

ISSN 2414-3146

Received 26 November 2024 Accepted 24 December 2024

Keywords: crystal structure; co-crystal; salt; non-covalent interactions; hydrogen-bonding.

CCDC reference: 2412697

Structural data: full structural data are available from iucrdata.iucr.org

Pyridin-1-ium carboxyformate-2-chloroacetic acid (1/1)

Nurlana D. Sadikhova,^a Farida M. Muradova,^a Narmina A. Guliyeva,^b Khudayar I. Hasanov,^{c,d} Tahir A. Javadzade,^e Ennio Zangrando^f and Alebel N. Belay^g*

^aDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, AZ 1148, Baku, Azerbaijan, ^bDepartment of Chemical Engineering, Baku Engineering University, Hasan Aliyev, str. 120, Baku, Absheron AZ0101, Azerbaijan, ^cWestern Caspian University, Istiqlaliyyat Street 31, AZ 1001, Baku, Azerbaijan, ^dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade, St. 14. AZ 1022, Baku, Azerbaijan, ^eDepartment of Chemistry and Chemical Engineering, Khazar University, Baku, Mahsati st. 41, AZ1096, Baku, Azerbaijan, ^fDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy, and ^gDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia. *Correspondence e-mail: alebel.nibret@bdu.edu.et

The asymmetric unit of the title salt co-crystal, $C_5H_6N^+$, $C_2HO_4^-$, $C_2H_3ClO_2$, comprises a pyridinium cation, a carboxyformate anion and a 2-chloroacetic acid molecule. In the crystal, the components are connected by hydrogen bonds within a one-dimensional chain in the *a*-axis direction which incorporates rather short, charge-assisted O-H···O hydrogen bonds; the pyridinium-NH group forms bifurcated N-H···(O,O) hydrogen bonds of different strength.

Structure description

Crystal engineering of co-crystals has inspired great interest from researchers in recent times due to their ability to improve functional properties of materials including pharmaceutical active ingredients (Braga *et al.*, 2013). The selection of synthons or tectons is an important synthetic step to improve the performance of co-crystals, such as solubility, catalytic activity, dissolution profile, pharmacokinetics and stability (Jlassi *et al.*, 2014; Mahmoudi *et al.*, 2017*a,b*). Designing weak intra- or intermolecular interactions and the procedures underlying synthesis constitute the operational part of the crystal engineering endeavour (Abdelhamid *et al.*, 2011; Afkhami *et al.*, 2017). The use of various types of non-covalent interactions in the design of multi-component co-crystals is based on a complete knowledge of these weak bonds, especially supramolecular synthons (Berry *et al.*, 2017; Gurbanov *et al.*, 2018, 2020; Kopylovich *et al.*, 2012*a,b*).

The asymmetric unit of the title compound is shown in Fig. 1. The pyridinium cation, the carboxyformate anion and the chloroacetic acid molecule interact through hydrogen bonds as described below. The C-OH bond lengths for the chloroacetic- and oxalate-

Figure 1

Molecular structures of the components of the asymmetric unit, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

bound carboxylate groups, of 1.3215 (19) and 1.3073 (17) Å, respectively, are longer in comparison to the C=O bond lengths, which range from 1.2074 (19) Å (chloroacetic acid) to 1.2653 (17) Å. These observations clearly confirm the positions of the H atoms, which were located in difference-Fourier maps and refined. The C1–Cl1 bond length is 1.7755 (15) Å with this bond being in an eclipsed conformation as the Cl1–C1–C2–O1 torsion angle is -6.4 (2)°. This torsion angle results in a molecular conformation that is close to planar (C_s symmetry) and corresponds to the ground state of the molecule, as confirmed by quantum chemical calculations (Ananyev *et al.*, 2014).

In the crystal, the species are connected by hydrogen bonds within a linear one-dimensional chain extending along the *a*axis direction (Fig. 2); a space-filling representation is displayed in Fig. 3. The O-H···O hydrogen bonds, Table 1, are rather short with O···O separations of 2.5834 (14) and 2.6209 (15) Å, while the pyridinium-NH group forms bifurcated N-H···(O,O) hydrogen bonds of different strength, with N···O distances of 2.7935 (16) and 2.9546 (17) Å. These ribbons interact through non-conventional C-H···O hydrogen bonds that consolidate the supramolecular network, Table 1. Within the chain, the pyridinium mean plane forms a

Figure 2

A view of the one-dimensional chain along the *a*-axis direction and featuring hydrogen bonds shown as blue dashed lines.

Table 1	
Hydrogen-bond	geometry (Å, °).

, , ,		/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2 <i>o</i> ···O4	0.82 (2)	1.81 (2)	2.6209 (15)	170 (2)
O6−H6o···O3 ⁱ	0.86 (2)	1.72 (2)	2.5834 (14)	171.8 (19)
$N1 - H1n \cdot \cdot \cdot O3$	0.861 (19)	1.995 (19)	2.7935 (16)	153.8 (17)
$N1 - H1n \cdots O5$	0.861 (19)	2.339 (18)	2.9546 (17)	128.7 (15)
$C1-H1a\cdots O1^{ii}$	0.99	2.54	3.4555 (19)	153
$C1-H1b\cdots O4^{iii}$	0.99	2.56	3.3439 (19)	136
$C5-H5\cdots O6^{iv}$	0.95	2.59	3.3946 (18)	142
$C8-H8\cdots O1^{v}$	0.95	2.40	3.3400 (19)	172
С9−Н9…О5	0.95	2.49	3.0356 (19)	116

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x + 1, y, z; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y + 2, -z + 1.

dihedral angle of 25.92 (6)° with the adjacent carboxyformate anion, which in turn is twisted by 63.73 (4)° with respect to the mean plane through the chloroacetic acid molecule.

Chloroacetic acid is a strong carboxylic acid with $pK_a = 2.7$ (Kartrum et al., 1961). A search of the Cambridge Structural Database (CSD: version 5.45, March 2024; Groom et al., 2016) retrieved 39 hits containing chloroacetic acid. Two polymorphs are known, *i.e.* the α - (Kanters & Roelofsen, 1976) and β -forms (Kanters *et al.*, 1976). The α -form has two molecules in the asymmetric unit and has been subjected to a variable temperature study, *i.e.* in the range from 90 to 210 K (Ananyev et al., 2014). This study shows the Cl-C-C=O torsion angles average 22.33 (5) and 1.30 (5)° in the two independent molecules over the temperature range (Ananyev et al., 2014). Štoček et al. (2022) analysed the position of the H atom in the $O-H \cdots N$ hydrogen bond of the structure of chloroacetic acid with pyridine-4-carboxamide at ten different temperatures. It is also worth noting the crystal structure of quinolinium 2-carboxylate with 2-chloroacetic acid, a species known to exhibit anti-diabetic activity (Kavitha et al., 2021).

Synthesis and crystallization

A mixture of oxalic acid (0.1 mmol), 2-chloroacetic acid (0.1 mmol) and pyridine (0.1 mmol) in methanol (15 ml) was kept for crystallization. The title compound was obtained as a colourless crystals after 2–3 days, yield 87%.

Analysis calculated for C₉H₁₀ClNO₆ (M = 263.63): C 41.00, H 3.82, N 5.31; Found: C 40.89, H 3.77, N 5.29%. ¹H NMR

Figure 3 Space-filling representation of the one-dimensional chain.

(300 MHz, DMSO) δ 10.50 (1*H*, NH), 7.45–8.62 (5*H*, py) and 4.27 (2*H*, CH₂); OH not observed. ¹³C NMR (75 MHz, DMSO) δ 41.59, 124.44, 137.53, 148.70, 161.49, 168.72 and 169.23. ESI–MS: m/z: 264.58 [*M*+H]⁺.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms of the carboxylate and pyridinium ions were refined freely.

Acknowledgements

This work was supported by Baku State University (Azerbaijan), Western Caspian University (Azerbaijan), Azerbaijan Medical University, Baku Engineering University (Azerbaijan) and Khazar University (Azerbaijan).

References

- Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). *Acta Cryst.* E67, 0744.
- Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). *Dalton Trans.* 46, 14888–14896.
- Ananyev, I. V., Nelyubina, Yu. V. & Lyssenko, K. A. (2014). Russ. Chem. Bull. 63, 2224–2234.
- Berry, D. J. & Steed, J. W. (2017). Adv. Drug Deliv. Rev. 117, 3-24.
- Braga, D., Maini, L. & Grepioni, F. (2013). Chem. Soc. Rev. 42, 7638–7648.
- Brandenburg, K. (1999). *DIAMOND*.Crystal Impact GbR, Bonn, Germany.
- Bruker (2012). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). *Chem. A Eur. J.* 26, 14833–14837.
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.
- Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). *Eur. J. Inorg. Chem.* pp. 4541–4550.
- Kanters, J. A. & Roelofsen, G. (1976). Acta Cryst. B32, 3328-3331.
- Kanters, J. A., Roelofsen, G. & Feenstra, T. (1976). Acta Cryst. B32, 3331–3333.
- Kartrum, G., Vogel, W. & Andrussov, K. (1961). Constants of Organic Acids in Aqueous Solution. London: Butterworth.
- Kavitha, R., Nirmala, S., Sampath, V., Shanmugavalli, V. & Latha, B. (2021). J. Mol. Struct. 1240, 130572.

Table 2

Experimental details.

Crystal data	
Chemical formula	$C_5H_6N^+ \cdot C_2HO_4^- \cdot C_2H_3ClO_2$
M _r	263.63
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	5.6911 (4), 7.9862 (4), 24.9303 (14)
β (°)	91.008 (3)
$V(\dot{A}^3)$	1132.91 (12)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.35
Crystal size (mm)	$0.37 \times 0.26 \times 0.15$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
Tmin. Tmax	0.872, 0.939
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7091, 2127, 1963
R _{int}	0.030
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.611
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.082, 1.10
No. of reflections	2127
No. of parameters	163
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.19, -0.32

Computer programs: *APEX4* and *SAINT* (Bruker, 2012), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*) and *DIAMOND* Brandenburg, 1999).

- Kopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem. 36, 1646– 1654.
- Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem. 115, 72–77.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). *Inorg. Chim. Acta*, 461, 192–205.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Štoček, J. R., Socha, O., Císařová, I., Slanina, T. & Dračínský, M. (2022). J. Am. Chem. Soc. 144, 7111–7116.

full crystallographic data

IUCrData (2025). **10**, x241242 [https://doi.org/10.1107/S2414314624012422]

Pyridin-1-ium carboxyformate-2-chloroacetic acid (1/1)

Nurlana D. Sadikhova, Farida M. Muradova, Narmina A. Guliyeva, Khudayar I. Hasanov, Tahir A. Javadzade, Ennio Zangrando and Alebel N. Belay

> F(000) = 544 $D_x = 1.546 \text{ Mg m}^{-3}$

 $\theta = 2.7 - 25.7^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.37 \times 0.26 \times 0.15 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 4685 reflections

Pyridin-1-ium carboxyformate-2-chloroacetic acid (1/1)

Crystal data
$C_5H_6N^+ \cdot C_2HO_4^- \cdot C_2H_3ClO_2$
$M_r = 263.63$
Monoclinic, $P2_1/c$
a = 5.6911 (4) Å
b = 7.9862 (4) Å
<i>c</i> = 24.9303 (14) Å
$\beta = 91.008 \ (3)^{\circ}$
$V = 1132.91 (12) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII CCD	2127 independent reflections
diffractometer	1963 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.030$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.7^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
(SADABS; Krause et al., 2015)	$h = -4 \rightarrow 6$
$T_{\min} = 0.872, \ T_{\max} = 0.939$	$k = -9 \rightarrow 9$
7091 measured reflections	$l = -30 \rightarrow 29$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: mixed
$wR(F^2) = 0.082$	H atoms treated by a mixture of independent
S = 1.10	and constrained refinement
2127 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0367P)^2 + 0.480P]$
163 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	1.30381 (7)	0.60040 (5)	0.25074 (2)	0.02973 (14)	
01	0.8928 (2)	0.68016 (13)	0.31709 (5)	0.0274 (3)	
02	0.8175 (2)	0.41486 (13)	0.34182 (4)	0.0219 (3)	
H2o	0.717 (4)	0.457 (2)	0.3605 (8)	0.033*	
03	0.62947 (17)	0.65703 (12)	0.47108 (4)	0.0177 (2)	
04	0.47024 (18)	0.51382 (13)	0.40178 (4)	0.0202 (2)	
05	0.19134 (18)	0.77629 (14)	0.49141 (5)	0.0259 (3)	
06	0.04269 (18)	0.56931 (13)	0.44029 (4)	0.0193 (2)	
H60	-0.090 (4)	0.608 (2)	0.4516 (8)	0.029*	
N1	0.5976 (2)	0.86111 (15)	0.56167 (5)	0.0196 (3)	
Hln	0.561 (3)	0.807 (2)	0.5329 (8)	0.024*	
C1	1.1476 (3)	0.45380 (19)	0.29004 (6)	0.0211 (3)	
H1a	1.091788	0.361048	0.266754	0.025*	
H1b	1.255256	0.405946	0.317640	0.025*	
C2	0.9388 (3)	0.53258 (18)	0.31738 (6)	0.0183 (3)	
C3	0.4606 (2)	0.60253 (16)	0.44239 (6)	0.0146 (3)	
C4	0.2140 (2)	0.65877 (17)	0.46095 (5)	0.0152 (3)	
C5	0.8036 (3)	0.83223 (19)	0.58675 (6)	0.0222 (3)	
Н5	0.908910	0.750929	0.573162	0.027*	
C6	0.8617 (3)	0.92126 (19)	0.63237 (6)	0.0244 (3)	
H6	1.007643	0.902500	0.650458	0.029*	
C7	0.7051 (3)	1.03825 (19)	0.65155 (6)	0.0245 (4)	
H7	0.743544	1.100904	0.682892	0.029*	
C8	0.4919 (3)	1.06414 (18)	0.62502 (6)	0.0236 (3)	
H8	0.382242	1.143181	0.638176	0.028*	
C9	0.4420 (3)	0.97347 (18)	0.57938 (6)	0.0221 (3)	
H9	0.297675	0.990351	0.560428	0.027*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0322 (3)	0.0305 (2)	0.0269 (2)	-0.00243 (17)	0.01274 (18)	-0.00068 (16)
01	0.0301 (6)	0.0210 (6)	0.0315 (6)	0.0058 (5)	0.0080 (5)	-0.0001 (5)
O2	0.0218 (6)	0.0212 (5)	0.0230 (6)	0.0007 (4)	0.0081 (5)	-0.0047 (4)
O3	0.0113 (5)	0.0204 (5)	0.0212 (5)	0.0000 (4)	-0.0005 (4)	-0.0032 (4)
O4	0.0167 (5)	0.0245 (5)	0.0197 (5)	-0.0009 (4)	0.0043 (4)	-0.0068(4)
O5	0.0165 (6)	0.0284 (6)	0.0329 (6)	-0.0011 (5)	0.0039 (5)	-0.0153 (5)
06	0.0100 (5)	0.0251 (5)	0.0229 (6)	-0.0001 (4)	0.0002 (4)	-0.0077 (4)
N1	0.0252 (7)	0.0165 (6)	0.0173 (6)	-0.0043 (5)	0.0025 (5)	-0.0038 (5)
C1	0.0218 (8)	0.0212 (7)	0.0203 (7)	0.0014 (6)	0.0034 (6)	-0.0013 (6)
C2	0.0179 (7)	0.0218 (7)	0.0150 (7)	0.0001 (6)	-0.0013 (6)	-0.0032 (6)
C3	0.0138 (7)	0.0139 (6)	0.0160 (7)	-0.0003 (5)	0.0015 (6)	0.0025 (5)
C4	0.0138 (7)	0.0177 (7)	0.0140 (7)	-0.0004 (5)	0.0002 (5)	0.0008 (5)
C5	0.0220 (8)	0.0182 (7)	0.0265 (8)	0.0016 (6)	0.0055 (6)	-0.0003 (6)
C6	0.0230 (8)	0.0250 (8)	0.0251 (8)	-0.0032 (6)	-0.0014 (7)	0.0009 (6)

data reports

C7	0.0336 (9)	0.0203 (7)	0.0198 (8)	-0.0076 (7)	0.0045 (7)	-0.0035 (6)
C8	0.0288 (9)	0.0158 (7)	0.0264 (8)	0.0018 (6)	0.0107 (7)	0.0000 (6)
C9	0.0200 (8)	0.0194 (7)	0.0271 (8)	-0.0009 (6)	0.0011 (6)	0.0035 (6)

|--|

Cl1—C1	1.7755 (15)	C1—H1a	0.9900
O1—C2	1.2074 (19)	C1—H1b	0.9900
O2—C2	1.3215 (19)	C3—C4	1.551 (2)
O2—H2o	0.82 (2)	C5—C6	1.377 (2)
O3—C3	1.2653 (17)	С5—Н5	0.9500
O4—C3	1.2377 (17)	C6—C7	1.382 (2)
O5—C4	1.2155 (18)	С6—Н6	0.9500
O6—C4	1.3073 (17)	C7—C8	1.388 (2)
О6—Н6о	0.86 (2)	С7—Н7	0.9500
N1—C5	1.339 (2)	C8—C9	1.374 (2)
N1—C9	1.341 (2)	C8—H8	0.9500
N1—H1n	0.861 (19)	С9—Н9	0.9500
C1—C2	1.517 (2)		
C2—O2—H2o	110.2 (14)	O5—C4—C3	121.09 (13)
С4—О6—Н6о	109.1 (13)	O6—C4—C3	113.36 (12)
C5—N1—C9	122.63 (14)	N1—C5—C6	119.49 (14)
C5—N1—H1n	120.0 (12)	N1—C5—H5	120.3
C9—N1—H1n	117.3 (12)	C6—C5—H5	120.3
C2C1Cl1	112.23 (10)	C5—C6—C7	119.22 (15)
C2	109.2	С5—С6—Н6	120.4
Cl1—C1—H1a	109.2	С7—С6—Н6	120.4
C2—C1—H1b	109.2	C6—C7—C8	119.97 (14)
Cl1—C1—H1b	109.2	С6—С7—Н7	120.0
H1a—C1—H1b	107.9	C8—C7—H7	120.0
01—C2—O2	125.61 (14)	C9—C8—C7	118.84 (14)
O1—C2—C1	125.02 (14)	C9—C8—H8	120.6
O2—C2—C1	109.37 (12)	C7—C8—H8	120.6
O4—C3—O3	127.95 (13)	N1—C9—C8	119.83 (15)
O4—C3—C4	117.59 (12)	N1—C9—H9	120.1
O3—C3—C4	114.44 (12)	С8—С9—Н9	120.1
O5—C4—O6	125.55 (13)		
Cl1-C1-C2-01	-6.4 (2)	C9—N1—C5—C6	-0.5 (2)
Cl1—C1—C2—O2	174.23 (10)	N1—C5—C6—C7	0.4 (2)
O4—C3—C4—O5	-161.69 (14)	C5—C6—C7—C8	0.3 (2)
O3—C3—C4—O5	17.27 (19)	C6—C7—C8—C9	-0.9 (2)
O4—C3—C4—O6	17.70 (18)	C5—N1—C9—C8	0.0 (2)
O3—C3—C4—O6	-163.35 (12)	C7—C8—C9—N1	0.7 (2)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
02—H2 <i>o</i> ···O4	0.82 (2)	1.81 (2)	2.6209 (15)	170 (2)
O6—H6 <i>o</i> ···O3 ⁱ	0.86 (2)	1.72 (2)	2.5834 (14)	171.8 (19)
N1—H1 <i>n</i> ···O3	0.861 (19)	1.995 (19)	2.7935 (16)	153.8 (17)
N1—H1 <i>n</i> ···O5	0.861 (19)	2.339 (18)	2.9546 (17)	128.7 (15)
C1—H1 <i>a</i> ···O1 ⁱⁱ	0.99	2.54	3.4555 (19)	153
C1—H1 <i>b</i> ····O4 ⁱⁱⁱ	0.99	2.56	3.3439 (19)	136
C5—H5…O6 ^{iv}	0.95	2.59	3.3946 (18)	142
C8—H8···O1 ^v	0.95	2.40	3.3400 (19)	172
С9—Н9…О5	0.95	2.49	3.0356 (19)	116

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x-1, y, z; (ii) -x+2, y-1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+2, -z+1.