

IUCrData

ISSN 2414-3146

Received 13 December 2024 Accepted 23 December 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: ruthenium(II); 2-(pyridin-2-yl) quinoline; η^6 -benzene; crystal structure.

CCDC reference: 2407332

Structural data: full structural data are available from iucrdata.iucr.org

$(\eta^{6}$ -Benzene)chlorido[2-(pyridin-2-yl)quinoline- $\kappa^{2}N,N'$]ruthenium(II) tetrafluoridoborate

Manikandan Varadhan,^a Ibanpynhunlang Passi,^b Thangaraja Chinnathangavel^c and Venugopal Rajendiran^a*

^aDepartment of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India, ^bDepartment of Chemistry, North Eastern Hill University, Shillong 793 022, India, and ^cDepartment of Chemistry, Anna University Regional Campus, Madurai 625 019, Tamil Nadu, India. *Correspondence e-mail: rajendiran@cutn.ac.in

The title compound, $[\operatorname{RuCl}(C_6H_6)(C_{14}H_{10}N_2)]BF_4$ or $[\operatorname{Ru}(\eta^6\text{-benzene})(L)Cl]^+$ -BF₄⁻ [where L denotes the 2-(pyridin-2-yl)quinoline ligand], crystallizes in the monoclinic space group $P2_1/c$. The coordination environment around Ru^{II} is best described as pseudo-octahedral, resembling the familiar half-sandwich 'three-legged piano-stool' shape. In the coordination sphere, the η^6 -binding benzene ligand coordinates with the central Ru^{II} atom occupying the 'seat' of the stool with a metal-to-centroid distance of 1.695 (17) Å, while the chelate ligand L coordinates with its N atoms and, together with the Cl ligand, defines the 'legs' of the stool. Apart from Coulombic forces, $C-H \cdots F$ and $C-H \cdots Cl$ hydrogen-bonding interactions consolidate the crystal packing.

Structure description

Ruthenium complexes exhibit a plethora of applications in the domains of medicinal chemistry (Casini & Pöthig, 2024; Rajendiran *et al.*, 2012; Chan *et al.*, 2017; Puckett & Barton, 2007), catalysis (Chavarot *et al.*, 2003; Ngo & Do, 2020; Hamelin *et al.*, 2007), and materials chemistry (Ryabov *et al.*, 2005; Huisman *et al.*, 2016; Vatsa & Padhi, 2021). Understanding their structural properties provides new insight into the design of novel ruthenium(II) complexes and predict their structure–activity relationships. In this context, the mononuclear mixed-ligand ruthenium(II) complex, $[Ru(\eta^6-benzene)(L)Cl]^+BF_4^-$ [where *L* is 2-(pyridin-2-yl)quinolone] has been synthesized and characterized by single-crystal X-ray analysis in the present work.

The distinctive half-sandwich, 'three-legged piano-stool' geometry of the complex cation of the title compound (Fig. 1) is characteristic of numerous η^6 -binding arene–ruthenium(II) complexes (Khamrang *et al.*, 2016; Zamisa *et al.*, 2024). The 'legs' of the

data reports

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
0.93	2.48	3.375 (5)	162
0.93	2.24	3.148 (6)	162
0.93	2.65	3.429 (4)	142
	<u>D</u> —H 0.93 0.93 0.93	$\begin{array}{c ccc} D-H & H\cdots A \\ \hline 0.93 & 2.48 \\ 0.93 & 2.24 \\ 0.93 & 2.65 \end{array}$	$\begin{array}{c ccccc} D-H & H \cdots A & D \cdots A \\ \hline 0.93 & 2.48 & 3.375 (5) \\ 0.93 & 2.24 & 3.148 (6) \\ 0.93 & 2.65 & 3.429 (4) \end{array}$

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

stool are defined by two σ -bonding N atoms from the chelating ligand L and the chlorido ligand, while the 'seat' is defined by the π -bonded benzene. The Ru^{II}-to-benzene(centroid) distance is 1.695 (17) Å and is comparable with other complexes containing N,N'-chelating ligands (Kelani et al., 2023, 2024; Tsolis et al., 2018). The Ru1-N1_{pv} bond [2.086(3) Å] is slightly shorter than the Ru1-N2_{an} bond [2.147 (3) Å], revealing the pyridyl (py) N atom more firmly coordinates the central Ru^{II} atom than the quinolone (qn) N atom. The bidentate ligand has a bite angle of N1-Ru1-N2 = 76.42 (10)°. A similar type of coordination is observed in the crystal structure of $[((2,2'-bipyridyl)(\eta^6-p-cymene)iodido)$ ruthenium(II)] hexafluoridophosphate (Kelani et al., 2023). The chlorido ligand bonds to the Ru^{II} atom with a distance of 2.3840 (9) Å. Except for the Ru–Cl bond, all other bonds are slightly longer than in the structure of the related complex $[\operatorname{Ru}(\eta^{6}-p\text{-cymene})LCl]^{+}(\operatorname{PF}_{6})^{-}$ (Tsolis *et al.*, 2018).

In the crystal, intermolecular $C-H\cdots F$ and $C-H\cdots Cl$ hydrogen bonding (Table 1) plays a crucial role in the crystal packing (Fig. 2).

Synthesis and crystallization

 $[\operatorname{Ru}(\eta^6\text{-benzene})\operatorname{Cl}]_2$ (0.12 g, 0.2 mmol) and L (2-(pyridin-2-yl)quinolone) (0.1 g, 0.4 mmol) were suspended in methanol (20 ml) and stirred at room temperature for 2 h. A solution of

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$[RuCl(C_6H_6)(C_{14}H_{10}N_2)]BF_4$
$M_{\rm r}$	507.68
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
a, b, c (Å)	8.4191 (3), 23.1476 (9), 9.9079 (3)
β (°)	94.709 (3)
$V(Å^3)$	1924.35 (12)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.00
Crystal size (mm)	$0.65 \times 0.50 \times 0.41$
Data collection	
Diffractometer	Agilent Xcalibur, Atlas, Gemini
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ;
1	Agilent, 2012)
T_{\min}, T_{\max}	0.507, 0.578
No. of measured, independent and	8112, 4311, 3815
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.018
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.675
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.093, 1.13
No. of reflections	4311
No. of parameters	262
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.92, -0.66

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

 $NaBF_4$ (200 mg, 0.60 mmol) in methanol (10 ml) was added to the initially orange solution, which changed color to yellow. After 24 h, the solution was evaporated, and the solid obtained was filtered off. The residue was washed with diethyl ether (40 ml) and dried under vacuum. The obtained product was recrystallized from a DCM:hexane mixture to give orange crystals. Yield: 65%.

Figure 1

The molecular structure of the complex cation of the title compound with displacement ellipsoids at the 50% probability level.

Figure 2

The crystal packing of the title compound. The Ru atoms are represented by green spheres, the Cl atoms by yellow spheres, and the F atoms by red spheres of arbitrary radii.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We thank Dr Marrappan Velusamy at the Department of Chemistry, North Eastern Hill University, Shillong 793022, India, for collecting the crystal data.

Funding information

The Department of Biotechnology (DBT), New Delhi, provided funding for this research (grant No. BT/PR36476/ NNT/28/1723/2020).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Casini, A. & Pöthig, A. (2024). ACS Cent. Sci. 10, 242-250.
- Chan, H., Ghrayche, J. B., Wei, J. & Renfrew, A. K. (2017). Eur. J. Inorg. Chem. 2017, 1679–1686.
- Chavarot, M., Ménage, S., Hamelin, O., Charnay, F., Pécaut, J. & Fontecave, M. (2003). *Inorg. Chem.* **42**, 4810–4816.

- Hamelin, O., Rimboud, M., Pécaut, J. & Fontecave, M. (2007). *Inorg. Chem.* 46, 5354–5360.
- Huisman, M., White, J. K., Lewalski, V. G., Podgorski, I., Turro, C. & Kodanko, J. J. (2016). *Chem. Commun.* 52, 12590–12593.
- Kelani, M. T., Muller, A. & Lammertsma, K. (2023). *IUCrData*, **8**, x230392.
- Kelani, M. T., Muller, A. & Lammertsma, K. (2024). *IUCrData*, 9, x240720.
- Khamrang, T., Kartikeyan, R., Velusamy, M., Rajendiran, V., Dhivya, R., Perumalsamy, B., Akbarsha, M. A. & Palaniandavar, M. (2016). *RSC Adv.* 6, 114143–114158.
- Ngo, A. H. & Do, L. H. (2020). Inorg. Chem. Front. 7, 583-591.
- Puckett, C. A. & Barton, J. K. (2007). J. Am. Chem. Soc. 129, 46-47.
- Rajendiran, V., Palaniandavar, M., Periasamy, V. & Akbarsha, M. A. (2012). J. Inorg. Biochem. 116, 151–162.
- Ryabov, A. D., Le Lagadec, R., Estevez, H., Toscano, R. A., Hernandez, S., Alexandrova, L., Kurova, V. S., Fischer, A., Sirlin, C. & Pfeffer, M. (2005). *Inorg. Chem.* **44**, 1626–1634.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tsolis, T., Ypsilantis, K., Kourtellaris, A. & Garoufis, A. (2018). *Polyhedron*, **149**, 45–53.
- Vatsa, A. & Kumar Padhi, S. (2021). Eur. J. Inorg. Chem. pp. 3499–3505.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zamisa, S. J., Gichumbi, J. M. & Friedrich, H. B. (2024). Z. Kristallogr. 239, 19–21.

full crystallographic data

IUCrData (2025). **10**, x241240 [https://doi.org/10.1107/S2414314624012409]

 $(\eta^6$ -Benzene)chlorido[2-(pyridin-2-yl)quinoline- $\kappa^2 N, N'$]ruthenium(II) tetrafluoridoborate

Manikandan Varadhan, Ibanpynhunlang Passi, Thangaraja Chinnathangavel and Venugopal Rajendiran

 $(\eta^{6}$ -Benzene)chlorido[2-(pyridin-2-yl)quinoline- $\kappa^{2}N,N'$] \ ruthenium(II) tetrafluoridoborate

Crystal data

[RuCl(C₆H₆)(C₁₄H₁₀N₂)]BF₄ $M_r = 507.68$ Monoclinic, $P2_1/c$ a = 8.4191 (3) Å b = 23.1476 (9) Å c = 9.9079 (3) Å $\beta = 94.709$ (3)° V = 1924.35 (12) Å³ Z = 4

Data collection

Agilent Xcalibur, Atlas, Gemini diffractometer Radiation source: fine-focus sealed tube ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) $T_{\min} = 0.507, T_{\max} = 0.578$ 8112 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.093$ S = 1.134311 reflections 262 parameters 0 restraints Primary atom site location: dual F(000) = 1008 $D_x = 1.752 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4311 reflections $\theta = 3.4-28.7^{\circ}$ $\mu = 1.00 \text{ mm}^{-1}$ T = 293 KBlock, orange $0.65 \times 0.50 \times 0.41 \text{ mm}$

4311 independent reflections 3815 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 28.7^\circ, \ \theta_{min} = 3.4^\circ$ $h = -10 \rightarrow 11$ $k = -29 \rightarrow 31$ $l = -13 \rightarrow 7$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0353P)^2 + 2.2897P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.92$ e Å⁻³ $\Delta\rho_{min} = -0.66$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	y	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Rul	0.36590 (3)	0.35365 (2)	0.55140 (2)	0.03087 (9)
Cl1	0.48682 (11)	0.26281 (4)	0.60853 (11)	0.0510 (2)
F2	0.0921 (4)	0.5390 (2)	0.8475 (3)	0.1168 (14)
F3	0.1988 (4)	0.60983 (16)	0.7391 (5)	0.1201 (14)
F4	0.3426 (3)	0.53126 (16)	0.7890 (3)	0.0961 (10)
F1	0.1343 (5)	0.53076 (17)	0.6300 (3)	0.1116 (13)
C19	0.3184 (6)	0.3211 (2)	0.3438 (4)	0.0585 (11)
H19	0.342384	0.285320	0.307946	0.070*
N2	0.2831 (3)	0.35589 (11)	0.7506 (3)	0.0313 (5)
N1	0.5548 (3)	0.39139 (12)	0.6693 (3)	0.0353 (6)
C14	0.1411 (4)	0.33333 (14)	0.7897 (3)	0.0335 (7)
C18	0.4281 (5)	0.3648 (2)	0.3419 (4)	0.0543 (10)
H18	0.524933	0.358972	0.305041	0.065*
С9	0.0871 (4)	0.34711 (15)	0.9181 (3)	0.0395 (8)
C11	-0.1533 (4)	0.29144 (18)	0.8644 (4)	0.0514 (10)
H11	-0.251959	0.278213	0.887140	0.062*
C20	0.1737 (5)	0.3286 (2)	0.3972 (4)	0.0630 (12)
H20	0.100838	0.298376	0.395571	0.076*
C2	0.8103 (4)	0.43585 (16)	0.6985 (4)	0.0473 (9)
H2	0.905866	0.445181	0.662876	0.057*
C12	-0.0967 (4)	0.27603 (17)	0.7396 (4)	0.0477 (9)
H12	-0.157907	0.251981	0.680845	0.057*
C5	0.5283 (4)	0.40623 (14)	0.7969 (3)	0.0353 (7)
C3	0.7831 (4)	0.45260 (17)	0.8276 (4)	0.0500 (9)
Н3	0.858559	0.474045	0.879990	0.060*
C8	0.1852 (5)	0.38125 (18)	1.0081 (4)	0.0493 (9)
H8	0.151892	0.391143	1.092283	0.059*
C1	0.6957 (4)	0.40530 (16)	0.6226 (4)	0.0430 (8)
H1	0.715866	0.393750	0.535760	0.052*
C13	0.0473 (4)	0.29590 (16)	0.7031 (4)	0.0402 (8)
H13	0.083432	0.284658	0.620893	0.048*
C10	-0.0633 (5)	0.32567 (17)	0.9513 (4)	0.0487 (9)
H10	-0.100441	0.335336	1.034212	0.058*
C6	0.3742 (4)	0.38674 (15)	0.8414 (3)	0.0368 (7)
B1	0.1919 (5)	0.5506 (2)	0.7530 (4)	0.0497 (10)
C15	0.1378 (5)	0.3804 (3)	0.4524 (4)	0.0678 (14)
H15	0.041196	0.384661	0.490554	0.081*
C16	0.2430 (7)	0.4273 (2)	0.4530 (4)	0.0717 (15)
H16	0.216515	0.462854	0.488844	0.086*
C7	0.3287 (5)	0.39968 (17)	0.9715 (4)	0.0462 (9)
H7	0.396377	0.420705	1.031986	0.055*
C4	0.6408 (4)	0.43679 (17)	0.8778 (4)	0.0480 (9)
H4	0.620830	0.446693	0.965746	0.058*
C17	0.3906 (6)	0.4190 (2)	0.3973 (4)	0.0636 (12)
H17	0.463368	0.449282	0.397155	0.076*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru1	0.03032 (14)	0.03298 (15)	0.02952 (14)	0.00145 (11)	0.00382 (9)	-0.00114 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211	0.0498 (5)	0.0383 (5)	0.0662 (6)	0.0080 (4)	0.0128 (4)	0.0086 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F2	0.083 (2)	0.191 (4)	0.082 (2)	-0.038 (2)	0.0366 (18)	-0.001 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	73	0.093 (2)	0.080(2)	0.189 (4)	-0.005 (2)	0.020 (3)	-0.010 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74	0.0582 (16)	0.126 (3)	0.104 (2)	0.0188 (18)	0.0070 (16)	0.032 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F1	0.127 (3)	0.142 (3)	0.0637 (18)	0.040 (2)	-0.0099 (18)	-0.036 (2)
N2 $0.0278 (12)$ $0.0352 (14)$ $0.0311 (13)$ $0.0034 (11)$ $0.0027 (10)$ $0.0024 (11)$ N1 $0.0332 (14)$ $0.0358 (14)$ $0.0365 (14)$ $-0.0014 (12)$ $-0.0003 (11)$ $0.0022 (12)$ C14 $0.0297 (15)$ $0.0352 (16)$ $0.0363 (16)$ $0.0080 (13)$ $0.0057 (12)$ $0.0051 (13)$ C18 $0.047 (2)$ $0.084 (3)$ $0.0326 (17)$ $0.001 (2)$ $0.0095 (16)$ $0.0049 (19)$ C9 $0.0412 (18)$ $0.0405 (18)$ $0.0382 (17)$ $0.0108 (15)$ $0.0110 (14)$ $0.0080 (15)$ C11 $0.0379 (19)$ $0.055 (2)$ $0.063 (2)$ $0.0042 (18)$ $0.0152 (18)$ $0.014 (2)$ C20 $0.055 (2)$ $0.094 (4)$ $0.038 (2)$ $-0.020 (3)$ $-0.0052 (18)$ $-0.004 (2)$ C2 $0.0336 (18)$ $0.044 (2)$ $0.064 (2)$ $-0.0069 (16)$ $0.0032 (16)$ $0.0022 (18)$ C12 $0.0335 (17)$ $0.051 (2)$ $0.059 (2)$ $-0.0013 (16)$ $0.0058 (16)$ $0.0022 (18)$ C5 $0.0346 (16)$ $0.0353 (16)$ $0.0327 (17)$ $0.005 (2)$ $0.0105 (16)$ $-0.0035 (17)$ C1 $0.0388 (18)$ $0.045 (2)$ $0.0455 (19)$ $-0.0018 (16)$ $0.0074 (15)$ $0.0033 (16)$ C13 $0.0346 (17)$ $0.0446 (19)$ $0.0418 (17)$ $0.0023 (15)$ $0.0057 (14)$ $0.0029 (15)$ C1 $0.038 (18)$ $0.051 (2)$ $0.051 (2)$ $0.0099 (18)$ $0.0216 (17)$ $0.0095 (18)$ C6 $0.0369 (17)$ $0.051 (2)$ $0.051 (2)$ 0.0	219	0.081 (3)	0.059 (3)	0.0349 (18)	0.000 (2)	0.0039 (19)	-0.0128 (19)
N1 $0.0332 (14)$ $0.0358 (14)$ $0.0365 (14)$ $-0.0014 (12)$ $-0.0003 (11)$ $0.0022 (12)$ C14 $0.0297 (15)$ $0.0352 (16)$ $0.0363 (16)$ $0.0080 (13)$ $0.0057 (12)$ $0.0051 (13)$ C18 $0.047 (2)$ $0.084 (3)$ $0.0326 (17)$ $0.001 (2)$ $0.0095 (16)$ $0.0049 (19)$ C9 $0.0412 (18)$ $0.0405 (18)$ $0.0382 (17)$ $0.0108 (15)$ $0.0110 (14)$ $0.0080 (15)$ C11 $0.0379 (19)$ $0.055 (2)$ $0.063 (2)$ $0.0042 (18)$ $0.0152 (18)$ $0.014 (2)$ C20 $0.055 (2)$ $0.094 (4)$ $0.038 (2)$ $-0.020 (3)$ $-0.0052 (18)$ $-0.004 (2)$ C2 $0.0336 (18)$ $0.044 (2)$ $0.064 (2)$ $-0.0069 (16)$ $0.0032 (16)$ $0.0088 (18)$ C12 $0.0335 (17)$ $0.051 (2)$ $0.059 (2)$ $-0.0013 (16)$ $0.0058 (16)$ $0.0022 (18)$ C5 $0.0346 (16)$ $0.0353 (16)$ $0.0354 (16)$ $0.0029 (14)$ $-0.0009 (13)$ $0.0014 (13)$ C3 $0.0398 (19)$ $0.047 (2)$ $0.061 (2)$ $-0.0090 (17)$ $-0.0110 (17)$ $0.0007 (18)$ C8 $0.058 (2)$ $0.0327 (17)$ $0.005 (2)$ $0.0105 (16)$ $-0.0033 (16)$ C13 $0.0346 (17)$ $0.0446 (19)$ $0.0418 (17)$ $0.0023 (15)$ $0.0057 (14)$ $0.0029 (15)$ C10 $0.048 (2)$ $0.051 (2)$ $0.051 (2)$ $0.0099 (18)$ $0.0216 (17)$ $0.0095 (18)$ C6 $0.0369 (17)$ $0.0393 (18)$ $0.0336 (16)$ $0.0032 (14)$ 0	N2	0.0278 (12)	0.0352 (14)	0.0311 (13)	0.0034 (11)	0.0027 (10)	0.0024 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1	0.0332 (14)	0.0358 (14)	0.0365 (14)	-0.0014 (12)	-0.0003 (11)	0.0022 (12)
C18 $0.047 (2)$ $0.084 (3)$ $0.0326 (17)$ $0.001 (2)$ $0.0095 (16)$ $0.0049 (19)$ C9 $0.0412 (18)$ $0.0405 (18)$ $0.0382 (17)$ $0.0108 (15)$ $0.0110 (14)$ $0.0080 (15)$ C11 $0.0379 (19)$ $0.055 (2)$ $0.063 (2)$ $0.0042 (18)$ $0.0152 (18)$ $0.014 (2)$ C20 $0.055 (2)$ $0.094 (4)$ $0.038 (2)$ $-0.020 (3)$ $-0.0052 (18)$ $-0.004 (2)$ C2 $0.0336 (18)$ $0.044 (2)$ $0.064 (2)$ $-0.0069 (16)$ $0.0032 (16)$ $0.0088 (18)$ C12 $0.0335 (17)$ $0.051 (2)$ $0.059 (2)$ $-0.0013 (16)$ $0.0058 (16)$ $0.0022 (18)$ C5 $0.0346 (16)$ $0.0353 (16)$ $0.0354 (16)$ $0.0029 (14)$ $-0.0009 (13)$ $0.0014 (13)$ C3 $0.0398 (19)$ $0.047 (2)$ $0.061 (2)$ $-0.0090 (17)$ $-0.0110 (17)$ $0.0007 (18)$ C8 $0.058 (2)$ $0.058 (2)$ $0.0327 (17)$ $0.005 (2)$ $0.0105 (16)$ $-0.0035 (17)$ C1 $0.0388 (18)$ $0.045 (2)$ $0.0455 (19)$ $-0.0018 (16)$ $0.0074 (15)$ $0.0033 (16)$ C13 $0.0346 (17)$ $0.0446 (19)$ $0.0418 (17)$ $0.0023 (15)$ $0.0057 (14)$ $0.0029 (15)$ C10 $0.048 (2)$ $0.051 (2)$ $0.051 (2)$ $0.0099 (18)$ $0.0216 (17)$ $0.0095 (18)$ C6 $0.0369 (17)$ $0.0393 (18)$ $0.0336 (16)$ $0.0032 (14)$ $0.0003 (13)$ $0.0012 (14)$	214	0.0297 (15)	0.0352 (16)	0.0363 (16)	0.0080 (13)	0.0057 (12)	0.0051 (13)
C9 $0.0412 (18)$ $0.0405 (18)$ $0.0382 (17)$ $0.0108 (15)$ $0.0110 (14)$ $0.0080 (15)$ C11 $0.0379 (19)$ $0.055 (2)$ $0.063 (2)$ $0.0042 (18)$ $0.0152 (18)$ $0.014 (2)$ C20 $0.055 (2)$ $0.094 (4)$ $0.038 (2)$ $-0.020 (3)$ $-0.0052 (18)$ $-0.004 (2)$ C2 $0.0336 (18)$ $0.044 (2)$ $0.064 (2)$ $-0.0069 (16)$ $0.0032 (16)$ $0.0088 (18)$ C12 $0.0335 (17)$ $0.051 (2)$ $0.059 (2)$ $-0.0013 (16)$ $0.0058 (16)$ $0.0022 (18)$ C5 $0.0346 (16)$ $0.0353 (16)$ $0.0354 (16)$ $0.0029 (14)$ $-0.0009 (13)$ $0.0014 (13)$ C3 $0.0398 (19)$ $0.047 (2)$ $0.061 (2)$ $-0.0090 (17)$ $-0.0110 (17)$ $0.0007 (18)$ C8 $0.058 (2)$ $0.058 (2)$ $0.0327 (17)$ $0.005 (2)$ $0.0105 (16)$ $-0.0033 (16)$ C13 $0.0346 (17)$ $0.0446 (19)$ $0.0418 (17)$ $0.0023 (15)$ $0.0057 (14)$ $0.0029 (15)$ C10 $0.048 (2)$ $0.051 (2)$ $0.051 (2)$ $0.0099 (18)$ $0.0216 (17)$ $0.0095 (18)$ C6 $0.0369 (17)$ $0.0393 (18)$ $0.0336 (16)$ $0.0032 (14)$ $0.0003 (13)$ $0.0012 (14)$	218	0.047 (2)	0.084 (3)	0.0326 (17)	0.001 (2)	0.0095 (16)	0.0049 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.0412 (18)	0.0405 (18)	0.0382 (17)	0.0108 (15)	0.0110 (14)	0.0080 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211	0.0379 (19)	0.055 (2)	0.063 (2)	0.0042 (18)	0.0152 (18)	0.014 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220	0.055 (2)	0.094 (4)	0.038 (2)	-0.020 (3)	-0.0052 (18)	-0.004 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	0.0336 (18)	0.044 (2)	0.064 (2)	-0.0069 (16)	0.0032 (16)	0.0088 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212	0.0335 (17)	0.051 (2)	0.059 (2)	-0.0013 (16)	0.0058 (16)	0.0022 (18)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	0.0346 (16)	0.0353 (16)	0.0354 (16)	0.0029 (14)	-0.0009 (13)	0.0014 (13)
C8 0.058 (2) 0.058 (2) 0.0327 (17) 0.005 (2) 0.0105 (16) -0.0035 (17)C1 0.0388 (18) 0.045 (2) 0.0455 (19) -0.0018 (16) 0.0074 (15) 0.0033 (16)C13 0.0346 (17) 0.0446 (19) 0.0418 (17) 0.0023 (15) 0.0057 (14) 0.0029 (15)C10 0.048 (2) 0.051 (2) 0.051 (2) 0.0099 (18) 0.0216 (17) 0.0095 (18)C6 0.0369 (17) 0.0393 (18) 0.0336 (16) 0.0032 (14) 0.0003 (13) 0.0012 (14)	23	0.0398 (19)	0.047 (2)	0.061 (2)	-0.0090 (17)	-0.0110 (17)	0.0007 (18)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	0.058 (2)	0.058 (2)	0.0327 (17)	0.005 (2)	0.0105 (16)	-0.0035 (17)
C13 0.0346 (17) 0.0446 (19) 0.0418 (17) 0.0023 (15) 0.0057 (14) 0.0029 (15) C10 0.048 (2) 0.051 (2) 0.051 (2) 0.0099 (18) 0.0216 (17) 0.0095 (18) C6 0.0369 (17) 0.0393 (18) 0.0336 (16) 0.0032 (14) 0.0003 (13) 0.0012 (14) D1 0.042 (2) 0.061 (2) 0.044 (2) 0.0003 (13) 0.0012 (14)	21	0.0388 (18)	0.045 (2)	0.0455 (19)	-0.0018 (16)	0.0074 (15)	0.0033 (16)
C10 0.048 (2) 0.051 (2) 0.051 (2) 0.0099 (18) 0.0216 (17) 0.0095 (18) C6 0.0369 (17) 0.0393 (18) 0.0336 (16) 0.0032 (14) 0.0003 (13) 0.0012 (14) D1 0.042 (2) 0.060 (2) 0.040 (2) 0.0216 (17) 0.0295 (18)	213	0.0346 (17)	0.0446 (19)	0.0418 (17)	0.0023 (15)	0.0057 (14)	0.0029 (15)
C6 0.0369 (17) 0.0393 (18) 0.0336 (16) 0.0032 (14) 0.0003 (13) 0.0012 (14) D1 0.042 (2) 0.040 (2) 0.024 (2) 0.025 (17) 0.022 (2)	210	0.048 (2)	0.051 (2)	0.051 (2)	0.0099 (18)	0.0216 (17)	0.0095 (18)
	26	0.0369 (17)	0.0393 (18)	0.0336 (16)	0.0032 (14)	0.0003 (13)	0.0012 (14)
B1 $0.042(2)$ $0.068(3)$ $0.040(2)$ $-0.004(2)$ $0.0067(17)$ $-0.002(2)$	31	0.042 (2)	0.068 (3)	0.040 (2)	-0.004 (2)	0.0067 (17)	-0.002(2)
C15 0.041 (2) 0.117 (4) 0.045 (2) 0.025 (3) 0.0020 (17) 0.019 (3)	215	0.041 (2)	0.117 (4)	0.045 (2)	0.025 (3)	0.0020 (17)	0.019 (3)
C16 0.111 (4) 0.060 (3) 0.042 (2) 0.046 (3) -0.004 (2) 0.008 (2)	216	0.111 (4)	0.060 (3)	0.042 (2)	0.046 (3)	-0.004 (2)	0.008 (2)
C7 0.052 (2) 0.053 (2) 0.0335 (17) -0.0034 (18) 0.0034 (15) -0.0065 (16	27	0.052 (2)	0.053 (2)	0.0335 (17)	-0.0034 (18)	0.0034 (15)	-0.0065 (16)
C4 0.047 (2) 0.051 (2) 0.0445 (19) -0.0037 (18) -0.0065 (16) -0.0047 (17	24	0.047 (2)	0.051 (2)	0.0445 (19)	-0.0037 (18)	-0.0065 (16)	-0.0047 (17)
C17 $0.086(3)$ $0.055(3)$ $0.047(2)$ $-0.021(2)$ $-0.013(2)$ $0.020(2)$	217	0.086 (3)	0.055 (3)	0.047 (2)	-0.021 (2)	-0.013 (2)	0.020 (2)

Geometric parameters (Å, °)

Ru1—N1	2.086 (3)	C11—C12	1.407 (5)
Ru1—N2	2.147 (3)	C11—H11	0.9300
Ru1—C17	2.172 (4)	C20—C15	1.361 (8)
Ru1—C15	2.173 (4)	C20—H20	0.9300
Ru1—C16	2.183 (4)	C2—C1	1.371 (5)
Ru1—C19	2.196 (4)	C2—C3	1.373 (6)
Ru1—C18	2.197 (4)	C2—H2	0.9300
Ru1—C20	2.209 (4)	C12—C13	1.373 (5)
Ru1—Cl1	2.3840 (9)	C12—H12	0.9300
F2—B1	1.336 (5)	C5—C4	1.384 (5)
F3—B1	1.381 (6)	C5—C6	1.474 (5)
F4—B1	1.365 (5)	C3—C4	1.384 (5)
F1—B1	1.354 (5)	С3—Н3	0.9300

C19—C18	1.371 (6)	C8—C7	1.359 (5)
C19—C20	1.379 (6)	C8—H8	0.9300
С19—Н19	0.9300	С1—Н1	0.9300
N2—C6	1.340 (4)	C13—H13	0.9300
N2-C14	1 388 (4)	C10—H10	0.9300
N1—C5	1 346 (4)	C6—C7	1407(5)
N1—C1	1.347(4)	C_{15} C_{16}	1.107(3) 1 403(7)
C14— $C13$	1.317(1) 1 414 (5)	C15—H15	0.9300
C14 - C9	1.414(5) 1 423(4)	C_{16}	1.413(7)
C18 - C17	1.416 (6)	C16H16	0.9300
C18 H18	0.0300	C7 H7	0.9300
C_{0} C_{8}	1 407 (5)	$C_{A} = H_{A}$	0.9300
C_{0}	1.407(5) 1.423(5)	$C_1 = H_1$	0.9300
C_{11}	1.425(5) 1.355(6)		0.9500
C11—C10	1.555 (0)		
N1—Ru1—N2	76.42 (10)	C15—C20—C19	119.8 (5)
N1— $Ru1$ — $C17$	89 37 (14)	$C_{15} - C_{20} - R_{11}$	70 5 (2)
$N_2 = R_{11} = C_{17}$	133 34 (16)	C19 - C20 - Ru1	71.2(2)
N1— $Ru1$ — $C15$	137.61 (19)	$C_{15} = C_{20} = H_{20}$	120.1
$N_2 R_{\mu} 1 - C_{15}$	93 82 (13)	C_{19} C_{20} H_{20}	120.1
C_{17} Ru1 C_{15}	67 46 (19)	$R_{11} = C_{20} = H_{20}$	130.9
$N1_Ru1_C16$	103.56(17)	C1 - C2 - C3	110.5
$N_2 R_{\mu} I_{-C16}$	102.37(14)	C1 - C2 - H2	119.5 (5)
$C_{17} = R_{11} = C_{16}$	37.87(19)	$C_1 = C_2 = H_2$	120.2
$C_{17} = R_{u1} = C_{10}$	37.67(19)	C_{3} C_{2} C_{12} C_{11}	120.2 121 1 (4)
$N1 P_{11} C10$	57.0(2)	$C_{13} = C_{12} = C_{11}$	121.1 (4)
N1 - Ku1 - C19	137.72(13) 145.22(14)	C11 C12 H12	119.5
$N_2 - K_{U1} - C_{19}$	143.23(14)	N1 C5 C4	119.5
C17 - Ru1 - C19	00.31(17)	NIC3C4	121.0(3)
C16 $Ru1$ $C19$	05./1(18)	NI = C5 = C6	114.9(3)
C10—Ru1— $C19$	/8.84 (1/)	$C_4 - C_5 - C_6$	124.1 (3)
NI - RuI - C18	104.47 (14)	$C_2 = C_3 = C_4$	118.4 (3)
N_2 — $Ru1$ — $C18$	1/0.44 (14)	C2—C3—H3	120.8
C1/-Ru1-C18	37.83 (17)	C4—C3—H3	120.8
C15— $Ru1$ — $C18$	79.07 (16)	C/C8C9	119.7 (3)
CI6—RuI—CI8	68.10(17)	C/C8H8	120.1
CI9—RuI—CI8	36.36 (16)	C9—C8—H8	120.1
NI—Rul—C20	168.06 (15)	NI—CI—C2	122.4 (3)
N2—Ru1—C20	111.55 (14)	N1—C1—H1	118.8
C17—Ru1—C20	78.70 (17)	C2—C1—H1	118.8
C15—Ru1—C20	36.2 (2)	C12—C13—C14	120.5 (3)
C16—Ru1—C20	66.6 (2)	C12—C13—H13	119.8
C19—Ru1—C20	36.47 (17)	C14—C13—H13	119.8
C18—Ru1—C20	66.14 (16)	C11—C10—C9	121.3 (3)
N1—Ru1—Cl1	86.86 (8)	C11—C10—H10	119.4
N2—Ru1—Cl1	88.14 (7)	С9—С10—Н10	119.4
C17—Ru1—Cl1	135.88 (15)	N2—C6—C7	123.0 (3)
C15—Ru1—Cl1	134.61 (17)	N2—C6—C5	115.6 (3)
C16—Ru1—Cl1	166.59 (13)	C7—C6—C5	121.4 (3)

C19—Ru1—Cl1	87.78 (13)	F2—B1—F1	111.3 (4)
C18—Ru1—Cl1	101.40 (12)	F2—B1—F4	112.1 (4)
C20—Ru1—Cl1	101.94 (15)	F1—B1—F4	112.4 (4)
C18—C19—C20	122.0 (4)	F2—B1—F3	107.6 (4)
C18—C19—Ru1	71.9 (2)	F1—B1—F3	105.2 (4)
C20—C19—Ru1	72.3 (2)	F4—B1—F3	107.8 (4)
C18—C19—H19	119.0	C20—C15—C16	121.5 (4)
С20—С19—Н19	119.0	C20—C15—Ru1	73.4 (3)
Ru1—C19—H19	129.4	C16—C15—Ru1	71.6 (2)
C6—N2—C14	118.2 (3)	C20—C15—H15	119.2
C6—N2—Ru1	114.8 (2)	C16—C15—H15	119.2
C14—N2—Ru1	126.8 (2)	Ru1—C15—H15	128.1
C5—N1—C1	118.7 (3)	C15—C16—C17	117.9 (4)
C5—N1—Ru1	117.1 (2)	C15—C16—Ru1	70.8 (2)
C1—N1—Ru1	124.0 (2)	C17—C16—Ru1	70.6 (2)
N2—C14—C13	120.8 (3)	C15—C16—H16	121.0
N2—C14—C9	120.7 (3)	C17—C16—H16	121.0
C13—C14—C9	118.4 (3)	Ru1—C16—H16	129.8
C19—C18—C17	118.5 (4)	C8—C7—C6	119.5 (3)
C19—C18—Ru1	71.8 (2)	С8—С7—Н7	120.2
C17—C18—Ru1	70.1 (2)	С6—С7—Н7	120.2
C19—C18—H18	120.8	C3—C4—C5	120.0 (4)
C17—C18—H18	120.8	C3—C4—H4	120.0
Ru1—C18—H18	129.7	C5—C4—H4	120.0
C8—C9—C14	118.6 (3)	C16—C17—C18	120.2 (4)
C8—C9—C10	122.4 (3)	C16—C17—Ru1	71.5 (2)
C14—C9—C10	119.0 (3)	C18—C17—Ru1	72.1 (2)
C10-C11-C12	119.6 (3)	С16—С17—Н17	119.9
C10-C11-H11	120.2	C18—C17—H17	119.9
C12—C11—H11	120.2	Ru1—C17—H17	128.8

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C4— $H4$ ···F4 ⁱ	0.93	2.48	3.375 (5)	162
C16—H16…F1	0.93	2.24	3.148 (6)	162
C19—H19…Cl1 ⁱⁱ	0.93	2.65	3.429 (4)	142

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) *x*, -*y*+1/2, *z*-1/2.