organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Di­methyl­piperazine-2,3-dione

crossmark logo

aDepartment of Chemistry, Dhanamanjuri University, Manipur 795 001, India, bDepartment of Chemistry, National College, Tiruchirappalli, Tamil Nadu, India, and cDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
*Correspondence e-mail: jerelewin.mine@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 29 August 2024; accepted 23 September 2024; online 4 October 2024)

In the title compound, C6H10N2O2, the piperazine-2,3-dione ring adopts a half-chair conformation. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming (010) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Piperazine and its derivatives are found within biologically active mol­ecules across a diverse range of therapeutic areas, including anti­fungal, anti­bacterial, anti­malarial, anti­psychotic, anti­depressant, and anti­tumor applications targeting colon, prostate, breast, lung, and leukemia cancers (Brockunier et al., 2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]; Bogatcheva et al., 2005[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2005). J. Med. Chem. 49, 3045-3048.]). As part of our studies in this area, we now describe the structure of the title compound, C6H10N2O2.

The asymmetric unit is shown in Fig. 1[link]. The piperazine-2,3-dione ring adopts a half chair conformation, with C1 and C2 displaced from the other ring atoms by 0.279 (3) and −0.342 (3) Å, respectively. The mol­ecule possesses local C2 symmetry about an axis passing through the midpoints of the C1—C2 and C3—C4 bonds. In the crystal (Fig. 2[link]), the mol­ecules are connected by weak C2—H2A⋯O1 and C5—H5C⋯O2 hydrogen bonds (Table 1[link]) to generate (010) layers.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.97 2.49 3.419 (3) 161
C5—H5C⋯O2ii 0.96 2.54 3.481 (3) 168
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound.

A search of the Cambridge Structural Database (CSD; Version 5.43, update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed some similar structures to the title compound, including 3,6-di­benzyl­idene-1,4-di­methyl­piperazine-2,5-dione (CSD refcode IQOCEZ; Ge et al., 2019[Ge, Y., Han, Z., Wang, Z. & Ding, K. (2019). J. Am. Chem. Soc. 141, 8981-8988.]), 2,5-bis­(1-methyl-2-oxoindol-3-yl­idene)-1,4-di­methyl­piperazine-3,6-dione acetone solvate (PALVUT; Gompper et al., 1992[Gompper, R., Kellner, R. & Polborn, K. (1992). Angew. Chem. Int. Ed. Engl. 31, 1202-1205.]) and 6-(bromo­benz­yl)-3-benzyl­idene-6-erythro-hy­droxy-1,4-di­methyl­piperazine-2,5-dione (SAWSEO; Sterns et al., 1989[Sterns, M., Patrick, J. M., Patrick, V. A. & White, A. H. (1989). Aust. J. Chem. 42, 349.]).

Synthesis and crystallization

The title compound was prepared according to the literature method (Haraguchi et al., 2015[Haraguchi, R., Takada, Y. & Matsubara, S. (2015). Org. Biomol. Chem. 13, 241-247.]). Recrystallization of the solid from di­chloro­methane solution gave colorless plates, which were suitable for X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H10N2O2
Mr 142.16
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.3781 (6), 8.0050 (6), 12.1306 (8)
β (°) 99.767 (7)
V3) 706.07 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.37 × 0.32 × 0.29
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Analytical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.507, 0.578
No. of measured, independent and observed [I > 2σ(I)] reflections 2746, 1624, 1194
Rint 0.016
(sin θ/λ)max−1) 0.681
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.181, 1.07
No. of reflections 1624
No. of parameters 93
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.21
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

1,4-Dimethylpiperazine-2,3-dione top
Crystal data top
C6H10N2O2F(000) = 304
Mr = 142.16Dx = 1.337 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3781 (6) ÅCell parameters from 9307 reflections
b = 8.0050 (6) Åθ = 3.5–26.4°
c = 12.1306 (8) ŵ = 0.10 mm1
β = 99.767 (7)°T = 293 K
V = 706.07 (9) Å3Plate, colourless
Z = 40.37 × 0.32 × 0.29 mm
Data collection top
Agilent Xcalibur, Atlas, Gemini
diffractometer
1194 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
ω scansθmax = 29.0°, θmin = 3.1°
Absorption correction: analytical
(SADABS; Krause et al., 2015)
h = 108
Tmin = 0.507, Tmax = 0.578k = 105
2746 measured reflectionsl = 616
1624 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.0839P)2 + 0.2479P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1624 reflectionsΔρmax = 0.45 e Å3
93 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms were positioned geometrically (C—H = 0.96–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.4932 (2)0.2262 (2)0.62587 (12)0.0591 (5)
O10.8009 (2)0.3382 (3)0.55770 (14)0.0642 (6)
N10.6498 (2)0.3592 (2)0.38031 (14)0.0427 (5)
N20.3516 (2)0.1982 (2)0.44717 (14)0.0421 (5)
C40.6624 (3)0.3190 (3)0.48783 (16)0.0380 (5)
C30.4923 (3)0.2422 (2)0.52590 (15)0.0364 (5)
C50.7995 (4)0.4489 (4)0.3415 (2)0.0616 (7)
H5A0.8998820.4622730.4024730.092*
H5B0.7567510.5568330.3139020.092*
H5C0.8401120.3866440.2826100.092*
C10.4771 (4)0.3452 (3)0.30300 (18)0.0547 (7)
H1A0.5025200.3339210.2274770.066*
H1B0.4064080.4467180.3061770.066*
C20.3670 (4)0.2011 (3)0.32859 (19)0.0555 (6)
H2A0.2451300.2074060.2837520.067*
H2B0.4243610.0985820.3093590.067*
C60.1915 (3)0.1170 (4)0.4791 (3)0.0649 (8)
H6A0.2232400.0732670.5535470.097*
H6B0.1518820.0274840.4280370.097*
H6C0.0938140.1968980.4767370.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0637 (11)0.0816 (12)0.0319 (8)0.0121 (9)0.0082 (7)0.0062 (8)
O10.0445 (9)0.0987 (14)0.0438 (9)0.0153 (9)0.0083 (7)0.0067 (9)
N10.0455 (10)0.0500 (10)0.0318 (9)0.0055 (8)0.0045 (7)0.0017 (7)
N20.0376 (9)0.0480 (10)0.0393 (10)0.0067 (8)0.0023 (7)0.0029 (8)
C40.0358 (10)0.0455 (11)0.0307 (10)0.0003 (9)0.0004 (8)0.0013 (8)
C30.0388 (10)0.0384 (10)0.0308 (10)0.0031 (8)0.0023 (8)0.0000 (8)
C50.0650 (15)0.0706 (17)0.0544 (15)0.0116 (13)0.0250 (12)0.0023 (12)
C10.0653 (15)0.0642 (15)0.0299 (10)0.0058 (12)0.0055 (10)0.0061 (10)
C20.0572 (14)0.0649 (15)0.0377 (12)0.0054 (12)0.0113 (10)0.0033 (10)
C60.0440 (13)0.0738 (17)0.0774 (19)0.0156 (12)0.0118 (12)0.0092 (14)
Geometric parameters (Å, º) top
O2—C31.218 (2)C5—H5B0.9600
O1—C41.222 (2)C5—H5C0.9600
N1—C41.331 (3)C1—C21.474 (3)
N1—C11.452 (3)C1—H1A0.9700
N1—C51.461 (3)C1—H1B0.9700
N2—C31.333 (3)C2—H2A0.9700
N2—C61.457 (3)C2—H2B0.9700
N2—C21.462 (3)C6—H6A0.9600
C4—C31.537 (3)C6—H6B0.9600
C5—H5A0.9600C6—H6C0.9600
C4—N1—C1121.47 (18)N1—C1—C2112.27 (18)
C4—N1—C5120.23 (19)N1—C1—H1A109.2
C1—N1—C5117.27 (18)C2—C1—H1A109.2
C3—N2—C6119.7 (2)N1—C1—H1B109.2
C3—N2—C2121.30 (18)C2—C1—H1B109.2
C6—N2—C2118.05 (19)H1A—C1—H1B107.9
O1—C4—N1124.1 (2)N2—C2—C1110.93 (19)
O1—C4—C3118.12 (18)N2—C2—H2A109.5
N1—C4—C3117.77 (17)C1—C2—H2A109.5
O2—C3—N2123.9 (2)N2—C2—H2B109.5
O2—C3—C4118.32 (18)C1—C2—H2B109.5
N2—C3—C4117.82 (17)H2A—C2—H2B108.0
N1—C5—H5A109.5N2—C6—H6A109.5
N1—C5—H5B109.5N2—C6—H6B109.5
H5A—C5—H5B109.5H6A—C6—H6B109.5
N1—C5—H5C109.5N2—C6—H6C109.5
H5A—C5—H5C109.5H6A—C6—H6C109.5
H5B—C5—H5C109.5H6B—C6—H6C109.5
C1—N1—C4—O1175.3 (2)N1—C4—C3—O2170.0 (2)
C5—N1—C4—O17.2 (3)O1—C4—C3—N2170.1 (2)
C1—N1—C4—C35.3 (3)N1—C4—C3—N29.4 (3)
C5—N1—C4—C3173.39 (19)C4—N1—C1—C235.3 (3)
C6—N2—C3—O23.8 (3)C5—N1—C1—C2156.3 (2)
C2—N2—C3—O2172.4 (2)C3—N2—C2—C137.7 (3)
C6—N2—C3—C4176.84 (19)C6—N2—C2—C1153.5 (2)
C2—N2—C3—C48.3 (3)N1—C1—C2—N249.3 (3)
O1—C4—C3—O210.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.972.493.419 (3)161
C5—H5C···O2ii0.962.543.481 (3)168
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2.
 

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2005). J. Med. Chem. 49, 3045–3048.  CrossRef Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGe, Y., Han, Z., Wang, Z. & Ding, K. (2019). J. Am. Chem. Soc. 141, 8981–8988.  CrossRef CAS PubMed Google Scholar
First citationGompper, R., Kellner, R. & Polborn, K. (1992). Angew. Chem. Int. Ed. Engl. 31, 1202–1205.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaraguchi, R., Takada, Y. & Matsubara, S. (2015). Org. Biomol. Chem. 13, 241–247.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSterns, M., Patrick, J. M., Patrick, V. A. & White, A. H. (1989). Aust. J. Chem. 42, 349.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146