

ISSN 2414-3146

Received 4 October 2024 Accepted 9 October 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: Zwitterion; unsymmetrical hydroxyformamidine; crystal structure.

CCDC reference: 2389686

Structural data: full structural data are available from iucrdata.iucr.org

Published under a CC BY 4.0 licence

(*Z*)-*N*-(2,6-Dimethylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide methanol monosolvate

David O. Juma,^a Sizwe J. Zamisa,^a* Wisdom Munzeiwa^b and Bernard Omondi^a

^aSchool of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville, Durban, 4000, South Africa, and ^bChemistry Department, Bindura University of Science Education, Private Bag 1020, Bindura, Zimbabwe. *Correspondence e-mail: zamisas@ukzn.ac.za

In the title solvate, $C_{16}H_{18}N_2O_2 \cdot CH_4O$, the dihedral angles between the formamidine backbone and the pendant 2-methoxyphenyl and 2,6-dimethylphenyl groups are 14.84 (11) and 81.61 (12)°, respectively. In the crystal, the components are linked by $C-H \cdot \cdot \cdot O$, $O-H \cdot \cdot \cdot O$ and $C-H \cdot \cdot \cdot \pi$ hydrogen bonds, generating a supramolecular chain that extends along the crystal-lographic *a*-axis direction.

Structure description

The title compound is categorized in the class of formamidines (Cibian *et al.*, 2011, Zamisa *et al.*, 2021). The formamidine backbone features two nitrogen atoms that provide bidentate coordination sites, making them effective ligands in coordination chemistry (Oshovsky & Pinchuk, 2000). These metal complexes have demonstrated biological activities such as antioxidant (Oladipo *et al.*, 2020) and antibacterial, and significant catalytic activities in the microwave-assisted Suzuki–Miyaura cross-coupling of aryl bromides (Khormi *et al.*, 2019) and ring-opening polymerization reactions (Akpan *et al.*, 2016). As part of our studies in this area, we synthesized the title compound, $C_{16}H_{18}N_2O_2$ ·CH₄O, (I), and determined its crystal structure.

The asymmetric unit of (I) consists of one substituted formamidine molecule and one methanol solvent molecule as illustrated in Fig. 1. The molecular structure reveals a non-coplanar arrangement between the formamidine backbone and its pendant phenyl rings with a dihedral angle of 14.84 (11)° between the plane of the C3/C4/C11–C14 2-meth-oxyphenyl group and the C6/N1/N2/O1 formamidine backbone. In contrast, the dihedral angle between the C7–C10/C15/C17 2,6-dimethylphenyl group and the backbone is 81.61 (12)°. The aromatic rings are nearly orthogonal, exhibiting a dihedral angle of 89.25 (5)°.

The molecular structure of (I) showing displacement ellipsoid at the 50% probability level.

In the extended structure of (I), $C6-H6\cdots O3$ and O3-H3···O2 hydrogen bonds (Table 1) occur as depicted in Fig. 2. The former interaction involves the solvent O atom as acceptor. The latter hydrogen bond involves the methanol OH group as donor and the formamidine O atom as acceptor. Finally, a C-H··· π interaction exists between the a methyl H atom of the solvent molecule and the centre of gravity of the dimethylphenyl ring (π_{DMP}). Together, these generate a onedimensional supramolecular structure that extends along the crystallographic a-axis direction as shown in Fig. 2.

Synthesis and crystallization

The title compound was synthesized following the literature procedure (Munzeiwa et al., 2018). The crude solid was then recrystallized from methanol solution to produce colourless blocks of (I) suitable for X-ray diffraction.

Refinement

Crystallographic data and structure refinement details are summarized in Table 2.

Representation of hydrogen bonds (dotted lines) in the crystal packing of (I).

Table 2

Hydrogen-bond geometry (Å, °).

 π is the centroid of the C7–C10/C15/C17 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6\cdots O3^{i}$ $O3-H3\cdots O2^{ii}$	0.95 0.84	2.20 1.85	3.1134 (14) 2.6887 (12)	160 173
$C1-H1C\cdots\pi^{I}$	0.98	2.66	3.5182 (16)	148

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 1, -y, -z + 1.

Table 1

Experimental details.

Crystal data	
Chemical formula	C ₁₆ H ₁₈ N ₂ O ₂ ·CH ₄ O
Mr	302.36
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.3519 (5), 28.4173 (19), 7.8982 (5)
β (°)	94.481 (2)
$V(Å^3)$	1645.06 (19)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.08
Crystal size (mm)	$0.28 \times 0.23 \times 0.14$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	_
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9891, 3421, 2988
R _{int}	0.016
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.635
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.095, 1.04
No. of reflections	3421
No. of parameters	204
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.24, -0.19

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXL2018/3 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009)

Acknowledgements

The authors thank the University of KwaZulu Natal for the research facilities.

References

- Akpan, E. D., Ojwach, S. O., Omondi, B. & Nyamori, V. O. (2016). Polyhedron, 110, 63-72.
- Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cibian, M., Derossi, S. & Hanan, G. S. (2011). Dalton Trans. 40, 1038-1040.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Khormi, A. Y., Farghaly, T. A. & Shaaban, M. R. (2019). Heliyon, 5, e01367.
- Munzeiwa, W. A., Nyamori, V. O. & Omondi, B. (2018). Appl. Organomet. Chem. 32, e4247.
- Oladipo, S. D., Omondi, B. & Mocktar, C. (2020). Appl. Organomet. Chem. 34, e5610.
- Oshovsky, G. V. & Pinchuk, A. M. (2000). Russ. Chem. Rev. 69, 845-860.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Zamisa, S. J., Bongoza, U. & Omondi, B. (2021). CrystEngComm, 23, 4459-4474.

full crystallographic data

IUCrData (2024). 9, x240989 [https://doi.org/10.1107/S2414314624009891]

(Z)-N-(2,6-Dimethylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide methanol monosolvate

F(000) = 648

 $\theta = 2.9 - 26.8^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, colourless

 $0.28 \times 0.23 \times 0.14 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.221 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5449 reflections

David O. Juma, Sizwe J. Zamisa, Wisdom Munzeiwa and Bernard Omondi

(Z)-N-(2,6-Dimethylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide methanol monosolvate

Crystal data

C₁₆H₁₈N₂O₂·CH₄O $M_r = 302.36$ Monoclinic, $P2_1/n$ a = 7.3519(5) Å *b* = 28.4173 (19) Å c = 7.8982(5) Å $\beta = 94.481 \ (2)^{\circ}$ $V = 1645.06 (19) \text{ Å}^3$ Z = 4

Data collection

Data collection	
Bruker APEXII CCD diffractometer	2988 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$
Graphite monochromator	$\theta_{\text{max}} = 26.8^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
φ and ω scans	$h = -5 \rightarrow 9$
9891 measured reflections	$k = -35 \rightarrow 29$
3421 independent reflections	$l = -10 \rightarrow 7$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.095$	$w = 1/[\sigma^2(F_o^2) + (0.0379P)^2 + 0.7025P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
3421 reflections	$(\Delta/\sigma)_{ m max} < 0.001$
204 parameters	$\Delta ho_{ m max} = 0.24 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.95025 (12)	0.23202 (3)	0.86095 (11)	0.0234 (2)
O2	0.68659 (11)	0.13040 (3)	0.54807 (11)	0.0253 (2)
N1	0.99859 (13)	0.15522 (4)	0.69356 (13)	0.0196 (2)
H1	0.891940	0.165508	0.721129	0.023*
N2	0.83888 (13)	0.11068 (3)	0.49709 (12)	0.0172 (2)
C2	0.9131 (2)	0.27445 (5)	0.9498 (2)	0.0360 (4)
H2A	0.929940	0.268838	1.072488	0.054*
H2B	0.787040	0.284311	0.919371	0.054*
H2C	0.996864	0.299228	0.918477	0.054*
C3	1.12632 (17)	0.21578 (4)	0.87530 (15)	0.0204 (3)
C4	1.15367 (16)	0.17426 (4)	0.78411 (14)	0.0183 (2)
C6	0.99662 (16)	0.12294 (4)	0.56934 (15)	0.0177 (2)
Н6	1.106504	0.109551	0.535504	0.021*
C7	0.82105 (15)	0.07864 (4)	0.35527 (15)	0.0190 (3)
C8	0.77144 (16)	0.03222 (5)	0.38559 (18)	0.0252 (3)
С9	0.74859 (19)	0.00278 (5)	0.2439 (2)	0.0362 (4)
Н9	0.714657	-0.029146	0.258361	0.043*
C10	0.7747 (2)	0.01942 (6)	0.0827 (2)	0.0407 (4)
H10	0.759648	-0.001348	-0.011605	0.049*
C11	1.27136 (19)	0.23666 (5)	0.96940 (17)	0.0273 (3)
H11	1.253247	0.264546	1.032260	0.033*
C12	1.44422 (19)	0.21639 (5)	0.97109 (17)	0.0299 (3)
H12	1.543994	0.230569	1.035715	0.036*
C13	1.47188 (17)	0.17590 (5)	0.87973 (16)	0.0265 (3)
H13	1.590666	0.162711	0.880300	0.032*
C14	1.32620 (17)	0.15440 (5)	0.78691 (15)	0.0214 (3)
H14	1.344791	0.126243	0.725748	0.026*
C15	0.84516 (16)	0.09678 (5)	0.19363 (16)	0.0241 (3)
C16	0.89151 (19)	0.14775 (5)	0.16957 (17)	0.0309 (3)
H16A	0.884152	0.155090	0.047995	0.046*
H16B	1.015574	0.153864	0.219298	0.046*
H16C	0.805035	0.167507	0.225731	0.046*
C17	0.82203 (19)	0.06565 (6)	0.05721 (18)	0.0347 (3)
H17	0.839093	0.076404	-0.054328	0.042*
C18	0.7448 (2)	0.01537 (5)	0.5626 (2)	0.0330 (3)
H18A	0.695056	-0.016641	0.557656	0.050*
H18B	0.659657	0.036362	0.615160	0.050*
H18C	0.862325	0.015410	0.630341	0.050*
O3	0.63925 (12)	-0.10123 (3)	0.59154 (11)	0.0256 (2)
H3	0.533296	-0.108674	0.553427	0.038*
C1	0.64434 (18)	-0.09642 (5)	0.76969 (17)	0.0300 (3)
H1A	0.765090	-0.085163	0.813127	0.045*
H1B	0.620195	-0.126986	0.820810	0.045*
H1C	0.551275	-0.073758	0.798853	0.045*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

	U^{11}	U^{22}	U ³³	U^{12}	U ¹³	U^{23}
01	0.0260 (5)	0.0184 (5)	0.0257 (5)	0.0002 (4)	0.0019 (4)	-0.0049 (4)
O2	0.0162 (4)	0.0293 (5)	0.0304 (5)	0.0031 (4)	0.0026 (4)	-0.0106 (4)
N1	0.0170 (5)	0.0210 (5)	0.0205 (5)	-0.0002(4)	0.0003 (4)	-0.0037 (4)
N2	0.0166 (5)	0.0168 (5)	0.0185 (5)	0.0007 (4)	0.0021 (4)	-0.0021 (4)
C2	0.0344 (8)	0.0243 (7)	0.0503 (9)	-0.0006 (6)	0.0086 (7)	-0.0147 (7)
C3	0.0235 (6)	0.0200 (6)	0.0180 (6)	-0.0033 (5)	0.0027 (5)	0.0017 (5)
C4	0.0216 (6)	0.0189 (6)	0.0144 (5)	-0.0040(5)	0.0008 (4)	0.0021 (4)
C6	0.0183 (5)	0.0165 (6)	0.0185 (6)	-0.0002 (5)	0.0019 (4)	0.0003 (4)
C7	0.0127 (5)	0.0213 (6)	0.0229 (6)	0.0011 (4)	-0.0001 (4)	-0.0066 (5)
C8	0.0168 (6)	0.0213 (6)	0.0369 (7)	0.0019 (5)	-0.0015 (5)	-0.0044 (5)
C9	0.0250 (7)	0.0239 (7)	0.0588 (10)	0.0003 (6)	-0.0032 (6)	-0.0180 (7)
C10	0.0286 (7)	0.0509 (10)	0.0420 (9)	0.0018 (7)	-0.0005 (6)	-0.0304 (8)
C11	0.0319 (7)	0.0255 (7)	0.0246 (7)	-0.0082 (6)	0.0031 (5)	-0.0062 (5)
C12	0.0258 (7)	0.0395 (8)	0.0238 (7)	-0.0119 (6)	-0.0026 (5)	-0.0037 (6)
C13	0.0208 (6)	0.0369 (8)	0.0215 (6)	-0.0015 (5)	-0.0001 (5)	0.0021 (5)
C14	0.0231 (6)	0.0235 (6)	0.0173 (6)	-0.0001 (5)	0.0007 (5)	0.0010 (5)
C15	0.0148 (6)	0.0353 (7)	0.0220 (6)	-0.0001 (5)	0.0007 (5)	-0.0051 (5)
C16	0.0290 (7)	0.0396 (8)	0.0241 (7)	-0.0030 (6)	0.0024 (5)	0.0067 (6)
C17	0.0240 (7)	0.0541 (10)	0.0262 (7)	-0.0006 (6)	0.0030 (5)	-0.0156 (7)
C18	0.0295 (7)	0.0216 (7)	0.0472 (9)	-0.0033 (6)	-0.0022 (6)	0.0078 (6)
O3	0.0190 (4)	0.0304 (5)	0.0278 (5)	-0.0047 (4)	0.0041 (4)	-0.0061 (4)
C1	0.0239 (6)	0.0385 (8)	0.0273 (7)	-0.0006 (6)	0.0001 (5)	0.0000 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01C2	1.4323 (15)	C10—C17	1.378 (2)
O1—C3	1.3706 (15)	C11—H11	0.9500
O2—N2	1.3417 (13)	C11—C12	1.394 (2)
N1—H1	0.8800	C12—H12	0.9500
N1—C4	1.4061 (15)	C12—C13	1.382 (2)
N1—C6	1.3423 (15)	С13—Н13	0.9500
N2—C6	1.2995 (15)	C13—C14	1.3911 (18)
N2—C7	1.4415 (15)	C14—H14	0.9500
C2—H2A	0.9800	C15—C16	1.503 (2)
C2—H2B	0.9800	C15—C17	1.3943 (19)
C2—H2C	0.9800	C16—H16A	0.9800
C3—C4	1.4049 (17)	C16—H16B	0.9800
C3—C11	1.3847 (18)	C16—H16C	0.9800
C4—C14	1.3870 (17)	С17—Н17	0.9500
С6—Н6	0.9500	C18—H18A	0.9800
C7—C8	1.3941 (18)	C18—H18B	0.9800
C7—C15	1.4008 (17)	C18—H18C	0.9800
C8—C9	1.397 (2)	O3—H3	0.8400
C8—C18	1.505 (2)	O3—C1	1.4113 (16)
С9—Н9	0.9500	C1—H1A	0.9800

С9—С10	1.386 (2)	C1—H1B	0.9800
C10—H10	0.9500	C1—H1C	0.9800
C3—O1—C2	117.25 (10)	C12—C11—H11	120.3
C4—N1—H1	116.7	C11—C12—H12	119.7
C6—N1—H1	116.7	C13—C12—C11	120.68 (12)
C6—N1—C4	126.64 (10)	C13—C12—H12	119.7
O2—N2—C7	118.01 (9)	C12—C13—H13	119.9
C6—N2—O2	119.55 (10)	C12—C13—C14	120.15 (12)
C6—N2—C7	122.31 (10)	C14—C13—H13	119.9
O1—C2—H2A	109.5	C4—C14—C13	119.68 (12)
O1—C2—H2B	109.5	C4—C14—H14	120.2
O1—C2—H2C	109.5	C13—C14—H14	120.2
H2A—C2—H2B	109.5	C7—C15—C16	121.06 (11)
H2A—C2—H2C	109.5	C17—C15—C7	117.02 (13)
H2B-C2-H2C	109.5	C17—C15—C16	121.92 (13)
01-C3-C4	114 35 (10)	C15—C16—H16A	109 5
01-C3-C11	125 65 (11)	C15—C16—H16B	109.5
$C_{11} - C_{3} - C_{4}$	120.00(11)	C15 - C16 - H16C	109.5
$C_3 - C_4 - N_1$	120.00(12) 116 18 (11)	H_{16A} $-C_{16}$ $-H_{16B}$	109.5
C14 - C4 - N1	123 75 (11)	$H_{16A} - C_{16} - H_{16C}$	109.5
C14 - C4 - C3	120.07(11)	H_{16B} C_{16} H_{16C}	109.5
N1_C6_H6	120.07 (11)	C10-C17-C15	120 59 (14)
$N_{1} = C_{0} = H_{0}$	117 55 (11)	$C_{10} = C_{17} = C_{13}$	110 7
N2 C6 H6	121.2	$C_{10} = C_{17} = H_{17}$	119.7
$N_2 = C_0 = H_0$	121.2 118 24 (11)	$C_{1}^{2} = C_{1}^{2} = H_{1}^{2} A$	100.5
C_{0} C_{1} C_{15}	110.24(11) 122.02(12)	C_{0} C_{10} H_{10}	109.5
$C_{0} - C_{1} - C_{13}$	123.93(12) 117.74(11)		109.5
$C_{13} - C_{7} - N_{2}$	11/./4(11) 11(.40(12))		109.5
$C_{}C_{8}C_{9}$	116.49 (13)	H18A - C18 - H18B	109.5
C/-C8-C18	121.02 (12)	H18A - C18 - H18C	109.5
C9—C8—C18	122.49 (13)	H18B—C18—H18C	109.5
C8—C9—H9	119.5	C1—O3—H3	109.5
C10_C9_C8	121.00 (14)	O3—CI—HIA	109.5
С10—С9—Н9	119.5	O3—C1—HIB	109.5
С9—С10—Н10	119.5	O3—C1—H1C	109.5
C17—C10—C9	120.96 (13)	H1A—C1—H1B	109.5
C17—C10—H10	119.5	H1A—C1—H1C	109.5
C3—C11—H11	120.3	H1B—C1—H1C	109.5
C3—C11—C12	119.41 (12)		
01—C3—C4—N1	-0.57 (15)	C6—N1—C4—C14	-16.25 (19)
O1—C3—C4—C14	179.46 (10)	C6—N2—C7—C8	102.55 (13)
01-C3-C11-C12	-179.40 (12)	C6—N2—C7—C15	-80.82 (14)
O2—N2—C6—N1	0.11 (16)	C7—N2—C6—N1	175.94 (10)
02—N2—C7—C8	-81.55 (14)	C7—C8—C9—C10	0.08 (19)
O2—N2—C7—C15	95.08 (13)	C7—C15—C17—C10	1.02 (19)
N1-C4-C14-C13	179.74 (11)	C8—C7—C15—C16	177.54 (12)
N2C7C8C9	177.55 (11)	C8—C7—C15—C17	-1.69 (18)

N2-C7-C8-C18	-2.53 (17)	C8—C9—C10—C17	-0.7 (2)
N2-C7-C15-C16	1.12 (17)	C9—C10—C17—C15	0.1 (2)
N2-C7-C15-C17	-178.12 (11)	C11—C3—C4—N1	179.35 (11)
C2-01-C3-C4	-179.56 (11)	C11—C3—C4—C14	-0.62 (18)
C2-01-C3-C11	0.52 (18)	C11—C12—C13—C14	-1.1 (2)
C3—C4—C14—C13	-0.30 (18)	C12—C13—C14—C4	1.14 (19)
C3-C11-C12-C13	0.2 (2)	C15—C7—C8—C9	1.15 (18)
C4—N1—C6—N2	-178.00 (11)	C15—C7—C8—C18	-178.94 (12)
C4—C3—C11—C12	0.69 (19)	C16—C15—C17—C10	-178.21 (13)
C6—N1—C4—C3	163.79 (11)	C18—C8—C9—C10	-179.84 (13)

Hydrogen-bond geometry (Å, °)

 π is the centroid of the C7–C10/C15/C17 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C6—H6…O3 ⁱ	0.95	2.20	3.1134 (14)	160
O3—H3…O2 ⁱⁱ	0.84	1.85	2.6887 (12)	173
C1—H1 C ··· π^{i}	0.98	2.66	3.5182 (16)	148

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1.