organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-N-(2,6-Di­methyl­phen­yl)-1-[(2-meth­­oxy­phen­yl)amino]­methanimine oxide methanol monosolvate

crossmark logo

aSchool of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville, Durban, 4000, South Africa, and bChemistry Department, Bindura University of Science Education, Private Bag 1020, Bindura, Zimbabwe
*Correspondence e-mail: zamisas@ukzn.ac.za

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 4 October 2024; accepted 9 October 2024; online 21 October 2024)

In the title solvate, C16H18N2O2·CH4O, the dihedral angles between the formamidine backbone and the pendant 2-meth­oxy­phenyl and 2,6-di­methyl­phenyl groups are 14.84 (11) and 81.61 (12)°, respectively. In the crystal, the components are linked by C—H⋯O, O—H⋯O and C—H⋯ π hydrogen bonds, generating a supra­molecular chain that extends along the crystallographic a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is categorized in the class of formamidines (Cibian et al., 2011[Cibian, M., Derossi, S. & Hanan, G. S. (2011). Dalton Trans. 40, 1038-1040.], Zamisa et al., 2021[Zamisa, S. J., Bongoza, U. & Omondi, B. (2021). CrystEngComm, 23, 4459-4474.]). The formamidine backbone features two nitro­gen atoms that provide bidentate coordination sites, making them effective ligands in coordination chemistry (Oshovsky & Pinchuk, 2000[Oshovsky, G. V. & Pinchuk, A. M. (2000). Russ. Chem. Rev. 69, 845-860.]). These metal complexes have demonstrated biological activities such as anti­oxidant (Oladipo et al., 2020[Oladipo, S. D., Omondi, B. & Mocktar, C. (2020). Appl. Organomet. Chem. 34, e5610.]) and anti­bacterial, and significant catalytic activities in the microwave-assisted Suzuki–Miyaura cross-coupling of aryl bromides (Khormi et al., 2019[Khormi, A. Y., Farghaly, T. A. & Shaaban, M. R. (2019). Heliyon, 5, e01367.]) and ring-opening polymerization reactions (Akpan et al., 2016[Akpan, E. D., Ojwach, S. O., Omondi, B. & Nyamori, V. O. (2016). Polyhedron, 110, 63-72.]). As part of our studies in this area, we synthesized the title compound, C16H18N2O2·CH4O, (I), and determined its crystal structure.

The asymmetric unit of (I) consists of one substituted formamidine mol­ecule and one methanol solvent mol­ecule as illustrated in Fig. 1[link]. The mol­ecular structure reveals a non-coplanar arrangement between the formamidine backbone and its pendant phenyl rings with a dihedral angle of 14.84 (11)° between the plane of the C3/C4/C11–C14 2-meth­oxy­phenyl group and the C6/N1/N2/O1 formamidine backbone. In contrast, the dihedral angle between the C7–C10/C15/C17 2,6-di­methyl­phenyl group and the backbone is 81.61 (12)°. The aromatic rings are nearly orthogonal, exhibiting a dihedral angle of 89.25 (5)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I) showing displacement ellipsoid at the 50% probability level.

In the extended structure of (I), C6—H6⋯O3 and O3—H3⋯O2 hydrogen bonds (Table 1[link]) occur as depicted in Fig. 2[link]. The former inter­action involves the solvent O atom as acceptor. The latter hydrogen bond involves the methanol OH group as donor and the formamidine O atom as acceptor. Finally, a C—H⋯π inter­action exists between the a methyl H atom of the solvent mol­ecule and the centre of gravity of the di­methyl­phenyl ring (πDMP). Together, these generate a one-dimensional supra­molecular structure that extends along the crystallographic a-axis direction as shown in Fig. 2[link].

Table 1
Experimental details

Crystal data
Chemical formula C16H18N2O2·CH4O
Mr 302.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.3519 (5), 28.4173 (19), 7.8982 (5)
β (°) 94.481 (2)
V3) 1645.06 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.28 × 0.23 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 9891, 3421, 2988
Rint 0.016
(sin θ/λ)max−1) 0.635
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.04
No. of reflections 3421
No. of parameters 204
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).
[Figure 2]
Figure 2
Representation of hydrogen bonds (dotted lines) in the crystal packing of (I).

Synthesis and crystallization

The title compound was synthesized following the literature procedure (Munzeiwa et al., 2018[Munzeiwa, W. A., Nyamori, V. O. & Omondi, B. (2018). Appl. Organomet. Chem. 32, e4247.]). The crude solid was then recrystallized from methanol solution to produce colourless blocks of (I) suitable for X-ray diffraction.

Refinement

Crystallographic data and structure refinement details are summarized in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

π is the centroid of the C7–C10/C15/C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.20 3.1134 (14) 160
O3—H3⋯O2ii 0.84 1.85 2.6887 (12) 173
C1—H1Cπi 0.98 2.66 3.5182 (16) 148
Symmetry codes: (i) [-x+2, -y, -z+1]; (ii) [-x+1, -y, -z+1].

Structural data


Computing details top

(Z)-N-(2,6-Dimethylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide methanol monosolvate top
Crystal data top
C16H18N2O2·CH4OF(000) = 648
Mr = 302.36Dx = 1.221 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3519 (5) ÅCell parameters from 5449 reflections
b = 28.4173 (19) Åθ = 2.9–26.8°
c = 7.8982 (5) ŵ = 0.08 mm1
β = 94.481 (2)°T = 296 K
V = 1645.06 (19) Å3Block, colourless
Z = 40.28 × 0.23 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.016
Graphite monochromatorθmax = 26.8°, θmin = 2.7°
φ and ω scansh = 59
9891 measured reflectionsk = 3529
3421 independent reflectionsl = 107
2988 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.7025P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3421 reflectionsΔρmax = 0.24 e Å3
204 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95025 (12)0.23202 (3)0.86095 (11)0.0234 (2)
O20.68659 (11)0.13040 (3)0.54807 (11)0.0253 (2)
N10.99859 (13)0.15522 (4)0.69356 (13)0.0196 (2)
H10.8919400.1655080.7211290.023*
N20.83888 (13)0.11068 (3)0.49709 (12)0.0172 (2)
C20.9131 (2)0.27445 (5)0.9498 (2)0.0360 (4)
H2A0.9299400.2688381.0724880.054*
H2B0.7870400.2843110.9193710.054*
H2C0.9968640.2992280.9184770.054*
C31.12632 (17)0.21578 (4)0.87530 (15)0.0204 (3)
C41.15367 (16)0.17426 (4)0.78411 (14)0.0183 (2)
C60.99662 (16)0.12294 (4)0.56934 (15)0.0177 (2)
H61.1065040.1095510.5355040.021*
C70.82105 (15)0.07864 (4)0.35527 (15)0.0190 (3)
C80.77144 (16)0.03222 (5)0.38559 (18)0.0252 (3)
C90.74859 (19)0.00278 (5)0.2439 (2)0.0362 (4)
H90.7146570.0291460.2583610.043*
C100.7747 (2)0.01942 (6)0.0827 (2)0.0407 (4)
H100.7596480.0013480.0116050.049*
C111.27136 (19)0.23666 (5)0.96940 (17)0.0273 (3)
H111.2532470.2645461.0322600.033*
C121.44422 (19)0.21639 (5)0.97109 (17)0.0299 (3)
H121.5439940.2305691.0357150.036*
C131.47188 (17)0.17590 (5)0.87973 (16)0.0265 (3)
H131.5906660.1627110.8803000.032*
C141.32620 (17)0.15440 (5)0.78691 (15)0.0214 (3)
H141.3447910.1262430.7257480.026*
C150.84516 (16)0.09678 (5)0.19363 (16)0.0241 (3)
C160.89151 (19)0.14775 (5)0.16957 (17)0.0309 (3)
H16A0.8841520.1550900.0479950.046*
H16B1.0155740.1538640.2192980.046*
H16C0.8050350.1675070.2257310.046*
C170.82203 (19)0.06565 (6)0.05721 (18)0.0347 (3)
H170.8390930.0764040.0543280.042*
C180.7448 (2)0.01537 (5)0.5626 (2)0.0330 (3)
H18A0.6950560.0166410.5576560.050*
H18B0.6596570.0363620.6151600.050*
H18C0.8623250.0154100.6303410.050*
O30.63925 (12)0.10123 (3)0.59154 (11)0.0256 (2)
H30.5332960.1086740.5534270.038*
C10.64434 (18)0.09642 (5)0.76969 (17)0.0300 (3)
H1A0.7650900.0851630.8131270.045*
H1B0.6201950.1269860.8208100.045*
H1C0.5512750.0737580.7988530.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (5)0.0184 (5)0.0257 (5)0.0002 (4)0.0019 (4)0.0049 (4)
O20.0162 (4)0.0293 (5)0.0304 (5)0.0031 (4)0.0026 (4)0.0106 (4)
N10.0170 (5)0.0210 (5)0.0205 (5)0.0002 (4)0.0003 (4)0.0037 (4)
N20.0166 (5)0.0168 (5)0.0185 (5)0.0007 (4)0.0021 (4)0.0021 (4)
C20.0344 (8)0.0243 (7)0.0503 (9)0.0006 (6)0.0086 (7)0.0147 (7)
C30.0235 (6)0.0200 (6)0.0180 (6)0.0033 (5)0.0027 (5)0.0017 (5)
C40.0216 (6)0.0189 (6)0.0144 (5)0.0040 (5)0.0008 (4)0.0021 (4)
C60.0183 (5)0.0165 (6)0.0185 (6)0.0002 (5)0.0019 (4)0.0003 (4)
C70.0127 (5)0.0213 (6)0.0229 (6)0.0011 (4)0.0001 (4)0.0066 (5)
C80.0168 (6)0.0213 (6)0.0369 (7)0.0019 (5)0.0015 (5)0.0044 (5)
C90.0250 (7)0.0239 (7)0.0588 (10)0.0003 (6)0.0032 (6)0.0180 (7)
C100.0286 (7)0.0509 (10)0.0420 (9)0.0018 (7)0.0005 (6)0.0304 (8)
C110.0319 (7)0.0255 (7)0.0246 (7)0.0082 (6)0.0031 (5)0.0062 (5)
C120.0258 (7)0.0395 (8)0.0238 (7)0.0119 (6)0.0026 (5)0.0037 (6)
C130.0208 (6)0.0369 (8)0.0215 (6)0.0015 (5)0.0001 (5)0.0021 (5)
C140.0231 (6)0.0235 (6)0.0173 (6)0.0001 (5)0.0007 (5)0.0010 (5)
C150.0148 (6)0.0353 (7)0.0220 (6)0.0001 (5)0.0007 (5)0.0051 (5)
C160.0290 (7)0.0396 (8)0.0241 (7)0.0030 (6)0.0024 (5)0.0067 (6)
C170.0240 (7)0.0541 (10)0.0262 (7)0.0006 (6)0.0030 (5)0.0156 (7)
C180.0295 (7)0.0216 (7)0.0472 (9)0.0033 (6)0.0022 (6)0.0078 (6)
O30.0190 (4)0.0304 (5)0.0278 (5)0.0047 (4)0.0041 (4)0.0061 (4)
C10.0239 (6)0.0385 (8)0.0273 (7)0.0006 (6)0.0001 (5)0.0000 (6)
Geometric parameters (Å, º) top
O1—C21.4323 (15)C10—C171.378 (2)
O1—C31.3706 (15)C11—H110.9500
O2—N21.3417 (13)C11—C121.394 (2)
N1—H10.8800C12—H120.9500
N1—C41.4061 (15)C12—C131.382 (2)
N1—C61.3423 (15)C13—H130.9500
N2—C61.2995 (15)C13—C141.3911 (18)
N2—C71.4415 (15)C14—H140.9500
C2—H2A0.9800C15—C161.503 (2)
C2—H2B0.9800C15—C171.3943 (19)
C2—H2C0.9800C16—H16A0.9800
C3—C41.4049 (17)C16—H16B0.9800
C3—C111.3847 (18)C16—H16C0.9800
C4—C141.3870 (17)C17—H170.9500
C6—H60.9500C18—H18A0.9800
C7—C81.3941 (18)C18—H18B0.9800
C7—C151.4008 (17)C18—H18C0.9800
C8—C91.397 (2)O3—H30.8400
C8—C181.505 (2)O3—C11.4113 (16)
C9—H90.9500C1—H1A0.9800
C9—C101.386 (2)C1—H1B0.9800
C10—H100.9500C1—H1C0.9800
C3—O1—C2117.25 (10)C12—C11—H11120.3
C4—N1—H1116.7C11—C12—H12119.7
C6—N1—H1116.7C13—C12—C11120.68 (12)
C6—N1—C4126.64 (10)C13—C12—H12119.7
O2—N2—C7118.01 (9)C12—C13—H13119.9
C6—N2—O2119.55 (10)C12—C13—C14120.15 (12)
C6—N2—C7122.31 (10)C14—C13—H13119.9
O1—C2—H2A109.5C4—C14—C13119.68 (12)
O1—C2—H2B109.5C4—C14—H14120.2
O1—C2—H2C109.5C13—C14—H14120.2
H2A—C2—H2B109.5C7—C15—C16121.06 (11)
H2A—C2—H2C109.5C17—C15—C7117.02 (13)
H2B—C2—H2C109.5C17—C15—C16121.92 (13)
O1—C3—C4114.35 (10)C15—C16—H16A109.5
O1—C3—C11125.65 (11)C15—C16—H16B109.5
C11—C3—C4120.00 (12)C15—C16—H16C109.5
C3—C4—N1116.18 (11)H16A—C16—H16B109.5
C14—C4—N1123.75 (11)H16A—C16—H16C109.5
C14—C4—C3120.07 (11)H16B—C16—H16C109.5
N1—C6—H6121.2C10—C17—C15120.59 (14)
N2—C6—N1117.55 (11)C10—C17—H17119.7
N2—C6—H6121.2C15—C17—H17119.7
C8—C7—N2118.24 (11)C8—C18—H18A109.5
C8—C7—C15123.93 (12)C8—C18—H18B109.5
C15—C7—N2117.74 (11)C8—C18—H18C109.5
C7—C8—C9116.49 (13)H18A—C18—H18B109.5
C7—C8—C18121.02 (12)H18A—C18—H18C109.5
C9—C8—C18122.49 (13)H18B—C18—H18C109.5
C8—C9—H9119.5C1—O3—H3109.5
C10—C9—C8121.00 (14)O3—C1—H1A109.5
C10—C9—H9119.5O3—C1—H1B109.5
C9—C10—H10119.5O3—C1—H1C109.5
C17—C10—C9120.96 (13)H1A—C1—H1B109.5
C17—C10—H10119.5H1A—C1—H1C109.5
C3—C11—H11120.3H1B—C1—H1C109.5
C3—C11—C12119.41 (12)
O1—C3—C4—N10.57 (15)C6—N1—C4—C1416.25 (19)
O1—C3—C4—C14179.46 (10)C6—N2—C7—C8102.55 (13)
O1—C3—C11—C12179.40 (12)C6—N2—C7—C1580.82 (14)
O2—N2—C6—N10.11 (16)C7—N2—C6—N1175.94 (10)
O2—N2—C7—C881.55 (14)C7—C8—C9—C100.08 (19)
O2—N2—C7—C1595.08 (13)C7—C15—C17—C101.02 (19)
N1—C4—C14—C13179.74 (11)C8—C7—C15—C16177.54 (12)
N2—C7—C8—C9177.55 (11)C8—C7—C15—C171.69 (18)
N2—C7—C8—C182.53 (17)C8—C9—C10—C170.7 (2)
N2—C7—C15—C161.12 (17)C9—C10—C17—C150.1 (2)
N2—C7—C15—C17178.12 (11)C11—C3—C4—N1179.35 (11)
C2—O1—C3—C4179.56 (11)C11—C3—C4—C140.62 (18)
C2—O1—C3—C110.52 (18)C11—C12—C13—C141.1 (2)
C3—C4—C14—C130.30 (18)C12—C13—C14—C41.14 (19)
C3—C11—C12—C130.2 (2)C15—C7—C8—C91.15 (18)
C4—N1—C6—N2178.00 (11)C15—C7—C8—C18178.94 (12)
C4—C3—C11—C120.69 (19)C16—C15—C17—C10178.21 (13)
C6—N1—C4—C3163.79 (11)C18—C8—C9—C10179.84 (13)
Hydrogen-bond geometry (Å, º) top
π is the centroid of the C7–C10/C15/C17 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.203.1134 (14)160
O3—H3···O2ii0.841.852.6887 (12)173
C1—H1C···πi0.982.663.5182 (16)148
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the University of KwaZulu Natal for the research facilities.

References

First citationAkpan, E. D., Ojwach, S. O., Omondi, B. & Nyamori, V. O. (2016). Polyhedron, 110, 63–72.  CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCibian, M., Derossi, S. & Hanan, G. S. (2011). Dalton Trans. 40, 1038–1040.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhormi, A. Y., Farghaly, T. A. & Shaaban, M. R. (2019). Heliyon, 5, e01367.  CrossRef PubMed Google Scholar
First citationMunzeiwa, W. A., Nyamori, V. O. & Omondi, B. (2018). Appl. Organomet. Chem. 32, e4247.  CSD CrossRef Google Scholar
First citationOladipo, S. D., Omondi, B. & Mocktar, C. (2020). Appl. Organomet. Chem. 34, e5610.  CSD CrossRef Google Scholar
First citationOshovsky, G. V. & Pinchuk, A. M. (2000). Russ. Chem. Rev. 69, 845–860.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZamisa, S. J., Bongoza, U. & Omondi, B. (2021). CrystEngComm, 23, 4459–4474.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146