organic compounds
Pyridin-1-ium carboxyformate–2-chloroacetic acid (1/1)
aDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, AZ 1148, Baku, Azerbaijan, bDepartment of Chemical Engineering, Baku Engineering University, Hasan Aliyev, str. 120, Baku, Absheron AZ0101, Azerbaijan, cWestern Caspian University, Istiqlaliyyat Street 31, AZ 1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade, St. 14. AZ 1022, Baku, Azerbaijan, eDepartment of Chemistry and Chemical Engineering, Khazar University, Baku, Mahsati st. 41, AZ1096, Baku, Azerbaijan, fDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy, and gDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et
The 5H6N+·C2HO4−·C2H3ClO2, comprises a pyridinium cation, a carboxyformate anion and a 2-chloroacetic acid molecule. In the crystal, the components are connected by hydrogen bonds within a one-dimensional chain in the a-axis direction which incorporates rather short, charge-assisted O—H⋯O hydrogen bonds; the pyridinium-NH group forms bifurcated N—H⋯(O,O) hydrogen bonds of different strength.
of the title salt CKeywords: crystal structure; co-crystal; salt; non-covalent interactions; hydrogen-bonding.
CCDC reference: 2412697
Structure description
Crystal engineering of co-crystals has inspired great interest from researchers in recent times due to their ability to improve functional properties of materials including pharmaceutical active ingredients (Braga et al., 2013). The selection of synthons or tectons is an important synthetic step to improve the performance of co-crystals, such as solubility, dissolution profile, pharmacokinetics and stability (Jlassi et al., 2014; Mahmoudi et al., 2017a,b). Designing weak intra- or intermolecular interactions and the procedures underlying synthesis constitute the operational part of the crystal engineering endeavour (Abdelhamid et al., 2011; Afkhami et al., 2017). The use of various types of non-covalent interactions in the design of multi-component co-crystals is based on a complete knowledge of these weak bonds, especially supramolecular synthons (Berry et al., 2017; Gurbanov et al., 2018, 2020; Kopylovich et al., 2012a,b).
The . The pyridinium cation, the carboxyformate anion and the chloroacetic acid molecule interact through hydrogen bonds as described below. The C—OH bond lengths for the chloroacetic- and oxalate-bound carboxylate groups, of 1.3215 (19) and 1.3073 (17) Å, respectively, are longer in comparison to the C=O bond lengths, which range from 1.2074 (19) Å (chloroacetic acid) to 1.2653 (17) Å. These observations clearly confirm the positions of the H atoms, which were located in difference-Fourier maps and refined. The C1—Cl1 bond length is 1.7755 (15) Å with this bond being in an eclipsed conformation as the Cl1—C1—C2—O1 torsion angle is −6.4 (2)°. This torsion angle results in a that is close to planar (Cs symmetry) and corresponds to the ground state of the molecule, as confirmed by quantum chemical calculations (Ananyev et al., 2014).
of the title compound is shown in Fig. 1In the crystal, the species are connected by hydrogen bonds within a linear one-dimensional chain extending along the a-axis direction (Fig. 2); a space-filling representation is displayed in Fig. 3. The O—H⋯O hydrogen bonds, Table 1, are rather short with O⋯O separations of 2.5834 (14) and 2.6209 (15) Å, while the pyridinium-NH group forms bifurcated N—H⋯(O,O) hydrogen bonds of different strength, with N⋯O distances of 2.7935 (16) and 2.9546 (17) Å. These ribbons interact through non-conventional C—H⋯O hydrogen bonds that consolidate the supramolecular network, Table 1. Within the chain, the pyridinium mean plane forms a dihedral angle of 25.92 (6)° with the adjacent carboxyformate anion, which in turn is twisted by 63.73 (4)° with respect to the mean plane through the chloroacetic acid molecule.
Chloroacetic acid is a strong carboxylic acid with pKa = 2.7 (Kartrum et al., 1961). A search of the Cambridge Structural Database (CSD: version 5.45, March 2024; Groom et al., 2016) retrieved 39 hits containing chloroacetic acid. Two polymorphs are known, i.e. the α- (Kanters & Roelofsen, 1976) and β-forms (Kanters et al., 1976). The α-form has two molecules in the and has been subjected to a variable temperature study, i.e. in the range from 90 to 210 K (Ananyev et al., 2014). This study shows the Cl—C—C=O torsion angles average 22.33 (5) and 1.30 (5)° in the two independent molecules over the temperature range (Ananyev et al., 2014). Štoček et al. (2022) analysed the position of the H atom in the O—H⋯N hydrogen bond of the structure of chloroacetic acid with pyridine-4-carboxamide at ten different temperatures. It is also worth noting the of quinolinium 2-carboxylate with 2-chloroacetic acid, a species known to exhibit anti-diabetic activity (Kavitha et al., 2021).
Synthesis and crystallization
A mixture of oxalic acid (0.1 mmol), 2-chloroacetic acid (0.1 mmol) and pyridine (0.1 mmol) in methanol (15 ml) was kept for crystallization. The title compound was obtained as a colourless crystals after 2–3 days, yield 87%.
Analysis calculated for C9H10ClNO6 (M = 263.63): C 41.00, H 3.82, N 5.31; Found: C 40.89, H 3.77, N 5.29%. 1H NMR (300 MHz, DMSO) δ 10.50 (1H, NH), 7.45–8.62 (5H, py) and 4.27 (2H, CH2); OH not observed. 13C NMR (75 MHz, DMSO) δ 41.59, 124.44, 137.53, 148.70, 161.49, 168.72 and 169.23. ESI–MS: m/z: 264.58 [M+H]+.
Refinement
Crystal data, data collection and structure . The H atoms of the carboxylate and pyridinium ions were refined freely.
details are summarized in Table 2
|
Structural data
CCDC reference: 2412697
https://doi.org/10.1107/S2414314624012422/tk4114sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624012422/tk4114Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624012422/tk4114Isup3.cml
C5H6N+·C2HO4−·C2H3ClO2 | F(000) = 544 |
Mr = 263.63 | Dx = 1.546 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6911 (4) Å | Cell parameters from 4685 reflections |
b = 7.9862 (4) Å | θ = 2.7–25.7° |
c = 24.9303 (14) Å | µ = 0.35 mm−1 |
β = 91.008 (3)° | T = 150 K |
V = 1132.91 (12) Å3 | Plate, colourless |
Z = 4 | 0.37 × 0.26 × 0.15 mm |
Bruker APEXII CCD diffractometer | 1963 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.030 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 25.7°, θmin = 2.7° |
Tmin = 0.872, Tmax = 0.939 | h = −4→6 |
7091 measured reflections | k = −9→9 |
2127 independent reflections | l = −30→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: mixed |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0367P)2 + 0.480P] where P = (Fo2 + 2Fc2)/3 |
2127 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.30381 (7) | 0.60040 (5) | 0.25074 (2) | 0.02973 (14) | |
O1 | 0.8928 (2) | 0.68016 (13) | 0.31709 (5) | 0.0274 (3) | |
O2 | 0.8175 (2) | 0.41486 (13) | 0.34182 (4) | 0.0219 (3) | |
H2o | 0.717 (4) | 0.457 (2) | 0.3605 (8) | 0.033* | |
O3 | 0.62947 (17) | 0.65703 (12) | 0.47108 (4) | 0.0177 (2) | |
O4 | 0.47024 (18) | 0.51382 (13) | 0.40178 (4) | 0.0202 (2) | |
O5 | 0.19134 (18) | 0.77629 (14) | 0.49141 (5) | 0.0259 (3) | |
O6 | 0.04269 (18) | 0.56931 (13) | 0.44029 (4) | 0.0193 (2) | |
H6o | −0.090 (4) | 0.608 (2) | 0.4516 (8) | 0.029* | |
N1 | 0.5976 (2) | 0.86111 (15) | 0.56167 (5) | 0.0196 (3) | |
H1n | 0.561 (3) | 0.807 (2) | 0.5329 (8) | 0.024* | |
C1 | 1.1476 (3) | 0.45380 (19) | 0.29004 (6) | 0.0211 (3) | |
H1a | 1.091788 | 0.361048 | 0.266754 | 0.025* | |
H1b | 1.255256 | 0.405946 | 0.317640 | 0.025* | |
C2 | 0.9388 (3) | 0.53258 (18) | 0.31738 (6) | 0.0183 (3) | |
C3 | 0.4606 (2) | 0.60253 (16) | 0.44239 (6) | 0.0146 (3) | |
C4 | 0.2140 (2) | 0.65877 (17) | 0.46095 (5) | 0.0152 (3) | |
C5 | 0.8036 (3) | 0.83223 (19) | 0.58675 (6) | 0.0222 (3) | |
H5 | 0.908910 | 0.750929 | 0.573162 | 0.027* | |
C6 | 0.8617 (3) | 0.92126 (19) | 0.63237 (6) | 0.0244 (3) | |
H6 | 1.007643 | 0.902500 | 0.650458 | 0.029* | |
C7 | 0.7051 (3) | 1.03825 (19) | 0.65155 (6) | 0.0245 (4) | |
H7 | 0.743544 | 1.100904 | 0.682892 | 0.029* | |
C8 | 0.4919 (3) | 1.06414 (18) | 0.62502 (6) | 0.0236 (3) | |
H8 | 0.382242 | 1.143181 | 0.638176 | 0.028* | |
C9 | 0.4420 (3) | 0.97347 (18) | 0.57938 (6) | 0.0221 (3) | |
H9 | 0.297675 | 0.990351 | 0.560428 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0322 (3) | 0.0305 (2) | 0.0269 (2) | −0.00243 (17) | 0.01274 (18) | −0.00068 (16) |
O1 | 0.0301 (6) | 0.0210 (6) | 0.0315 (6) | 0.0058 (5) | 0.0080 (5) | −0.0001 (5) |
O2 | 0.0218 (6) | 0.0212 (5) | 0.0230 (6) | 0.0007 (4) | 0.0081 (5) | −0.0047 (4) |
O3 | 0.0113 (5) | 0.0204 (5) | 0.0212 (5) | 0.0000 (4) | −0.0005 (4) | −0.0032 (4) |
O4 | 0.0167 (5) | 0.0245 (5) | 0.0197 (5) | −0.0009 (4) | 0.0043 (4) | −0.0068 (4) |
O5 | 0.0165 (6) | 0.0284 (6) | 0.0329 (6) | −0.0011 (5) | 0.0039 (5) | −0.0153 (5) |
O6 | 0.0100 (5) | 0.0251 (5) | 0.0229 (6) | −0.0001 (4) | 0.0002 (4) | −0.0077 (4) |
N1 | 0.0252 (7) | 0.0165 (6) | 0.0173 (6) | −0.0043 (5) | 0.0025 (5) | −0.0038 (5) |
C1 | 0.0218 (8) | 0.0212 (7) | 0.0203 (7) | 0.0014 (6) | 0.0034 (6) | −0.0013 (6) |
C2 | 0.0179 (7) | 0.0218 (7) | 0.0150 (7) | 0.0001 (6) | −0.0013 (6) | −0.0032 (6) |
C3 | 0.0138 (7) | 0.0139 (6) | 0.0160 (7) | −0.0003 (5) | 0.0015 (6) | 0.0025 (5) |
C4 | 0.0138 (7) | 0.0177 (7) | 0.0140 (7) | −0.0004 (5) | 0.0002 (5) | 0.0008 (5) |
C5 | 0.0220 (8) | 0.0182 (7) | 0.0265 (8) | 0.0016 (6) | 0.0055 (6) | −0.0003 (6) |
C6 | 0.0230 (8) | 0.0250 (8) | 0.0251 (8) | −0.0032 (6) | −0.0014 (7) | 0.0009 (6) |
C7 | 0.0336 (9) | 0.0203 (7) | 0.0198 (8) | −0.0076 (7) | 0.0045 (7) | −0.0035 (6) |
C8 | 0.0288 (9) | 0.0158 (7) | 0.0264 (8) | 0.0018 (6) | 0.0107 (7) | 0.0000 (6) |
C9 | 0.0200 (8) | 0.0194 (7) | 0.0271 (8) | −0.0009 (6) | 0.0011 (6) | 0.0035 (6) |
Cl1—C1 | 1.7755 (15) | C1—H1a | 0.9900 |
O1—C2 | 1.2074 (19) | C1—H1b | 0.9900 |
O2—C2 | 1.3215 (19) | C3—C4 | 1.551 (2) |
O2—H2o | 0.82 (2) | C5—C6 | 1.377 (2) |
O3—C3 | 1.2653 (17) | C5—H5 | 0.9500 |
O4—C3 | 1.2377 (17) | C6—C7 | 1.382 (2) |
O5—C4 | 1.2155 (18) | C6—H6 | 0.9500 |
O6—C4 | 1.3073 (17) | C7—C8 | 1.388 (2) |
O6—H6o | 0.86 (2) | C7—H7 | 0.9500 |
N1—C5 | 1.339 (2) | C8—C9 | 1.374 (2) |
N1—C9 | 1.341 (2) | C8—H8 | 0.9500 |
N1—H1n | 0.861 (19) | C9—H9 | 0.9500 |
C1—C2 | 1.517 (2) | ||
C2—O2—H2o | 110.2 (14) | O5—C4—C3 | 121.09 (13) |
C4—O6—H6o | 109.1 (13) | O6—C4—C3 | 113.36 (12) |
C5—N1—C9 | 122.63 (14) | N1—C5—C6 | 119.49 (14) |
C5—N1—H1n | 120.0 (12) | N1—C5—H5 | 120.3 |
C9—N1—H1n | 117.3 (12) | C6—C5—H5 | 120.3 |
C2—C1—Cl1 | 112.23 (10) | C5—C6—C7 | 119.22 (15) |
C2—C1—H1a | 109.2 | C5—C6—H6 | 120.4 |
Cl1—C1—H1a | 109.2 | C7—C6—H6 | 120.4 |
C2—C1—H1b | 109.2 | C6—C7—C8 | 119.97 (14) |
Cl1—C1—H1b | 109.2 | C6—C7—H7 | 120.0 |
H1a—C1—H1b | 107.9 | C8—C7—H7 | 120.0 |
O1—C2—O2 | 125.61 (14) | C9—C8—C7 | 118.84 (14) |
O1—C2—C1 | 125.02 (14) | C9—C8—H8 | 120.6 |
O2—C2—C1 | 109.37 (12) | C7—C8—H8 | 120.6 |
O4—C3—O3 | 127.95 (13) | N1—C9—C8 | 119.83 (15) |
O4—C3—C4 | 117.59 (12) | N1—C9—H9 | 120.1 |
O3—C3—C4 | 114.44 (12) | C8—C9—H9 | 120.1 |
O5—C4—O6 | 125.55 (13) | ||
Cl1—C1—C2—O1 | −6.4 (2) | C9—N1—C5—C6 | −0.5 (2) |
Cl1—C1—C2—O2 | 174.23 (10) | N1—C5—C6—C7 | 0.4 (2) |
O4—C3—C4—O5 | −161.69 (14) | C5—C6—C7—C8 | 0.3 (2) |
O3—C3—C4—O5 | 17.27 (19) | C6—C7—C8—C9 | −0.9 (2) |
O4—C3—C4—O6 | 17.70 (18) | C5—N1—C9—C8 | 0.0 (2) |
O3—C3—C4—O6 | −163.35 (12) | C7—C8—C9—N1 | 0.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2o···O4 | 0.82 (2) | 1.81 (2) | 2.6209 (15) | 170 (2) |
O6—H6o···O3i | 0.86 (2) | 1.72 (2) | 2.5834 (14) | 171.8 (19) |
N1—H1n···O3 | 0.861 (19) | 1.995 (19) | 2.7935 (16) | 153.8 (17) |
N1—H1n···O5 | 0.861 (19) | 2.339 (18) | 2.9546 (17) | 128.7 (15) |
C1—H1a···O1ii | 0.99 | 2.54 | 3.4555 (19) | 153 |
C1—H1b···O4iii | 0.99 | 2.56 | 3.3439 (19) | 136 |
C5—H5···O6iv | 0.95 | 2.59 | 3.3946 (18) | 142 |
C8—H8···O1v | 0.95 | 2.40 | 3.3400 (19) | 172 |
C9—H9···O5 | 0.95 | 2.49 | 3.0356 (19) | 116 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, y−1/2, −z+1/2; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1. |
Acknowledgements
This work was supported by Baku State University (Azerbaijan), Western Caspian University (Azerbaijan), Azerbaijan Medical University, Baku Engineering University (Azerbaijan) and Khazar University (Azerbaijan).
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science PubMed Google Scholar
Ananyev, I. V., Nelyubina, Yu. V. & Lyssenko, K. A. (2014). Russ. Chem. Bull. 63, 2224–2234. CrossRef CAS Google Scholar
Berry, D. J. & Steed, J. W. (2017). Adv. Drug Deliv. Rev. 117, 3–24. Web of Science CrossRef CAS PubMed Google Scholar
Braga, D., Maini, L. & Grepioni, F. (2013). Chem. Soc. Rev. 42, 7638–7648. Web of Science CrossRef CAS PubMed Google Scholar
Brandenburg, K. (1999). DIAMOND.Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2012). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550. Web of Science CSD CrossRef Google Scholar
Kanters, J. A. & Roelofsen, G. (1976). Acta Cryst. B32, 3328–3331. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Kanters, J. A., Roelofsen, G. & Feenstra, T. (1976). Acta Cryst. B32, 3331–3333. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Kartrum, G., Vogel, W. & Andrussov, K. (1961). Constants of Organic Acids in Aqueous Solution. London: Butterworth. Google Scholar
Kavitha, R., Nirmala, S., Sampath, V., Shanmugavalli, V. & Latha, B. (2021). J. Mol. Struct. 1240, 130572. CrossRef Google Scholar
Kopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem. 36, 1646–1654. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem. 115, 72–77. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Štoček, J. R., Socha, O., Císařová, I., Slanina, T. & Dračínský, M. (2022). J. Am. Chem. Soc. 144, 7111–7116. PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.