ISSN 2414-3146

Received 27 September 2024 Accepted 15 October 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; benzimidazole; hydrogen bonding.

CCDC reference: 2376300

Structural data: full structural data are available from iucrdata.iucr.org

(1H-Benzodiazol-2-ylmethyl)diethylamine

Themmila Khamrang,^a A. Kannan,^b Madhukar Hemamalini,^c Muhammad Nawaz Tahir,^d G. Jerald Maria Antony^e* and Dhandayutham Saravanan^e

^aDepartment of Chemistry, Dhanamanjuri University, Manipur 795 001, India, ^bDepartment of Chemistry, Anjalai Ammal Mahalingam Engineering College, Kovilvenni, Tiruvarur 614 403, Tamil Nadu, India, ^cDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India, ^dDepartment of Physics, University of Sargodha, Sargodha, 40100, Punjab, Pakistan, and ^eDepartment of Chemistry, National College, Tiruchirappalli, Tamil Nadu, India. *Correspondence e-mail: jerelewin.mine@gmail.com

In the crystal of the title compound, $C_{12}H_{17}N_3$, the molecules are linked by $N-H\cdots N$ hydrogen bonds, generating a C(4) chain extending along the *c*-axis direction. One of the ethyl groups is disordered over two sets of sites with a refined occupancy ratio of 0.582 (15):0.418 (15).

Structure description

Benzimidazole and its derivatives show a wide range of pharmacological activities including antimicrobial, antifungal, antihistaminic, anti-inflammatory, antiviral, and antioxidant effects (*e.g.*, Walia *et al.*, 2011; Navarrete-Vazquez *et al.*, 2001). The present research focuses on elucidating the hydrogen-bonding patterns exhibited by the title compound, $C_{12}H_{17}N_3$.

The asymmetric unit is shown in Fig. 1. As expected, the benzimidazole (N2,N3,C6–C12) ring system is almost planar with a maximum deviation of 0.022 (8) Å for C6. The N2–C7–C8–N3 torsion angle is –155.9 (5)° and the C11/C12 ethyl group is disordered over two sets of sites with a refined occupancy ratio of 0.582 (15):0.418 (15). In the extended structure (Fig. 2), the molecules are connected by N1–H1···N2 hydrogen bonds (Table 1) to form C(4) chains propagating along the *c*-axis direction.

There are thousands of benzimidazole derivatives in the Cambridge Structural Database (CSD; Version 5.43, update to November 2022; Groom *et al.*, 2016) with three examples being methyl 2-[(1*H*-benzimidazol-2-ylmethyl)amino]benzoate (CSD refcode VARDEZ; Ghani *et al.*, 2011), 1-(1*H*-benzimidazol-2-yl)-*N*,*N*-bis[(1*H*-benzimidazol-2-yl)methyl]methanamine methanol solvate (IHILIX; Anzaldo-Olivares *et al.*, 2020) and 1-(1-methyl-1*H*-benzimidazol-2-yl)-*N*-[(1-methyl-1*H*-benzimidazol-2-yl)methyl]methanamine (TAZJIR; Gaoxiang *et al.*, 2022).

Figure 1

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.

Synthesis and crystallization

The title compound was prepared according to the literature method (Lingala *et al.*, 2011). Single crystals were obtained by slowly evaporating a dichloromethane solution of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.

- Anzaldo-Olivares, B., Arroyo, M., Ramírez-Monroy, A. & Bernès, S. (2020). *IUCrData*, **5**, x200281.
- Gaoxiang, M., Yang, Y., Li, Q. & Li, Z. (2022). Z. Krist. New Cryst. Struct. 237, 191–193.

Figure 2 The crystal packing of the title compound.

Table 1		
Hydrogen-bond geometry	(Å.	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$M1 - H1 \cdot \cdot \cdot N2^{i}$	0.86	2.06	2.873 (4)	157

C₁₂H₁₇N₃ 203.28

293

Δ

Orthorhombic, Pca21

10.0486 (6)

 $0.36 \times 0.33 \times 0.30$

al., 2015) 0.507, 0.578

3304, 2135, 1138

Agilent Xcalibur, Atlas, Gemini

Analytical (SADABS; Krause et

1219.25 (18)

Μο Κα

0.07

0.036

0.675

7.9290 (7), 15.3027 (15),

Symmetry code: (i) $-x + \frac{1}{2}, y, z + \frac{1}{2}$.

Table 2

Experimental details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å)

V (Å³) Z Radiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min} , T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections

 $\begin{array}{c} R_{\rm int} \\ (\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1}) \end{array}$

Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.066, 0.130, 1.18
No. of reflections	2135
No. of parameters	158
No. of restraints	41
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.11, -0.10
Absolute structure	Flack x determined using 249
	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
	(Parsons et al., 2013)
Absolute structure parameter	-1.1(10)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and PLATON (Spek, 2020).

- Ghani, T. A. & Mansour, A. M. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 81, 754–763.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. & Castillo, R. (2001). *Bioorg. Med. Chem. Lett.* 11, 187–190.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2011). Int. J. Res. Pharm. & Chem. 1, 565–574.

full crystallographic data

IUCrData (2024). 9, x241006 [https://doi.org/10.1107/S241431462401006X]

(1*H*-Benzodiazol-2-ylmethyl)diethylamine

Themmila Khamrang, A. Kannan, Madhukar Hemamalini, Muhammad Nawaz Tahir, G. Jerald Maria Antony and Dhandayutham Saravanan

(1H-Benzodiazol-2-ylmethyl)diethylamine

Crystal data

 $C_{12}H_{17}N_3$ $M_r = 203.28$ Orthorhombic, $Pca2_1$ a = 7.9290 (7) Å b = 15.3027 (15) Å c = 10.0486 (6) Å V = 1219.25 (18) Å³ Z = 4F(000) = 440

Data collection

Agilent Xcalibur, Atlas, Gemini diffractometer Radiation source: fine-focus sealed tube ω scans Absorption correction: analytical (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.507, T_{\max} = 0.578$ 3304 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.130$ S = 1.182135 reflections 158 parameters 41 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites $D_x = 1.107 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9307 reflections $\theta = 3.5-26.4^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KBlock, colouress $0.36 \times 0.33 \times 0.30 \text{ mm}$

2135 independent reflections 1138 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 28.7^{\circ}, \ \theta_{min} = 3.5^{\circ}$ $h = -10 \rightarrow 8$ $k = -8 \rightarrow 20$ $l = -8 \rightarrow 13$

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0388P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.11$ e Å⁻³ $\Delta\rho_{min} = -0.10$ e Å⁻³ Absolute structure: Flack *x* determined using 249 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons *et al.*, 2013) Absolute structure parameter: -1.1 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms were positioned geometrically (C—H = 0.96–0.97 Ű) and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(methyl C)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.2389 (4)	0.3102 (2)	0.0373 (3)	0.0597 (10)	
H1	0.284732	0.301682	0.113816	0.072*	
N2	0.1987 (4)	0.3027 (3)	-0.1813 (3)	0.0659 (11)	
N3	0.5022 (5)	0.1850 (4)	0.0249 (4)	0.0951 (15)	
C1	0.0952 (5)	0.3570 (3)	0.0120 (3)	0.0515 (11)	
C2	-0.0116 (6)	0.4053 (3)	0.0930 (4)	0.0648 (13)	
H2	0.005609	0.408829	0.184357	0.078*	
C3	-0.1425 (6)	0.4474 (3)	0.0331 (5)	0.0761 (14)	
Н3	-0.216070	0.480461	0.084546	0.091*	
C4	-0.1685 (6)	0.4418 (3)	-0.1041 (4)	0.0791 (15)	
H4	-0.259316	0.471219	-0.141747	0.095*	
C5	-0.0640 (6)	0.3942 (3)	-0.1845 (4)	0.0739 (14)	
Н5	-0.083221	0.390253	-0.275557	0.089*	
C6	0.0716 (5)	0.3521 (3)	-0.1255 (3)	0.0570 (13)	
C7	0.2952 (5)	0.2799 (3)	-0.0819 (4)	0.0643 (12)	
C8	0.4587 (6)	0.2325 (4)	-0.0949 (4)	0.0909 (17)	
H8A	0.451582	0.191793	-0.168709	0.109*	
H8B	0.547429	0.274120	-0.114689	0.109*	
С9	0.3974 (11)	0.1078 (5)	0.0413 (6)	0.131 (2)	
H9A	0.436683	0.062760	-0.019218	0.158*	
H9B	0.282447	0.122226	0.016695	0.158*	
C10	0.3979 (10)	0.0716 (5)	0.1815 (7)	0.165 (3)	
H10A	0.386626	0.118764	0.243885	0.248*	
H10B	0.502133	0.041431	0.197381	0.248*	
H10C	0.305414	0.031777	0.192073	0.248*	
C11A	0.6923 (15)	0.1942 (10)	0.0568 (12)	0.099 (5)	0.582 (15)
H11A	0.722510	0.255582	0.058529	0.118*	0.582 (15)
H11B	0.714977	0.169826	0.144064	0.118*	0.582 (15)
C12A	0.797 (2)	0.1479 (12)	-0.0451 (15)	0.136 (6)	0.582 (15)
H12A	0.756247	0.089389	-0.056573	0.205*	0.582 (15)
H12B	0.912622	0.146040	-0.015698	0.205*	0.582 (15)
H12C	0.790966	0.178585	-0.128247	0.205*	0.582 (15)
C11B	0.6574 (15)	0.1307 (12)	0.0073 (17)	0.096 (6)	0.418 (15)
H11C	0.664688	0.106808	-0.081926	0.116*	0.418 (15)
H11D	0.662348	0.083481	0.071549	0.116*	0.418 (15)
C12B	0.793 (3)	0.1976 (13)	0.032 (3)	0.121 (8)	0.418 (15)
H12D	0.789364	0.241313	-0.036326	0.181*	0.418 (15)
H12E	0.901286	0.169560	0.031495	0.181*	0.418 (15)
H12F	0.774788	0.224638	0.117173	0.181*	0.418 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0612 (18)	0.085 (3)	0.0325 (16)	0.003 (2)	-0.0023 (16)	-0.0003 (19)
N2	0.074 (2)	0.093 (3)	0.0311 (17)	0.014 (2)	-0.0006 (17)	0.0026 (19)
N3	0.078 (3)	0.131 (4)	0.076 (2)	0.027 (3)	0.008 (2)	0.032 (3)
C1	0.057 (2)	0.059 (3)	0.039 (2)	-0.002 (2)	0.0025 (18)	0.004 (2)
C2	0.073 (3)	0.074 (3)	0.048 (2)	-0.001 (3)	0.010 (2)	-0.003(2)
C3	0.075 (3)	0.078 (4)	0.075 (3)	0.010 (3)	0.021 (3)	0.003 (3)
C4	0.075 (3)	0.093 (4)	0.070 (3)	0.017 (3)	-0.003 (2)	0.020 (3)
C5	0.073 (3)	0.093 (4)	0.056 (3)	0.001 (3)	-0.008(2)	0.008 (3)
C6	0.061 (3)	0.071 (4)	0.040 (2)	0.000 (3)	0.0020 (18)	0.004 (2)
C7	0.067 (2)	0.086 (3)	0.040(2)	0.011 (2)	0.0071 (19)	0.001 (2)
C8	0.084 (3)	0.136 (5)	0.053 (3)	0.039 (3)	0.013 (2)	0.012 (3)
C9	0.190 (7)	0.100 (6)	0.104 (5)	0.027 (5)	0.003 (5)	0.005 (5)
C10	0.234 (9)	0.131 (6)	0.130 (6)	0.009 (6)	0.029 (6)	0.039 (5)
C11A	0.070 (8)	0.105 (12)	0.120 (10)	0.009 (10)	-0.007 (7)	0.007 (8)
C12A	0.107 (11)	0.139 (14)	0.163 (14)	0.027 (11)	0.024 (11)	0.012 (11)
C11B	0.070 (9)	0.121 (16)	0.098 (10)	0.006 (10)	0.000 (8)	0.014 (10)
C12B	0.066 (11)	0.121 (19)	0.18 (2)	-0.007 (15)	-0.020 (16)	0.022 (16)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C7	1.360 (5)	C8—H8A	0.9700	
N1—C1	1.369 (5)	C8—H8B	0.9700	
N1—H1	0.8600	C9—C10	1.513 (8)	
N2—C7	1.306 (5)	С9—Н9А	0.9700	
N2—C6	1.379 (5)	С9—Н9В	0.9700	
N3—C8	1.448 (6)	C10—H10A	0.9600	
N3—C9	1.453 (8)	C10—H10B	0.9600	
N3—C11B	1.496 (15)	C10—H10C	0.9600	
N3—C11A	1.547 (13)	C11A—C12A	1.498 (10)	
C1—C2	1.388 (5)	C11A—H11A	0.9700	
C1—C6	1.396 (4)	C11A—H11B	0.9700	
C2—C3	1.362 (6)	C12A—H12A	0.9600	
C2—H2	0.9300	C12A—H12B	0.9600	
C3—C4	1.396 (6)	C12A—H12C	0.9600	
С3—Н3	0.9300	C11B—C12B	1.505 (11)	
C4—C5	1.367 (6)	C11B—H11C	0.9700	
C4—H4	0.9300	C11B—H11D	0.9700	
C5—C6	1.387 (5)	C12B—H12D	0.9600	
С5—Н5	0.9300	C12B—H12E	0.9600	
C7—C8	1.491 (6)	C12B—H12F	0.9600	
C7—N1—C1	106.7 (3)	N3—C9—C10	113.6 (6)	
C7—N1—H1	126.7	N3—C9—H9A	108.8	
C1—N1—H1	126.7	С10—С9—Н9А	108.8	
C7—N2—C6	105.3 (3)	N3—C9—H9B	108.8	

C8—N3—C9	111.5 (5)	С10—С9—Н9В	108.8
C8—N3—C11B	112.1 (7)	H9A—C9—H9B	107.7
C9—N3—C11B	91.9 (7)	C9—C10—H10A	109.5
C8—N3—C11A	111.0 (6)	C9—C10—H10B	109.5
C9—N3—C11A	127.4 (7)	H10A—C10—H10B	109.5
N1—C1—C2	132.6 (4)	C9—C10—H10C	109.5
N1—C1—C6	105.6 (3)	H10A—C10—H10C	109.5
C2-C1-C6	121.8 (4)	H10B-C10-H10C	109.5
$C_{3}-C_{2}-C_{1}$	117.2 (4)	C12A— $C11A$ — $N3$	111.0 (13)
C3—C2—H2	121.4	C12A—C11A—H11A	109.4
C1 - C2 - H2	121.4	N3—C11A—H11A	109.4
$C^2 - C^3 - C^4$	121.3 (4)	C12A— $C11A$ — $H11B$	109.4
C2C3H3	119.3	N3—C11A—H11B	109.1
$C_2 = C_3 = H_3$	119.3	H11A—C11A—H11B	109.4
$C_{5} - C_{4} - C_{3}$	121.8 (5)	$C_{11}A = C_{12}A = H_{12}A$	100.0
$C_5 = C_4 = C_5$	110.1	$C_{11A} = C_{12A} = H_{12B}$	109.5
$C_3 = C_4 = H_4$	119.1	$H_{12A} = C_{12A} = H_{12B}$	109.5
C_{3} C_{4} C_{5} C_{6}	117.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C4 - C5 + 5	117.7 (4)	$H_{12A} = C_{12A} = H_{12C}$	109.5
C4 - C5 - H5	121.1	H12A - C12A - H12C	109.5
C6-C5-H5	121.1	HI2B—CI2A—HI2C	109.5
N2 - C0 - C3	130.4 (3)	N3-CIIB-CI2B	101.0 (16)
N2	109.5 (4)	N3—CIIB—HIIC	111.6
	120.2 (4)	CI2B—CIIB—HIIC	111.6
N2—C/—N1	113.0 (3)	N3—CIIB—HIID	111.6
N2-C7-C8	124.9 (3)	C12B—C11B—H11D	111.6
N1—C7—C8	121.9 (4)	H11C—C11B—H11D	109.4
N3—C8—C7	112.2 (3)	C11B—C12B—H12D	109.5
N3—C8—H8A	109.2	C11B—C12B—H12E	109.5
С7—С8—Н8А	109.2	H12D—C12B—H12E	109.5
N3—C8—H8B	109.2	C11B—C12B—H12F	109.5
С7—С8—Н8В	109.2	H12D—C12B—H12F	109.5
H8A—C8—H8B	107.9	H12E—C12B—H12F	109.5
C7—N1—C1—C2	-176.9 (4)	C6—N2—C7—C8	-174.1 (5)
C7—N1—C1—C6	0.1 (5)	C1—N1—C7—N2	-0.6(5)
N1—C1—C2—C3	177.3 (4)	C1—N1—C7—C8	174.5 (4)
C6—C1—C2—C3	0.7 (6)	C9—N3—C8—C7	73.2 (6)
C1—C2—C3—C4	0.2 (7)	C11B—N3—C8—C7	174.5 (8)
C2—C3—C4—C5	-0.1 (8)	C11A—N3—C8—C7	-138.7 (6)
C3—C4—C5—C6	-0.9 (7)	N2—C7—C8—N3	-155.9 (5)
C7—N2—C6—C5	178.8 (4)	N1—C7—C8—N3	29.6 (7)
C7—N2—C6—C1	-0.7 (5)	C8—N3—C9—C10	-162.1 (5)
C4—C5—C6—N2	-177.7 (5)	C11B—N3—C9—C10	83.2 (9)
C4—C5—C6—C1	1.8 (7)	C11A—N3—C9—C10	56.2 (10)
N1-C1-C6-N2	0.4 (5)	C8—N3—C11A—C12A	-68.0 (13)
C2-C1-C6-N2	177.8 (4)	C9—N3—C11A—C12A	73.8 (14)
N1—C1—C6—C5	-179.2 (4)	C8—N3—C11B—C12B	83.4 (15)
C2—C1—C6—C5	-1.8 (7)	C9—N3—C11B—C12B	-162.5 (14)

C6—N2—C7—N1 0.8 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H····A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···N2 ⁱ	0.86	2.06	2.873 (4)	157

Symmetry code: (i) -x+1/2, y, z+1/2.