organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1H-Benzo­diazol-2-ylmeth­yl)di­ethyl­amine

crossmark logo

aDepartment of Chemistry, Dhanamanjuri University, Manipur 795 001, India, bDepartment of Chemistry, Anjalai Ammal Mahalingam Engineering College, Kovilvenni, Tiruvarur 614 403, Tamil Nadu, India, cDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India, dDepartment of Physics, University of Sargodha, Sargodha, 40100, Punjab, Pakistan, and eDepartment of Chemistry, National College, Tiruchirappalli, Tamil Nadu, India
*Correspondence e-mail: jerelewin.mine@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 27 September 2024; accepted 15 October 2024; online 31 October 2024)

In the crystal of the title compound, C12H17N3, the mol­ecules are linked by N—H⋯N hydrogen bonds, generating a C(4) chain extending along the c-axis direction. One of the ethyl groups is disordered over two sets of sites with a refined occupancy ratio of 0.582 (15):0.418 (15).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzimidazole and its derivatives show a wide range of pharmacological activities including anti­microbial, anti­fungal, anti­histaminic, anti-inflammatory, anti­viral, and anti­oxidant effects (e.g., Walia et al., 2011[Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2011). Int. J. Res. Pharm. & Chem. 1, 565-574.]; Navarrete-Vazquez et al., 2001[Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. & Castillo, R. (2001). Bioorg. Med. Chem. Lett. 11, 187-190.]). The present research focuses on elucidating the hydrogen-bonding patterns exhibited by the title compound, C12H17N3.

The asymmetric unit is shown in Fig. 1[link]. As expected, the benzimidazole (N2,N3,C6–C12) ring system is almost planar with a maximum deviation of 0.022 (8) Å for C6. The N2—C7—C8—N3 torsion angle is −155.9 (5)° and the C11/C12 ethyl group is disordered over two sets of sites with a refined occupancy ratio of 0.582 (15):0.418 (15). In the extended structure (Fig. 2[link]), the mol­ecules are connected by N1—H1⋯N2 hydrogen bonds (Table 1[link]) to form C(4) chains propagating along the c-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.06 2.873 (4) 157
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound.

There are thousands of benzimidazole derivatives in the Cambridge Structural Database (CSD; Version 5.43, update to November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with three examples being methyl 2-[(1H-benzimidazol-2-ylmeth­yl)amino]­benzoate (CSD refcode VARDEZ; Ghani et al., 2011[Ghani, T. A. & Mansour, A. M. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 81, 754-763.]), 1-(1H-benzimidazol-2-yl)-N,N-bis­[(1H-benzimidazol-2-yl)meth­yl]methanamine methanol solvate (IHILIX; Anzaldo-Olivares et al., 2020[Anzaldo-Olivares, B., Arroyo, M., Ramírez-Monroy, A. & Bernès, S. (2020). IUCrData, 5, x200281.]) and 1-(1-methyl-1H-benzimidazol-2-yl)-N-[(1-methyl-1H-benzimidazol-2-yl)meth­yl]methan­amine (TAZJIR; Gaoxiang et al., 2022[Gaoxiang, M., Yang, Y., Li, Q. & Li, Z. (2022). Z. Krist. New Cryst. Struct. 237, 191-193.]).

Synthesis and crystallization

The title compound was prepared according to the literature method (Lingala et al., 2011). Single crystals were obtained by slowly evaporating a di­chloro­methane solution of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H17N3
Mr 203.28
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 293
a, b, c (Å) 7.9290 (7), 15.3027 (15), 10.0486 (6)
V3) 1219.25 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.36 × 0.33 × 0.30
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Analytical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.507, 0.578
No. of measured, independent and observed [I > 2σ(I)] reflections 3304, 2135, 1138
Rint 0.036
(sin θ/λ)max−1) 0.675
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.130, 1.18
No. of reflections 2135
No. of parameters 158
No. of restraints 41
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.10
Absolute structure Flack x determined using 249 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −1.1 (10)
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

(1H-Benzodiazol-2-ylmethyl)diethylamine top
Crystal data top
C12H17N3Dx = 1.107 Mg m3
Mr = 203.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 9307 reflections
a = 7.9290 (7) Åθ = 3.5–26.4°
b = 15.3027 (15) ŵ = 0.07 mm1
c = 10.0486 (6) ÅT = 293 K
V = 1219.25 (18) Å3Block, colouress
Z = 40.36 × 0.33 × 0.30 mm
F(000) = 440
Data collection top
Agilent Xcalibur, Atlas, Gemini
diffractometer
1138 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
ω scansθmax = 28.7°, θmin = 3.5°
Absorption correction: analytical
(SADABS; Krause et al., 2015)
h = 108
Tmin = 0.507, Tmax = 0.578k = 820
3304 measured reflectionsl = 813
2135 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.066 w = 1/[σ2(Fo2) + (0.0388P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.18Δρmax = 0.11 e Å3
2135 reflectionsΔρmin = 0.10 e Å3
158 parametersAbsolute structure: Flack x determined using 249 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
41 restraintsAbsolute structure parameter: 1.1 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms were positioned geometrically (C—H = 0.96–0.97 A°) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.2389 (4)0.3102 (2)0.0373 (3)0.0597 (10)
H10.2847320.3016820.1138160.072*
N20.1987 (4)0.3027 (3)0.1813 (3)0.0659 (11)
N30.5022 (5)0.1850 (4)0.0249 (4)0.0951 (15)
C10.0952 (5)0.3570 (3)0.0120 (3)0.0515 (11)
C20.0116 (6)0.4053 (3)0.0930 (4)0.0648 (13)
H20.0056090.4088290.1843570.078*
C30.1425 (6)0.4474 (3)0.0331 (5)0.0761 (14)
H30.2160700.4804610.0845460.091*
C40.1685 (6)0.4418 (3)0.1041 (4)0.0791 (15)
H40.2593160.4712190.1417470.095*
C50.0640 (6)0.3942 (3)0.1845 (4)0.0739 (14)
H50.0832210.3902530.2755570.089*
C60.0716 (5)0.3521 (3)0.1255 (3)0.0570 (13)
C70.2952 (5)0.2799 (3)0.0819 (4)0.0643 (12)
C80.4587 (6)0.2325 (4)0.0949 (4)0.0909 (17)
H8A0.4515820.1917930.1687090.109*
H8B0.5474290.2741200.1146890.109*
C90.3974 (11)0.1078 (5)0.0413 (6)0.131 (2)
H9A0.4366830.0627600.0192180.158*
H9B0.2824470.1222260.0166950.158*
C100.3979 (10)0.0716 (5)0.1815 (7)0.165 (3)
H10A0.3866260.1187640.2438850.248*
H10B0.5021330.0414310.1973810.248*
H10C0.3054140.0317770.1920730.248*
C11A0.6923 (15)0.1942 (10)0.0568 (12)0.099 (5)0.582 (15)
H11A0.7225100.2555820.0585290.118*0.582 (15)
H11B0.7149770.1698260.1440640.118*0.582 (15)
C12A0.797 (2)0.1479 (12)0.0451 (15)0.136 (6)0.582 (15)
H12A0.7562470.0893890.0565730.205*0.582 (15)
H12B0.9126220.1460400.0156980.205*0.582 (15)
H12C0.7909660.1785850.1282470.205*0.582 (15)
C11B0.6574 (15)0.1307 (12)0.0073 (17)0.096 (6)0.418 (15)
H11C0.6646880.1068080.0819260.116*0.418 (15)
H11D0.6623480.0834810.0715490.116*0.418 (15)
C12B0.793 (3)0.1976 (13)0.032 (3)0.121 (8)0.418 (15)
H12D0.7893640.2413130.0363260.181*0.418 (15)
H12E0.9012860.1695600.0314950.181*0.418 (15)
H12F0.7747880.2246380.1171730.181*0.418 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0612 (18)0.085 (3)0.0325 (16)0.003 (2)0.0023 (16)0.0003 (19)
N20.074 (2)0.093 (3)0.0311 (17)0.014 (2)0.0006 (17)0.0026 (19)
N30.078 (3)0.131 (4)0.076 (2)0.027 (3)0.008 (2)0.032 (3)
C10.057 (2)0.059 (3)0.039 (2)0.002 (2)0.0025 (18)0.004 (2)
C20.073 (3)0.074 (3)0.048 (2)0.001 (3)0.010 (2)0.003 (2)
C30.075 (3)0.078 (4)0.075 (3)0.010 (3)0.021 (3)0.003 (3)
C40.075 (3)0.093 (4)0.070 (3)0.017 (3)0.003 (2)0.020 (3)
C50.073 (3)0.093 (4)0.056 (3)0.001 (3)0.008 (2)0.008 (3)
C60.061 (3)0.071 (4)0.040 (2)0.000 (3)0.0020 (18)0.004 (2)
C70.067 (2)0.086 (3)0.040 (2)0.011 (2)0.0071 (19)0.001 (2)
C80.084 (3)0.136 (5)0.053 (3)0.039 (3)0.013 (2)0.012 (3)
C90.190 (7)0.100 (6)0.104 (5)0.027 (5)0.003 (5)0.005 (5)
C100.234 (9)0.131 (6)0.130 (6)0.009 (6)0.029 (6)0.039 (5)
C11A0.070 (8)0.105 (12)0.120 (10)0.009 (10)0.007 (7)0.007 (8)
C12A0.107 (11)0.139 (14)0.163 (14)0.027 (11)0.024 (11)0.012 (11)
C11B0.070 (9)0.121 (16)0.098 (10)0.006 (10)0.000 (8)0.014 (10)
C12B0.066 (11)0.121 (19)0.18 (2)0.007 (15)0.020 (16)0.022 (16)
Geometric parameters (Å, º) top
N1—C71.360 (5)C8—H8A0.9700
N1—C11.369 (5)C8—H8B0.9700
N1—H10.8600C9—C101.513 (8)
N2—C71.306 (5)C9—H9A0.9700
N2—C61.379 (5)C9—H9B0.9700
N3—C81.448 (6)C10—H10A0.9600
N3—C91.453 (8)C10—H10B0.9600
N3—C11B1.496 (15)C10—H10C0.9600
N3—C11A1.547 (13)C11A—C12A1.498 (10)
C1—C21.388 (5)C11A—H11A0.9700
C1—C61.396 (4)C11A—H11B0.9700
C2—C31.362 (6)C12A—H12A0.9600
C2—H20.9300C12A—H12B0.9600
C3—C41.396 (6)C12A—H12C0.9600
C3—H30.9300C11B—C12B1.505 (11)
C4—C51.367 (6)C11B—H11C0.9700
C4—H40.9300C11B—H11D0.9700
C5—C61.387 (5)C12B—H12D0.9600
C5—H50.9300C12B—H12E0.9600
C7—C81.491 (6)C12B—H12F0.9600
C7—N1—C1106.7 (3)N3—C9—C10113.6 (6)
C7—N1—H1126.7N3—C9—H9A108.8
C1—N1—H1126.7C10—C9—H9A108.8
C7—N2—C6105.3 (3)N3—C9—H9B108.8
C8—N3—C9111.5 (5)C10—C9—H9B108.8
C8—N3—C11B112.1 (7)H9A—C9—H9B107.7
C9—N3—C11B91.9 (7)C9—C10—H10A109.5
C8—N3—C11A111.0 (6)C9—C10—H10B109.5
C9—N3—C11A127.4 (7)H10A—C10—H10B109.5
N1—C1—C2132.6 (4)C9—C10—H10C109.5
N1—C1—C6105.6 (3)H10A—C10—H10C109.5
C2—C1—C6121.8 (4)H10B—C10—H10C109.5
C3—C2—C1117.2 (4)C12A—C11A—N3111.0 (13)
C3—C2—H2121.4C12A—C11A—H11A109.4
C1—C2—H2121.4N3—C11A—H11A109.4
C2—C3—C4121.3 (4)C12A—C11A—H11B109.4
C2—C3—H3119.3N3—C11A—H11B109.4
C4—C3—H3119.3H11A—C11A—H11B108.0
C5—C4—C3121.8 (5)C11A—C12A—H12A109.5
C5—C4—H4119.1C11A—C12A—H12B109.5
C3—C4—H4119.1H12A—C12A—H12B109.5
C4—C5—C6117.7 (4)C11A—C12A—H12C109.5
C4—C5—H5121.1H12A—C12A—H12C109.5
C6—C5—H5121.1H12B—C12A—H12C109.5
N2—C6—C5130.4 (3)N3—C11B—C12B101.0 (16)
N2—C6—C1109.5 (4)N3—C11B—H11C111.6
C5—C6—C1120.2 (4)C12B—C11B—H11C111.6
N2—C7—N1113.0 (3)N3—C11B—H11D111.6
N2—C7—C8124.9 (3)C12B—C11B—H11D111.6
N1—C7—C8121.9 (4)H11C—C11B—H11D109.4
N3—C8—C7112.2 (3)C11B—C12B—H12D109.5
N3—C8—H8A109.2C11B—C12B—H12E109.5
C7—C8—H8A109.2H12D—C12B—H12E109.5
N3—C8—H8B109.2C11B—C12B—H12F109.5
C7—C8—H8B109.2H12D—C12B—H12F109.5
H8A—C8—H8B107.9H12E—C12B—H12F109.5
C7—N1—C1—C2176.9 (4)C6—N2—C7—C8174.1 (5)
C7—N1—C1—C60.1 (5)C1—N1—C7—N20.6 (5)
N1—C1—C2—C3177.3 (4)C1—N1—C7—C8174.5 (4)
C6—C1—C2—C30.7 (6)C9—N3—C8—C773.2 (6)
C1—C2—C3—C40.2 (7)C11B—N3—C8—C7174.5 (8)
C2—C3—C4—C50.1 (8)C11A—N3—C8—C7138.7 (6)
C3—C4—C5—C60.9 (7)N2—C7—C8—N3155.9 (5)
C7—N2—C6—C5178.8 (4)N1—C7—C8—N329.6 (7)
C7—N2—C6—C10.7 (5)C8—N3—C9—C10162.1 (5)
C4—C5—C6—N2177.7 (5)C11B—N3—C9—C1083.2 (9)
C4—C5—C6—C11.8 (7)C11A—N3—C9—C1056.2 (10)
N1—C1—C6—N20.4 (5)C8—N3—C11A—C12A68.0 (13)
C2—C1—C6—N2177.8 (4)C9—N3—C11A—C12A73.8 (14)
N1—C1—C6—C5179.2 (4)C8—N3—C11B—C12B83.4 (15)
C2—C1—C6—C51.8 (7)C9—N3—C11B—C12B162.5 (14)
C6—N2—C7—N10.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.062.873 (4)157
Symmetry code: (i) x+1/2, y, z+1/2.
 

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAnzaldo-Olivares, B., Arroyo, M., Ramírez-Monroy, A. & Bernès, S. (2020). IUCrData, 5, x200281.  Google Scholar
First citationGaoxiang, M., Yang, Y., Li, Q. & Li, Z. (2022). Z. Krist. New Cryst. Struct. 237, 191–193.  Google Scholar
First citationGhani, T. A. & Mansour, A. M. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 81, 754–763.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNavarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. & Castillo, R. (2001). Bioorg. Med. Chem. Lett. 11, 187–190.  Web of Science CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWalia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2011). Int. J. Res. Pharm. & Chem. 1, 565–574.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146