organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Pyridin-1-ium carb­­oxy­formate–2-chloro­acetic acid (1/1)

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, AZ 1148, Baku, Azerbaijan, bDepartment of Chemical Engineering, Baku Engineering University, Hasan Aliyev, str. 120, Baku, Absheron AZ0101, Azerbaijan, cWestern Caspian University, Istiqlaliyyat Street 31, AZ 1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade, St. 14. AZ 1022, Baku, Azerbaijan, eDepartment of Chemistry and Chemical Engineering, Khazar University, Baku, Mahsati st. 41, AZ1096, Baku, Azerbaijan, fDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy, and gDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et

(Received 26 November 2024; accepted 24 December 2024; online 3 January 2025)

The asymmetric unit of the title salt co-crystal, C5H6N+·C2HO4·C2H3ClO2, comprises a pyridinium cation, a carb­oxy­formate anion and a 2-chloro­acetic acid mol­ecule. In the crystal, the components are connected by hydrogen bonds within a one-dimensional chain in the a-axis direction which incorporates rather short, charge-assisted O—H⋯O hydrogen bonds; the pyridinium-NH group forms bifurcated N—H⋯(O,O) hydrogen bonds of different strength.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Crystal engineering of co-crystals has inspired great inter­est from researchers in recent times due to their ability to improve functional properties of materials including pharmaceutical active ingredients (Braga et al., 2013[Braga, D., Maini, L. & Grepioni, F. (2013). Chem. Soc. Rev. 42, 7638-7648.]). The selection of synthons or tectons is an important synthetic step to improve the performance of co-crystals, such as solubility, catalytic activity, dissolution profile, pharmacokinetics and stability (Jlassi et al., 2014[Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541-4550.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]). Designing weak intra- or inter­molecular inter­actions and the procedures underlying synthesis constitute the operational part of the crystal engineering endeavour (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Afkhami et al., 2017[Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]). The use of various types of non-covalent inter­actions in the design of multi-component co-crystals is based on a complete knowledge of these weak bonds, especially supra­molecular synthons (Berry et al., 2017[Berry, D. J. & Steed, J. W. (2017). Adv. Drug Deliv. Rev. 117, 3-24.]; Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.], 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833-14837.]; Kopylovich et al., 2012a[Kopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem. 36, 1646-1654.],b[Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem. 115, 72-77.]).

The asymmetric unit of the title compound is shown in Fig. 1[link]. The pyridinium cation, the carb­oxy­formate anion and the chloro­acetic acid mol­ecule inter­act through hydrogen bonds as described below. The C—OH bond lengths for the chloro­acetic- and oxalate-bound carboxyl­ate groups, of 1.3215 (19) and 1.3073 (17) Å, respectively, are longer in comparison to the C=O bond lengths, which range from 1.2074 (19) Å (chloro­acetic acid) to 1.2653 (17) Å. These observations clearly confirm the positions of the H atoms, which were located in difference-Fourier maps and refined. The C1—Cl1 bond length is 1.7755 (15) Å with this bond being in an eclipsed conformation as the Cl1—C1—C2—O1 torsion angle is −6.4 (2)°. This torsion angle results in a molecular conformation that is close to planar (Cs symmetry) and corresponds to the ground state of the mol­ecule, as confirmed by quantum chemical calculations (Ananyev et al., 2014[Ananyev, I. V., Nelyubina, Yu. V. & Lyssenko, K. A. (2014). Russ. Chem. Bull. 63, 2224-2234.]).

[Figure 1]
Figure 1
Mol­ecular structures of the components of the asymmetric unit, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

In the crystal, the species are connected by hydrogen bonds within a linear one-dimensional chain extending along the a-axis direction (Fig. 2[link]); a space-filling representation is displayed in Fig. 3[link]. The O—H⋯O hydrogen bonds, Table 1[link], are rather short with O⋯O separations of 2.5834 (14) and 2.6209 (15) Å, while the pyridinium-NH group forms bifurcated N—H⋯(O,O) hydrogen bonds of different strength, with N⋯O distances of 2.7935 (16) and 2.9546 (17) Å. These ribbons inter­act through non-conventional C—H⋯O hydrogen bonds that consolidate the supra­molecular network, Table 1[link]. Within the chain, the pyridinium mean plane forms a dihedral angle of 25.92 (6)° with the adjacent carb­oxy­formate anion, which in turn is twisted by 63.73 (4)° with respect to the mean plane through the chloro­acetic acid mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O4 0.82 (2) 1.81 (2) 2.6209 (15) 170 (2)
O6—H6o⋯O3i 0.86 (2) 1.72 (2) 2.5834 (14) 171.8 (19)
N1—H1n⋯O3 0.861 (19) 1.995 (19) 2.7935 (16) 153.8 (17)
N1—H1n⋯O5 0.861 (19) 2.339 (18) 2.9546 (17) 128.7 (15)
C1—H1a⋯O1ii 0.99 2.54 3.4555 (19) 153
C1—H1b⋯O4iii 0.99 2.56 3.3439 (19) 136
C5—H5⋯O6iv 0.95 2.59 3.3946 (18) 142
C8—H8⋯O1v 0.95 2.40 3.3400 (19) 172
C9—H9⋯O5 0.95 2.49 3.0356 (19) 116
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, y, z]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+1, -y+2, -z+1].
[Figure 2]
Figure 2
A view of the one-dimensional chain along the a-axis direction and featuring hydrogen bonds shown as blue dashed lines.
[Figure 3]
Figure 3
Space-filling representation of the one-dimensional chain.

Chloro­acetic acid is a strong carb­oxy­lic acid with pKa = 2.7 (Kartrum et al., 1961[Kartrum, G., Vogel, W. & Andrussov, K. (1961). Constants of Organic Acids in Aqueous Solution. London: Butterworth.]). A search of the Cambridge Structural Database (CSD: version 5.45, March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) retrieved 39 hits containing chloro­acetic acid. Two polymorphs are known, i.e. the α- (Kanters & Roelofsen, 1976[Kanters, J. A. & Roelofsen, G. (1976). Acta Cryst. B32, 3328-3331.]) and β-forms (Kanters et al., 1976[Kanters, J. A., Roelofsen, G. & Feenstra, T. (1976). Acta Cryst. B32, 3331-3333.]). The α-form has two mol­ecules in the asymmetric unit and has been subjected to a variable temperature study, i.e. in the range from 90 to 210 K (Ananyev et al., 2014[Ananyev, I. V., Nelyubina, Yu. V. & Lyssenko, K. A. (2014). Russ. Chem. Bull. 63, 2224-2234.]). This study shows the Cl—C—C=O torsion angles average 22.33 (5) and 1.30 (5)° in the two independent mol­ecules over the temperature range (Ananyev et al., 2014[Ananyev, I. V., Nelyubina, Yu. V. & Lyssenko, K. A. (2014). Russ. Chem. Bull. 63, 2224-2234.]). Štoček et al. (2022[Štoček, J. R., Socha, O., Císařová, I., Slanina, T. & Dračínský, M. (2022). J. Am. Chem. Soc. 144, 7111-7116.]) analysed the position of the H atom in the O—H⋯N hydrogen bond of the structure of chloro­acetic acid with pyridine-4-carboxamide at ten different temperatures. It is also worth noting the crystal structure of quinolinium 2-carboxyl­ate with 2-chloro­acetic acid, a species known to exhibit anti-diabetic activity (Kavitha et al., 2021[Kavitha, R., Nirmala, S., Sampath, V., Shanmugavalli, V. & Latha, B. (2021). J. Mol. Struct. 1240, 130572.]).

Synthesis and crystallization

A mixture of oxalic acid (0.1 mmol), 2-chloro­acetic acid (0.1 mmol) and pyridine (0.1 mmol) in methanol (15 ml) was kept for crystallization. The title compound was obtained as a colourless crystals after 2–3 days, yield 87%.

Analysis calculated for C9H10ClNO6 (M = 263.63): C 41.00, H 3.82, N 5.31; Found: C 40.89, H 3.77, N 5.29%. 1H NMR (300 MHz, DMSO) δ 10.50 (1H, NH), 7.45–8.62 (5H, py) and 4.27 (2H, CH2); OH not observed. 13C NMR (75 MHz, DMSO) δ 41.59, 124.44, 137.53, 148.70, 161.49, 168.72 and 169.23. ESI–MS: m/z: 264.58 [M+H]+.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms of the carboxyl­ate and pyridinium ions were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C5H6N+·C2HO4·C2H3ClO2
Mr 263.63
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 5.6911 (4), 7.9862 (4), 24.9303 (14)
β (°) 91.008 (3)
V3) 1132.91 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.37 × 0.26 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.872, 0.939
No. of measured, independent and observed [I > 2σ(I)] reflections 7091, 2127, 1963
Rint 0.030
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.10
No. of reflections 2127
No. of parameters 163
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.32
Computer programs: APEX4 and SAINT (Bruker, 2012[Bruker (2012). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND.Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Pyridin-1-ium carboxyformate–2-chloroacetic acid (1/1) top
Crystal data top
C5H6N+·C2HO4·C2H3ClO2F(000) = 544
Mr = 263.63Dx = 1.546 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.6911 (4) ÅCell parameters from 4685 reflections
b = 7.9862 (4) Åθ = 2.7–25.7°
c = 24.9303 (14) ŵ = 0.35 mm1
β = 91.008 (3)°T = 150 K
V = 1132.91 (12) Å3Plate, colourless
Z = 40.37 × 0.26 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1963 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.7°, θmin = 2.7°
Tmin = 0.872, Tmax = 0.939h = 46
7091 measured reflectionsk = 99
2127 independent reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.480P]
where P = (Fo2 + 2Fc2)/3
2127 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.30381 (7)0.60040 (5)0.25074 (2)0.02973 (14)
O10.8928 (2)0.68016 (13)0.31709 (5)0.0274 (3)
O20.8175 (2)0.41486 (13)0.34182 (4)0.0219 (3)
H2o0.717 (4)0.457 (2)0.3605 (8)0.033*
O30.62947 (17)0.65703 (12)0.47108 (4)0.0177 (2)
O40.47024 (18)0.51382 (13)0.40178 (4)0.0202 (2)
O50.19134 (18)0.77629 (14)0.49141 (5)0.0259 (3)
O60.04269 (18)0.56931 (13)0.44029 (4)0.0193 (2)
H6o0.090 (4)0.608 (2)0.4516 (8)0.029*
N10.5976 (2)0.86111 (15)0.56167 (5)0.0196 (3)
H1n0.561 (3)0.807 (2)0.5329 (8)0.024*
C11.1476 (3)0.45380 (19)0.29004 (6)0.0211 (3)
H1a1.0917880.3610480.2667540.025*
H1b1.2552560.4059460.3176400.025*
C20.9388 (3)0.53258 (18)0.31738 (6)0.0183 (3)
C30.4606 (2)0.60253 (16)0.44239 (6)0.0146 (3)
C40.2140 (2)0.65877 (17)0.46095 (5)0.0152 (3)
C50.8036 (3)0.83223 (19)0.58675 (6)0.0222 (3)
H50.9089100.7509290.5731620.027*
C60.8617 (3)0.92126 (19)0.63237 (6)0.0244 (3)
H61.0076430.9025000.6504580.029*
C70.7051 (3)1.03825 (19)0.65155 (6)0.0245 (4)
H70.7435441.1009040.6828920.029*
C80.4919 (3)1.06414 (18)0.62502 (6)0.0236 (3)
H80.3822421.1431810.6381760.028*
C90.4420 (3)0.97347 (18)0.57938 (6)0.0221 (3)
H90.2976750.9903510.5604280.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0322 (3)0.0305 (2)0.0269 (2)0.00243 (17)0.01274 (18)0.00068 (16)
O10.0301 (6)0.0210 (6)0.0315 (6)0.0058 (5)0.0080 (5)0.0001 (5)
O20.0218 (6)0.0212 (5)0.0230 (6)0.0007 (4)0.0081 (5)0.0047 (4)
O30.0113 (5)0.0204 (5)0.0212 (5)0.0000 (4)0.0005 (4)0.0032 (4)
O40.0167 (5)0.0245 (5)0.0197 (5)0.0009 (4)0.0043 (4)0.0068 (4)
O50.0165 (6)0.0284 (6)0.0329 (6)0.0011 (5)0.0039 (5)0.0153 (5)
O60.0100 (5)0.0251 (5)0.0229 (6)0.0001 (4)0.0002 (4)0.0077 (4)
N10.0252 (7)0.0165 (6)0.0173 (6)0.0043 (5)0.0025 (5)0.0038 (5)
C10.0218 (8)0.0212 (7)0.0203 (7)0.0014 (6)0.0034 (6)0.0013 (6)
C20.0179 (7)0.0218 (7)0.0150 (7)0.0001 (6)0.0013 (6)0.0032 (6)
C30.0138 (7)0.0139 (6)0.0160 (7)0.0003 (5)0.0015 (6)0.0025 (5)
C40.0138 (7)0.0177 (7)0.0140 (7)0.0004 (5)0.0002 (5)0.0008 (5)
C50.0220 (8)0.0182 (7)0.0265 (8)0.0016 (6)0.0055 (6)0.0003 (6)
C60.0230 (8)0.0250 (8)0.0251 (8)0.0032 (6)0.0014 (7)0.0009 (6)
C70.0336 (9)0.0203 (7)0.0198 (8)0.0076 (7)0.0045 (7)0.0035 (6)
C80.0288 (9)0.0158 (7)0.0264 (8)0.0018 (6)0.0107 (7)0.0000 (6)
C90.0200 (8)0.0194 (7)0.0271 (8)0.0009 (6)0.0011 (6)0.0035 (6)
Geometric parameters (Å, º) top
Cl1—C11.7755 (15)C1—H1a0.9900
O1—C21.2074 (19)C1—H1b0.9900
O2—C21.3215 (19)C3—C41.551 (2)
O2—H2o0.82 (2)C5—C61.377 (2)
O3—C31.2653 (17)C5—H50.9500
O4—C31.2377 (17)C6—C71.382 (2)
O5—C41.2155 (18)C6—H60.9500
O6—C41.3073 (17)C7—C81.388 (2)
O6—H6o0.86 (2)C7—H70.9500
N1—C51.339 (2)C8—C91.374 (2)
N1—C91.341 (2)C8—H80.9500
N1—H1n0.861 (19)C9—H90.9500
C1—C21.517 (2)
C2—O2—H2o110.2 (14)O5—C4—C3121.09 (13)
C4—O6—H6o109.1 (13)O6—C4—C3113.36 (12)
C5—N1—C9122.63 (14)N1—C5—C6119.49 (14)
C5—N1—H1n120.0 (12)N1—C5—H5120.3
C9—N1—H1n117.3 (12)C6—C5—H5120.3
C2—C1—Cl1112.23 (10)C5—C6—C7119.22 (15)
C2—C1—H1a109.2C5—C6—H6120.4
Cl1—C1—H1a109.2C7—C6—H6120.4
C2—C1—H1b109.2C6—C7—C8119.97 (14)
Cl1—C1—H1b109.2C6—C7—H7120.0
H1a—C1—H1b107.9C8—C7—H7120.0
O1—C2—O2125.61 (14)C9—C8—C7118.84 (14)
O1—C2—C1125.02 (14)C9—C8—H8120.6
O2—C2—C1109.37 (12)C7—C8—H8120.6
O4—C3—O3127.95 (13)N1—C9—C8119.83 (15)
O4—C3—C4117.59 (12)N1—C9—H9120.1
O3—C3—C4114.44 (12)C8—C9—H9120.1
O5—C4—O6125.55 (13)
Cl1—C1—C2—O16.4 (2)C9—N1—C5—C60.5 (2)
Cl1—C1—C2—O2174.23 (10)N1—C5—C6—C70.4 (2)
O4—C3—C4—O5161.69 (14)C5—C6—C7—C80.3 (2)
O3—C3—C4—O517.27 (19)C6—C7—C8—C90.9 (2)
O4—C3—C4—O617.70 (18)C5—N1—C9—C80.0 (2)
O3—C3—C4—O6163.35 (12)C7—C8—C9—N10.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O40.82 (2)1.81 (2)2.6209 (15)170 (2)
O6—H6o···O3i0.86 (2)1.72 (2)2.5834 (14)171.8 (19)
N1—H1n···O30.861 (19)1.995 (19)2.7935 (16)153.8 (17)
N1—H1n···O50.861 (19)2.339 (18)2.9546 (17)128.7 (15)
C1—H1a···O1ii0.992.543.4555 (19)153
C1—H1b···O4iii0.992.563.3439 (19)136
C5—H5···O6iv0.952.593.3946 (18)142
C8—H8···O1v0.952.403.3400 (19)172
C9—H9···O50.952.493.0356 (19)116
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by Baku State University (Azerbaijan), Western Caspian University (Azerbaijan), Azerbaijan Medical University, Baku Engineering University (Azerbaijan) and Khazar University (Azerbaijan).

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAfkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science PubMed Google Scholar
First citationAnanyev, I. V., Nelyubina, Yu. V. & Lyssenko, K. A. (2014). Russ. Chem. Bull. 63, 2224–2234.  CrossRef CAS Google Scholar
First citationBerry, D. J. & Steed, J. W. (2017). Adv. Drug Deliv. Rev. 117, 3–24.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBraga, D., Maini, L. & Grepioni, F. (2013). Chem. Soc. Rev. 42, 7638–7648.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND.Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550.  Web of Science CSD CrossRef Google Scholar
First citationKanters, J. A. & Roelofsen, G. (1976). Acta Cryst. B32, 3328–3331.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKanters, J. A., Roelofsen, G. & Feenstra, T. (1976). Acta Cryst. B32, 3331–3333.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKartrum, G., Vogel, W. & Andrussov, K. (1961). Constants of Organic Acids in Aqueous Solution. London: Butterworth.  Google Scholar
First citationKavitha, R., Nirmala, S., Sampath, V., Shanmugavalli, V. & Latha, B. (2021). J. Mol. Struct. 1240, 130572.  CrossRef Google Scholar
First citationKopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem. 36, 1646–1654.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem. 115, 72–77.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŠtoček, J. R., Socha, O., Císařová, I., Slanina, T. & Dračínský, M. (2022). J. Am. Chem. Soc. 144, 7111–7116.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146