1.355 (6) | ||
N1—Ru1—N2 | 76.42 (10) | C15—C20—C19 | 119.8 (5) |
N1—Ru1—C17 | 89.37 (14) | C15—C20—Ru1 | 70.5 (2) |
N2—Ru1—C17 | 133.34 (16) | C19—C20—Ru1 | 71.2 (2) |
N1—Ru1—C15 | 137.61 (19) | C15—C20—H20 | 120.1 |
N2—Ru1—C15 | 93.82 (13) | C19—C20—H20 | 120.1 |
C17—Ru1—C15 | 67.46 (19) | Ru1—C20—H20 | 130.9 |
N1—Ru1—C16 | 103.56 (17) | C1—C2—C3 | 119.5 (3) |
N2—Ru1—C16 | 102.37 (14) | C1—C2—H2 | 120.2 |
C17—Ru1—C16 | 37.87 (19) | C3—C2—H2 | 120.2 |
C15—Ru1—C16 | 37.6 (2) | C13—C12—C11 | 121.1 (4) |
N1—Ru1—C19 | 137.72 (15) | C13—C12—H12 | 119.5 |
N2—Ru1—C19 | 145.23 (14) | C11—C12—H12 | 119.5 |
C17—Ru1—C19 | 66.51 (17) | N1—C5—C4 | 121.0 (3) |
C15—Ru1—C19 | 65.71 (18) | N1—C5—C6 | 114.9 (3) |
C16—Ru1—C19 | 78.84 (17) | C4—C5—C6 | 124.1 (3) |
N1—Ru1—C18 | 104.47 (14) | C2—C3—C4 | 118.4 (3) |
N2—Ru1—C18 | 170.44 (14) | C2—C3—H3 | 120.8 |
C17—Ru1—C18 | 37.83 (17) | C4—C3—H3 | 120.8 |
C15—Ru1—C18 | 79.07 (16) | C7—C8—C9 | 119.7 (3) |
C16—Ru1—C18 | 68.10 (17) | C7—C8—H8 | 120.1 |
C19—Ru1—C18 | 36.36 (16) | C9—C8—H8 | 120.1 |
N1—Ru1—C20 | 168.06 (15) | N1—C1—C2 | 122.4 (3) |
N2—Ru1—C20 | 111.55 (14) | N1—C1—H1 | 118.8 |
C17—Ru1—C20 | 78.70 (17) | C2—C1—H1 | 118.8 |
C15—Ru1—C20 | 36.2 (2) | C12—C13—C14 | 120.5 (3) |
C16—Ru1—C20 | 66.6 (2) | C12—C13—H13 | 119.8 |
C19—Ru1—C20 | 36.47 (17) | C14—C13—H13 | 119.8 |
C18—Ru1—C20 | 66.14 (16) | C11—C10—C9 | 121.3 (3) |
N1—Ru1—Cl1 | 86.86 (8) | C11—C10—H10 | 119.4 |
N2—Ru1—Cl1 | 88.14 (7) | C9—C10—H10 | 119.4 |
C17—Ru1—Cl1 | 135.88 (15) | N2—C6—C7 | 123.0 (3) |
C15—Ru1—Cl1 | 134.61 (17) | N2—C6—C5 | 115.6 (3) |
C16—Ru1—Cl1 | 166.59 (13) | C7—C6—C5 | 121.4 (3) |
C19—Ru1—Cl1 | 87.78 (13) | F2—B1—F1 | 111.3 (4) |
C18—Ru1—Cl1 | 101.40 (12) | F2—B1—F4 | 112.1 (4) |
C20—Ru1—Cl1 | 101.94 (15) | F1—B1—F4 | 112.4 (4) |
C18—C19—C20 | 122.0 (4) | F2—B1—F3 | 107.6 (4) |
C18—C19—Ru1 | 71.9 (2) | F1—B1—F3 | 105.2 (4) |
C20—C19—Ru1 | 72.3 (2) | F4—B1—F3 | 107.8 (4) |
C18—C19—H19 | 119.0 | C20—C15—C16 | 121.5 (4) |
C20—C19—H19 | 119.0 | C20—C15—Ru1 | 73.4 (3) |
Ru1—C19—H19 | 129.4 | C16—C15—Ru1 | 71.6 (2) |
C6—N2—C14 | 118.2 (3) | C20—C15—H15 | 119.2 |
C6—N2—Ru1 | 114.8 (2) | C16—C15—H15 | 119.2 |
C14—N2—Ru1 | 126.8 (2) | Ru1—C15—H15 | 128.1 |
C5—N1—C1 | 118.7 (3) | C15—C16—C17 | 117.9 (4) |
C5—N1—Ru1 | 117.1 (2) | C15—C16—Ru1 | 70.8 (2) |
C1—N1—Ru1 | 124.0 (2) | C17—C16—Ru1 | 70.6 (2) |
N2—C14—C13 | 120.8 (3) | C15—C16—H16 | 121.0 |
N2—C14—C9 | 120.7 (3) | C17—C16—H16 | 121.0 |
C13—C14—C9 | 118.4 (3) | Ru1—C16—H16 | 129.8 |
C19—C18—C17 | 118.5 (4) | C8—C7—C6 | 119.5 (3) |
C19—C18—Ru1 | 71.8 (2) | C8—C7—H7 | 120.2 |
C17—C18—Ru1 | 70.1 (2) | C6—C7—H7 | 120.2 |
C19—C18—H18 | 120.8 | C3—C4—C5 | 120.0 (4) |
C17—C18—H18 | 120.8 | C3—C4—H4 | 120.0 |
Ru1—C18—H18 | 129.7 | C5—C4—H4 | 120.0 |
C8—C9—C14 | 118.6 (3) | C16—C17—C18 | 120.2 (4) |
C8—C9—C10 | 122.4 (3) | C16—C17—Ru1 | 71.5 (2) |
C14—C9—C10 | 119.0 (3) | C18—C17—Ru1 | 72.1 (2) |
C10—C11—C12 | 119.6 (3) | C16—C17—H17 | 119.9 |
C10—C11—H11 | 120.2 | C18—C17—H17 | 119.9 |
C12—C11—H11 | 120.2 | Ru1—C17—H17 | 128.8 |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···F4i | 0.93 | 2.48 | 3.375 (5) | 162 |
C16—H16···F1 | 0.93 | 2.24 | 3.148 (6) | 162 |
C19—H19···Cl1ii | 0.93 | 2.65 | 3.429 (4) | 142 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
We thank Dr Marrappan Velusamy at the Department of Chemistry, North Eastern Hill University, Shillong 793022, India, for collecting the crystal data.
Funding information
The Department of Biotechnology (DBT), New Delhi, provided funding for this research (grant No. BT/PR36476/NNT/28/1723/2020).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Casini, A. & Pöthig, A. (2024). ACS Cent. Sci. 10, 242–250. CrossRef PubMed Google Scholar
Chan, H., Ghrayche, J. B., Wei, J. & Renfrew, A. K. (2017). Eur. J. Inorg. Chem. 2017, 1679–1686. CrossRef Google Scholar
Chavarot, M., Ménage, S., Hamelin, O., Charnay, F., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem. 42, 4810–4816. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hamelin, O., Rimboud, M., Pécaut, J. & Fontecave, M. (2007). Inorg. Chem. 46, 5354–5360. Web of Science CSD CrossRef PubMed CAS Google Scholar
Huisman, M., White, J. K., Lewalski, V. G., Podgorski, I., Turro, C. & Kodanko, J. J. (2016). Chem. Commun. 52, 12590–12593. Web of Science CrossRef CAS Google Scholar
Kelani, M. T., Muller, A. & Lammertsma, K. (2023). IUCrData, 8, x230392. Google Scholar
Kelani, M. T., Muller, A. & Lammertsma, K. (2024). IUCrData, 9, x240720. Google Scholar
Khamrang, T., Kartikeyan, R., Velusamy, M., Rajendiran, V., Dhivya, R., Perumalsamy, B., Akbarsha, M. A. & Palaniandavar, M. (2016). RSC Adv. 6, 114143–114158. CrossRef Google Scholar
Ngo, A. H. & Do, L. H. (2020). Inorg. Chem. Front. 7, 583–591. Web of Science CrossRef CAS Google Scholar
Puckett, C. A. & Barton, J. K. (2007). J. Am. Chem. Soc. 129, 46–47. CrossRef PubMed Google Scholar
Rajendiran, V., Palaniandavar, M., Periasamy, V. & Akbarsha, M. A. (2012). J. Inorg. Biochem. 116, 151–162. CrossRef PubMed Google Scholar
Ryabov, A. D., Le Lagadec, R., Estevez, H., Toscano, R. A., Hernandez, S., Alexandrova, L., Kurova, V. S., Fischer, A., Sirlin, C. & Pfeffer, M. (2005). Inorg. Chem. 44, 1626–1634. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tsolis, T., Ypsilantis, K., Kourtellaris, A. & Garoufis, A. (2018). Polyhedron, 149, 45–53. CrossRef Google Scholar
Vatsa, A. & Kumar Padhi, S. (2021). Eur. J. Inorg. Chem. pp. 3499–3505. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zamisa, S. J., Gichumbi, J. M. & Friedrich, H. B. (2024). Z. Kristallogr. 239, 19–21. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.