metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(η6-Benzene)­chlorido­[2-(pyridin-2-yl)quinoline-κ2N,N′]ruthenium(II) tetra­fluorido­borate

crossmark logo

aDepartment of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India, bDepartment of Chemistry, North Eastern Hill University, Shillong 793 022, India, and cDepartment of Chemistry, Anna University Regional Campus, Madurai 625 019, Tamil Nadu, India
*Correspondence e-mail: rajendiran@cutn.ac.in

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 December 2024; accepted 23 December 2024; online 7 January 2025)

The title compound, [RuCl(C6H6)(C14H10N2)]BF4 or [Ru(η6-benzene)(L)Cl]+BF4 [where L denotes the 2-(pyridin-2-yl)quinoline ligand], crystallizes in the monoclinic space group P21/c. The coordination environment around RuII is best described as pseudo-octa­hedral, resembling the familiar half-sandwich ‘three-legged piano-stool’ shape. In the coordination sphere, the η6-binding benzene ligand coordinates with the central RuII atom occupying the ‘seat’ of the stool with a metal-to-centroid distance of 1.695 (17) Å, while the chelate ligand L coordinates with its N atoms and, together with the Cl ligand, defines the ‘legs’ of the stool. Apart from Coulombic forces, C—H⋯F and C—H⋯Cl hydrogen-bonding inter­actions consolidate the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ruthenium complexes exhibit a plethora of applications in the domains of medicinal chemistry (Casini & Pöthig, 2024[Casini, A. & Pöthig, A. (2024). ACS Cent. Sci. 10, 242-250.]; Rajendiran et al., 2012[Rajendiran, V., Palaniandavar, M., Periasamy, V. & Akbarsha, M. A. (2012). J. Inorg. Biochem. 116, 151-162.]; Chan et al., 2017[Chan, H., Ghrayche, J. B., Wei, J. & Renfrew, A. K. (2017). Eur. J. Inorg. Chem. 2017, 1679-1686.]; Puckett & Barton, 2007[Puckett, C. A. & Barton, J. K. (2007). J. Am. Chem. Soc. 129, 46-47.]), catalysis (Chavarot et al., 2003[Chavarot, M., Ménage, S., Hamelin, O., Charnay, F., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem. 42, 4810-4816.]; Ngo & Do, 2020[Ngo, A. H. & Do, L. H. (2020). Inorg. Chem. Front. 7, 583-591.]; Hamelin et al., 2007[Hamelin, O., Rimboud, M., Pécaut, J. & Fontecave, M. (2007). Inorg. Chem. 46, 5354-5360.]), and materials chemistry (Ryabov et al., 2005[Ryabov, A. D., Le Lagadec, R., Estevez, H., Toscano, R. A., Hernandez, S., Alexandrova, L., Kurova, V. S., Fischer, A., Sirlin, C. & Pfeffer, M. (2005). Inorg. Chem. 44, 1626-1634.]; Huisman et al., 2016[Huisman, M., White, J. K., Lewalski, V. G., Podgorski, I., Turro, C. & Kodanko, J. J. (2016). Chem. Commun. 52, 12590-12593.]; Vatsa & Padhi, 2021[Vatsa, A. & Kumar Padhi, S. (2021). Eur. J. Inorg. Chem. pp. 3499-3505.]). Understanding their structural properties provides new insight into the design of novel ruthenium(II) complexes and predict their structure–activity relationships. In this context, the mononuclear mixed-ligand ruthenium(II) complex, [Ru(η6-benzene)(L)Cl]+BF4 [where L is 2-(pyridin-2-yl)quinolone] has been synthesized and characterized by single-crystal X-ray analysis in the present work.

The distinctive half-sandwich, ‘three-legged piano-stool’ geometry of the complex cation of the title compound (Fig. 1[link]) is characteristic of numerous η6-binding arene–ruth­enium(II) complexes (Khamrang et al., 2016[Khamrang, T., Kartikeyan, R., Velusamy, M., Rajendiran, V., Dhivya, R., Perumalsamy, B., Akbarsha, M. A. & Palaniandavar, M. (2016). RSC Adv. 6, 114143-114158.]; Zamisa et al., 2024[Zamisa, S. J., Gichumbi, J. M. & Friedrich, H. B. (2024). Z. Kristallogr. 239, 19-21.]). The ‘legs’ of the stool are defined by two σ-bonding N atoms from the chelating ligand L and the chlorido ligand, while the ‘seat’ is defined by the π-bonded benzene. The RuII-to-benzene­(centroid) distance is 1.695 (17) Å and is comparable with other complexes containing N,N′-chelating ligands (Kelani et al., 2023[Kelani, M. T., Muller, A. & Lammertsma, K. (2023). IUCrData, 8, x230392.], 2024[Kelani, M. T., Muller, A. & Lammertsma, K. (2024). IUCrData, 9, x240720.]; Tsolis et al., 2018[Tsolis, T., Ypsilantis, K., Kourtellaris, A. & Garoufis, A. (2018). Polyhedron, 149, 45-53.]). The Ru1—N1py bond [2.086 (3) Å] is slightly shorter than the Ru1—N2qn bond [2.147 (3) Å], revealing the pyridyl (py) N atom more firmly coordinates the central RuII atom than the quinolone (qn) N atom. The bidentate ligand has a bite angle of N1—Ru1—N2 = 76.42 (10)°. A similar type of coordination is observed in the crystal structure of [((2,2′-bipyrid­yl)(η6-p-cymene)iodido)­ruthenium(II)] hexa­fluorido­phosphate (Kelani et al., 2023[Kelani, M. T., Muller, A. & Lammertsma, K. (2023). IUCrData, 8, x230392.]). The chlorido ligand bonds to the RuII atom with a distance of 2.3840 (9) Å. Except for the Ru—Cl bond, all other bonds are slightly longer than in the structure of the related complex [Ru(η6-p-cymene)LCl]+(PF6) (Tsolis et al., 2018[Tsolis, T., Ypsilantis, K., Kourtellaris, A. & Garoufis, A. (2018). Polyhedron, 149, 45-53.]).

[Figure 1]
Figure 1
The mol­ecular structure of the complex cation of the title compound with displacement ellipsoids at the 50% probability level.

In the crystal, inter­molecular C—H⋯F and C—H⋯Cl hydrogen bonding (Table 1[link]) plays a crucial role in the crystal packing (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯F4i 0.93 2.48 3.375 (5) 162
C16—H16⋯F1 0.93 2.24 3.148 (6) 162
C19—H19⋯Cl1ii 0.93 2.65 3.429 (4) 142
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound. The Ru atoms are represented by green spheres, the Cl atoms by yellow spheres, and the F atoms by red spheres of arbitrary radii.

Synthesis and crystallization

[Ru(η6-benzene)Cl]2 (0.12 g, 0.2 mmol) and L (2-(pyridin-2-yl)quinolone) (0.1 g, 0.4 mmol) were suspended in methanol (20 ml) and stirred at room temperature for 2 h. A solution of NaBF4 (200 mg, 0.60 mmol) in methanol (10 ml) was added to the initially orange solution, which changed color to yellow. After 24 h, the solution was evaporated, and the solid obtained was filtered off. The residue was washed with diethyl ether (40 ml) and dried under vacuum. The obtained product was recrystallized from a DCM:hexane mixture to give orange crystals. Yield: 65%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [RuCl(C6H6)(C14H10N2)]BF4
Mr 507.68
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 8.4191 (3), 23.1476 (9), 9.9079 (3)
β (°) 94.709 (3)
V3) 1924.35 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.65 × 0.50 × 0.41
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.507, 0.578
No. of measured, independent and observed [I > 2σ(I)] reflections 8112, 4311, 3815
Rint 0.018
(sin θ/λ)max−1) 0.675
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.13
No. of reflections 4311
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.92, −0.66
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

(η6-Benzene)chlorido[2-(pyridin-2-yl)quinoline-κ2N,N']\ ruthenium(II) tetrafluoridoborate top
Crystal data top
[RuCl(C6H6)(C14H10N2)]BF4F(000) = 1008
Mr = 507.68Dx = 1.752 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4191 (3) ÅCell parameters from 4311 reflections
b = 23.1476 (9) Åθ = 3.4–28.7°
c = 9.9079 (3) ŵ = 1.00 mm1
β = 94.709 (3)°T = 293 K
V = 1924.35 (12) Å3Block, orange
Z = 40.65 × 0.50 × 0.41 mm
Data collection top
Agilent Xcalibur, Atlas, Gemini
diffractometer
3815 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
ω scansθmax = 28.7°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1011
Tmin = 0.507, Tmax = 0.578k = 2931
8112 measured reflectionsl = 137
4311 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0353P)2 + 2.2897P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
4311 reflectionsΔρmax = 0.92 e Å3
262 parametersΔρmin = 0.66 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.36590 (3)0.35365 (2)0.55140 (2)0.03087 (9)
Cl10.48682 (11)0.26281 (4)0.60853 (11)0.0510 (2)
F20.0921 (4)0.5390 (2)0.8475 (3)0.1168 (14)
F30.1988 (4)0.60983 (16)0.7391 (5)0.1201 (14)
F40.3426 (3)0.53126 (16)0.7890 (3)0.0961 (10)
F10.1343 (5)0.53076 (17)0.6300 (3)0.1116 (13)
C190.3184 (6)0.3211 (2)0.3438 (4)0.0585 (11)
H190.3423840.2853200.3079460.070*
N20.2831 (3)0.35589 (11)0.7506 (3)0.0313 (5)
N10.5548 (3)0.39139 (12)0.6693 (3)0.0353 (6)
C140.1411 (4)0.33333 (14)0.7897 (3)0.0335 (7)
C180.4281 (5)0.3648 (2)0.3419 (4)0.0543 (10)
H180.5249330.3589720.3050410.065*
C90.0871 (4)0.34711 (15)0.9181 (3)0.0395 (8)
C110.1533 (4)0.29144 (18)0.8644 (4)0.0514 (10)
H110.2519590.2782130.8871400.062*
C200.1737 (5)0.3286 (2)0.3972 (4)0.0630 (12)
H200.1008380.2983760.3955710.076*
C20.8103 (4)0.43585 (16)0.6985 (4)0.0473 (9)
H20.9058660.4451810.6628760.057*
C120.0967 (4)0.27603 (17)0.7396 (4)0.0477 (9)
H120.1579070.2519810.6808450.057*
C50.5283 (4)0.40623 (14)0.7969 (3)0.0353 (7)
C30.7831 (4)0.45260 (17)0.8276 (4)0.0500 (9)
H30.8585590.4740450.8799900.060*
C80.1852 (5)0.38125 (18)1.0081 (4)0.0493 (9)
H80.1518920.3911431.0922830.059*
C10.6957 (4)0.40530 (16)0.6226 (4)0.0430 (8)
H10.7158660.3937500.5357600.052*
C130.0473 (4)0.29590 (16)0.7031 (4)0.0402 (8)
H130.0834320.2846580.6208930.048*
C100.0633 (5)0.32567 (17)0.9513 (4)0.0487 (9)
H100.1004410.3353361.0342120.058*
C60.3742 (4)0.38674 (15)0.8414 (3)0.0368 (7)
B10.1919 (5)0.5506 (2)0.7530 (4)0.0497 (10)
C150.1378 (5)0.3804 (3)0.4524 (4)0.0678 (14)
H150.0411960.3846610.4905540.081*
C160.2430 (7)0.4273 (2)0.4530 (4)0.0717 (15)
H160.2165150.4628540.4888440.086*
C70.3287 (5)0.39968 (17)0.9715 (4)0.0462 (9)
H70.3963770.4207051.0319860.055*
C40.6408 (4)0.43679 (17)0.8778 (4)0.0480 (9)
H40.6208300.4466930.9657460.058*
C170.3906 (6)0.4190 (2)0.3973 (4)0.0636 (12)
H170.4633680.4492820.3971550.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03032 (14)0.03298 (15)0.02952 (14)0.00145 (11)0.00382 (9)0.00114 (10)
Cl10.0498 (5)0.0383 (5)0.0662 (6)0.0080 (4)0.0128 (4)0.0086 (4)
F20.083 (2)0.191 (4)0.082 (2)0.038 (2)0.0366 (18)0.001 (2)
F30.093 (2)0.080 (2)0.189 (4)0.005 (2)0.020 (3)0.010 (3)
F40.0582 (16)0.126 (3)0.104 (2)0.0188 (18)0.0070 (16)0.032 (2)
F10.127 (3)0.142 (3)0.0637 (18)0.040 (2)0.0099 (18)0.036 (2)
C190.081 (3)0.059 (3)0.0349 (18)0.000 (2)0.0039 (19)0.0128 (19)
N20.0278 (12)0.0352 (14)0.0311 (13)0.0034 (11)0.0027 (10)0.0024 (11)
N10.0332 (14)0.0358 (14)0.0365 (14)0.0014 (12)0.0003 (11)0.0022 (12)
C140.0297 (15)0.0352 (16)0.0363 (16)0.0080 (13)0.0057 (12)0.0051 (13)
C180.047 (2)0.084 (3)0.0326 (17)0.001 (2)0.0095 (16)0.0049 (19)
C90.0412 (18)0.0405 (18)0.0382 (17)0.0108 (15)0.0110 (14)0.0080 (15)
C110.0379 (19)0.055 (2)0.063 (2)0.0042 (18)0.0152 (18)0.014 (2)
C200.055 (2)0.094 (4)0.038 (2)0.020 (3)0.0052 (18)0.004 (2)
C20.0336 (18)0.044 (2)0.064 (2)0.0069 (16)0.0032 (16)0.0088 (18)
C120.0335 (17)0.051 (2)0.059 (2)0.0013 (16)0.0058 (16)0.0022 (18)
C50.0346 (16)0.0353 (16)0.0354 (16)0.0029 (14)0.0009 (13)0.0014 (13)
C30.0398 (19)0.047 (2)0.061 (2)0.0090 (17)0.0110 (17)0.0007 (18)
C80.058 (2)0.058 (2)0.0327 (17)0.005 (2)0.0105 (16)0.0035 (17)
C10.0388 (18)0.045 (2)0.0455 (19)0.0018 (16)0.0074 (15)0.0033 (16)
C130.0346 (17)0.0446 (19)0.0418 (17)0.0023 (15)0.0057 (14)0.0029 (15)
C100.048 (2)0.051 (2)0.051 (2)0.0099 (18)0.0216 (17)0.0095 (18)
C60.0369 (17)0.0393 (18)0.0336 (16)0.0032 (14)0.0003 (13)0.0012 (14)
B10.042 (2)0.068 (3)0.040 (2)0.004 (2)0.0067 (17)0.002 (2)
C150.041 (2)0.117 (4)0.045 (2)0.025 (3)0.0020 (17)0.019 (3)
C160.111 (4)0.060 (3)0.042 (2)0.046 (3)0.004 (2)0.008 (2)
C70.052 (2)0.053 (2)0.0335 (17)0.0034 (18)0.0034 (15)0.0065 (16)
C40.047 (2)0.051 (2)0.0445 (19)0.0037 (18)0.0065 (16)0.0047 (17)
C170.086 (3)0.055 (3)0.047 (2)0.021 (2)0.013 (2)0.020 (2)
Geometric parameters (Å, º) top
Ru1—N12.086 (3)C11—C121.407 (5)
Ru1—N22.147 (3)C11—H110.9300
Ru1—C172.172 (4)C20—C151.361 (8)
Ru1—C152.173 (4)C20—H200.9300
Ru1—C162.183 (4)C2—C11.371 (5)
Ru1—C192.196 (4)C2—C31.373 (6)
Ru1—C182.197 (4)C2—H20.9300
Ru1—C202.209 (4)C12—C131.373 (5)
Ru1—Cl12.3840 (9)C12—H120.9300
F2—B11.336 (5)C5—C41.384 (5)
F3—B11.381 (6)C5—C61.474 (5)
F4—B11.365 (5)C3—C41.384 (5)
F1—B11.354 (5)C3—H30.9300
C19—C181.371 (6)C8—C71.359 (5)
C19—C201.379 (6)C8—H80.9300
C19—H190.9300C1—H10.9300
N2—C61.340 (4)C13—H130.9300
N2—C141.388 (4)C10—H100.9300
N1—C51.346 (4)C6—C71.407 (5)
N1—C11.347 (4)C15—C161.403 (7)
C14—C131.414 (5)C15—H150.9300
C14—C91.423 (4)C16—C171.413 (7)
C18—C171.416 (6)C16—H160.9300
C18—H180.9300C7—H70.9300
C9—C81.407 (5)C4—H40.9300
C9—C101.423 (5)C17—H170.9300
C11—C101.355 (6)
N1—Ru1—N276.42 (10)C15—C20—C19119.8 (5)
N1—Ru1—C1789.37 (14)C15—C20—Ru170.5 (2)
N2—Ru1—C17133.34 (16)C19—C20—Ru171.2 (2)
N1—Ru1—C15137.61 (19)C15—C20—H20120.1
N2—Ru1—C1593.82 (13)C19—C20—H20120.1
C17—Ru1—C1567.46 (19)Ru1—C20—H20130.9
N1—Ru1—C16103.56 (17)C1—C2—C3119.5 (3)
N2—Ru1—C16102.37 (14)C1—C2—H2120.2
C17—Ru1—C1637.87 (19)C3—C2—H2120.2
C15—Ru1—C1637.6 (2)C13—C12—C11121.1 (4)
N1—Ru1—C19137.72 (15)C13—C12—H12119.5
N2—Ru1—C19145.23 (14)C11—C12—H12119.5
C17—Ru1—C1966.51 (17)N1—C5—C4121.0 (3)
C15—Ru1—C1965.71 (18)N1—C5—C6114.9 (3)
C16—Ru1—C1978.84 (17)C4—C5—C6124.1 (3)
N1—Ru1—C18104.47 (14)C2—C3—C4118.4 (3)
N2—Ru1—C18170.44 (14)C2—C3—H3120.8
C17—Ru1—C1837.83 (17)C4—C3—H3120.8
C15—Ru1—C1879.07 (16)C7—C8—C9119.7 (3)
C16—Ru1—C1868.10 (17)C7—C8—H8120.1
C19—Ru1—C1836.36 (16)C9—C8—H8120.1
N1—Ru1—C20168.06 (15)N1—C1—C2122.4 (3)
N2—Ru1—C20111.55 (14)N1—C1—H1118.8
C17—Ru1—C2078.70 (17)C2—C1—H1118.8
C15—Ru1—C2036.2 (2)C12—C13—C14120.5 (3)
C16—Ru1—C2066.6 (2)C12—C13—H13119.8
C19—Ru1—C2036.47 (17)C14—C13—H13119.8
C18—Ru1—C2066.14 (16)C11—C10—C9121.3 (3)
N1—Ru1—Cl186.86 (8)C11—C10—H10119.4
N2—Ru1—Cl188.14 (7)C9—C10—H10119.4
C17—Ru1—Cl1135.88 (15)N2—C6—C7123.0 (3)
C15—Ru1—Cl1134.61 (17)N2—C6—C5115.6 (3)
C16—Ru1—Cl1166.59 (13)C7—C6—C5121.4 (3)
C19—Ru1—Cl187.78 (13)F2—B1—F1111.3 (4)
C18—Ru1—Cl1101.40 (12)F2—B1—F4112.1 (4)
C20—Ru1—Cl1101.94 (15)F1—B1—F4112.4 (4)
C18—C19—C20122.0 (4)F2—B1—F3107.6 (4)
C18—C19—Ru171.9 (2)F1—B1—F3105.2 (4)
C20—C19—Ru172.3 (2)F4—B1—F3107.8 (4)
C18—C19—H19119.0C20—C15—C16121.5 (4)
C20—C19—H19119.0C20—C15—Ru173.4 (3)
Ru1—C19—H19129.4C16—C15—Ru171.6 (2)
C6—N2—C14118.2 (3)C20—C15—H15119.2
C6—N2—Ru1114.8 (2)C16—C15—H15119.2
C14—N2—Ru1126.8 (2)Ru1—C15—H15128.1
C5—N1—C1118.7 (3)C15—C16—C17117.9 (4)
C5—N1—Ru1117.1 (2)C15—C16—Ru170.8 (2)
C1—N1—Ru1124.0 (2)C17—C16—Ru170.6 (2)
N2—C14—C13120.8 (3)C15—C16—H16121.0
N2—C14—C9120.7 (3)C17—C16—H16121.0
C13—C14—C9118.4 (3)Ru1—C16—H16129.8
C19—C18—C17118.5 (4)C8—C7—C6119.5 (3)
C19—C18—Ru171.8 (2)C8—C7—H7120.2
C17—C18—Ru170.1 (2)C6—C7—H7120.2
C19—C18—H18120.8C3—C4—C5120.0 (4)
C17—C18—H18120.8C3—C4—H4120.0
Ru1—C18—H18129.7C5—C4—H4120.0
C8—C9—C14118.6 (3)C16—C17—C18120.2 (4)
C8—C9—C10122.4 (3)C16—C17—Ru171.5 (2)
C14—C9—C10119.0 (3)C18—C17—Ru172.1 (2)
C10—C11—C12119.6 (3)C16—C17—H17119.9
C10—C11—H11120.2C18—C17—H17119.9
C12—C11—H11120.2Ru1—C17—H17128.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···F4i0.932.483.375 (5)162
C16—H16···F10.932.243.148 (6)162
C19—H19···Cl1ii0.932.653.429 (4)142
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

We thank Dr Marrappan Velusamy at the Department of Chemistry, North Eastern Hill University, Shillong 793022, India, for collecting the crystal data.

Funding information

The Department of Biotechnology (DBT), New Delhi, provided funding for this research (grant No. BT/PR36476/NNT/28/1723/2020).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCasini, A. & Pöthig, A. (2024). ACS Cent. Sci. 10, 242–250.  CrossRef PubMed Google Scholar
First citationChan, H., Ghrayche, J. B., Wei, J. & Renfrew, A. K. (2017). Eur. J. Inorg. Chem. 2017, 1679–1686.  CrossRef Google Scholar
First citationChavarot, M., Ménage, S., Hamelin, O., Charnay, F., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem. 42, 4810–4816.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHamelin, O., Rimboud, M., Pécaut, J. & Fontecave, M. (2007). Inorg. Chem. 46, 5354–5360.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuisman, M., White, J. K., Lewalski, V. G., Podgorski, I., Turro, C. & Kodanko, J. J. (2016). Chem. Commun. 52, 12590–12593.  Web of Science CrossRef CAS Google Scholar
First citationKelani, M. T., Muller, A. & Lammertsma, K. (2023). IUCrData, 8, x230392.  Google Scholar
First citationKelani, M. T., Muller, A. & Lammertsma, K. (2024). IUCrData, 9, x240720.  Google Scholar
First citationKhamrang, T., Kartikeyan, R., Velusamy, M., Rajendiran, V., Dhivya, R., Perumalsamy, B., Akbarsha, M. A. & Palaniandavar, M. (2016). RSC Adv. 6, 114143–114158.  CrossRef Google Scholar
First citationNgo, A. H. & Do, L. H. (2020). Inorg. Chem. Front. 7, 583–591.  Web of Science CrossRef CAS Google Scholar
First citationPuckett, C. A. & Barton, J. K. (2007). J. Am. Chem. Soc. 129, 46–47.  CrossRef PubMed Google Scholar
First citationRajendiran, V., Palaniandavar, M., Periasamy, V. & Akbarsha, M. A. (2012). J. Inorg. Biochem. 116, 151–162.  CrossRef PubMed Google Scholar
First citationRyabov, A. D., Le Lagadec, R., Estevez, H., Toscano, R. A., Hernandez, S., Alexandrova, L., Kurova, V. S., Fischer, A., Sirlin, C. & Pfeffer, M. (2005). Inorg. Chem. 44, 1626–1634.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsolis, T., Ypsilantis, K., Kourtellaris, A. & Garoufis, A. (2018). Polyhedron, 149, 45–53.  CrossRef Google Scholar
First citationVatsa, A. & Kumar Padhi, S. (2021). Eur. J. Inorg. Chem. pp. 3499–3505.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZamisa, S. J., Gichumbi, J. M. & Friedrich, H. B. (2024). Z. Kristallogr. 239, 19–21.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146