

ISSN 2414-3146

Received 29 August 2024 Accepted 23 September 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal Structure; half chair; hydrogen bonding.

CCDC reference: 2386002

Structural data: full structural data are available from iucrdata.iucr.org

Themmila Khamrang,^a C. Ponraj,^b Madhukar Hemamalini,^c G. Jerald Maria Antony^b* and Dhandayutham Saravanan^b

^aDepartment of Chemistry, Dhanamanjuri University, Manipur 795 001, India, ^bDepartment of Chemistry, National College, Tiruchirappalli, Tamil Nadu, India, and ^cDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India. *Correspondence e-mail: jerelewin.mine@gmail.com

In the title compound, $C_6H_{10}N_2O_2$, the piperazine-2,3-dione ring adopts a halfchair conformation. In the crystal, the molecules are linked by weak $C-H\cdots O$ hydrogen bonds, forming (010) sheets.

Structure description

Piperazine and its derivatives are found within biologically active molecules across a diverse range of therapeutic areas, including antifungal, antibacterial, antimalarial, antipsychotic, antidepressant, and antitumor applications targeting colon, prostate, breast, lung, and leukemia cancers (Brockunier *et al.*, 2004; Bogatcheva *et al.*, 2005). As part of our studies in this area, we now describe the structure of the title compound, $C_6H_{10}N_2O_2$.

The asymmetric unit is shown in Fig. 1. The piperazine-2,3-dione ring adopts a half chair conformation, with C1 and C2 displaced from the other ring atoms by 0.279 (3) and -0.342 (3) Å, respectively. The molecule possesses local C_2 symmetry about an axis passing through the midpoints of the C1-C2 and C3-C4 bonds. In the crystal (Fig. 2), the molecules are connected by weak C2-H2A···O1 and C5-H5C···O2 hydrogen bonds (Table 1) to generate (010) layers.

A search of the Cambridge Structural Database (CSD; Version 5.43, update November 2022; Groom *et al.*, 2016) revealed some similar structures to the title compound, including 3,6-dibenzylidene-1,4-dimethylpiperazine-2,5-dione (CSD refcode IQOCEZ; Ge *et al.*, 2019), 2,5-bis(1-methyl-2-oxoindol-3-ylidene)-1,4-dimethylpiperazine-3,6-dione acetone solvate (PALVUT; Gompper *et al.*, 1992) and 6-(bromobenzyl)-3-benzylidene-6-*erythro*-hydroxy-1,4-dimethylpiperazine-2,5-dione (SAWSEO; Sterns *et al.*, 1989).

Figure 1

The asymmetric unit with displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization

The title compound was prepared according to the literature method (Haraguchi *et al.*, 2015). Recrystallization of the solid from dichloromethane solution gave colorless plates, which were suitable for X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.

Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2005). J. Med. Chem. 49, 3045–3048.

Figure 2 The crystal packing of the title compound.

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C2-H2A\cdots O2^{i}$ C5-H5C\cdots O2^{ii}	0.97 0.96	2.49 2.54	3.419 (3) 3.481 (3)	161 168

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Table 2

Experimental details.

Crystal data	
Chemical formula	$C_6H_{10}N_2O_2$
M _r	142.16
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
a, b, c (Å)	7.3781 (6), 8.0050 (6), 12.1306 (8)
β (°)	99.767 (7)
$V(\dot{A}^3)$	706.07 (9)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.37 \times 0.32 \times 0.29$
Data collection	
Diffractometer	Agilent Xcalibur, Atlas, Gemini
Absorption correction	Analytical (SADABS; Krause et
	al., 2015)
T_{\min}, T_{\max}	0.507, 0.578
No. of measured, independent and	2746, 1624, 1194
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.016
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.681
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.063, 0.181, 1.07
No. of reflections	1624
No. of parameters	93
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.45, -0.21

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and PLATON (Spek, 2020).

- Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). *Bioorg. Med. Chem. Lett.* 14, 4763–4766.
- Ge, Y., Han, Z., Wang, Z. & Ding, K. (2019). J. Am. Chem. Soc. 141, 8981–8988.
- Gompper, R., Kellner, R. & Polborn, K. (1992). Angew. Chem. Int. Ed. Engl. 31, 1202–1205.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Haraguchi, R., Takada, Y. & Matsubara, S. (2015). Org. Biomol. Chem. 13, 241–247.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Sterns, M., Patrick, J. M., Patrick, V. A. & White, A. H. (1989). Aust. J. Chem. 42, 349.

full crystallographic data

IUCrData (2024). 9, x240936 [https://doi.org/10.1107/S2414314624009362]

1,4-Dimethylpiperazine-2,3-dione

Themmila Khamrang, C. Ponraj, Madhukar Hemamalini, G. Jerald Maria Antony and Dhandayutham Saravanan

F(000) = 304

 $\theta = 3.5 - 26.4^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

Plate, colourless

 $0.37 \times 0.32 \times 0.29 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.337 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9307 reflections

1,4-Dimethylpiperazine-2,3-dione

Crystal data

C₆H₁₀N₂O₂ $M_r = 142.16$ Monoclinic, $P2_1/n$ a = 7.3781 (6) Å b = 8.0050 (6) Å c = 12.1306 (8) Å $\beta = 99.767$ (7)° V = 706.07 (9) Å³ Z = 4

Data collection

Agilent Xcalibur, Atlas, Gemini	1624 independent reflections
diffractometer	1194 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.016$
ω scans	$\theta_{\rm max} = 29.0^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: analytical	$h = -10 \rightarrow 8$
(SADABS; Krause et al., 2015)	$k = -10 \rightarrow 5$
$T_{\min} = 0.507, \ T_{\max} = 0.578$	$l = -6 \rightarrow 16$
2746 measured reflections	

Refinement

Refinement on F² Hydrogen site location: inferred from neighbouring sites Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.063$ H-atom parameters constrained $wR(F^2) = 0.181$ $w = 1/[\sigma^2(F_0^2) + (0.0839P)^2 + 0.2479P]$ S = 1.07where $P = (F_0^2 + 2F_c^2)/3$ 1624 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$ 93 parameters $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms were positioned geometrically (C—H = 0.96–0.97 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O2	0.4932 (2)	0.2262 (2)	0.62587 (12)	0.0591 (5)	
01	0.8009 (2)	0.3382 (3)	0.55770 (14)	0.0642 (6)	
N1	0.6498 (2)	0.3592 (2)	0.38031 (14)	0.0427 (5)	
N2	0.3516 (2)	0.1982 (2)	0.44717 (14)	0.0421 (5)	
C4	0.6624 (3)	0.3190 (3)	0.48783 (16)	0.0380 (5)	
C3	0.4923 (3)	0.2422 (2)	0.52590 (15)	0.0364 (5)	
C5	0.7995 (4)	0.4489 (4)	0.3415 (2)	0.0616 (7)	
H5A	0.899882	0.462273	0.402473	0.092*	
H5B	0.756751	0.556833	0.313902	0.092*	
H5C	0.840112	0.386644	0.282610	0.092*	
C1	0.4771 (4)	0.3452 (3)	0.30300 (18)	0.0547 (7)	
H1A	0.502520	0.333921	0.227477	0.066*	
H1B	0.406408	0.446718	0.306177	0.066*	
C2	0.3670 (4)	0.2011 (3)	0.32859 (19)	0.0555 (6)	
H2A	0.245130	0.207406	0.283752	0.067*	
H2B	0.424361	0.098582	0.309359	0.067*	
C6	0.1915 (3)	0.1170 (4)	0.4791 (3)	0.0649 (8)	
H6A	0.223240	0.073267	0.553547	0.097*	
H6B	0.151882	0.027484	0.428037	0.097*	
H6C	0.093814	0.196898	0.476737	0.097*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
02	0.0637 (11)	0.0816 (12)	0.0319 (8)	-0.0121 (9)	0.0082 (7)	0.0062 (8)
01	0.0445 (9)	0.0987 (14)	0.0438 (9)	-0.0153 (9)	-0.0083 (7)	0.0067 (9)
N1	0.0455 (10)	0.0500 (10)	0.0318 (9)	-0.0055 (8)	0.0045 (7)	0.0017 (7)
N2	0.0376 (9)	0.0480 (10)	0.0393 (10)	-0.0067 (8)	0.0023 (7)	-0.0029 (8)
C4	0.0358 (10)	0.0455 (11)	0.0307 (10)	0.0003 (9)	-0.0004 (8)	-0.0013 (8)
C3	0.0388 (10)	0.0384 (10)	0.0308 (10)	0.0031 (8)	0.0023 (8)	0.0000 (8)
C5	0.0650 (15)	0.0706 (17)	0.0544 (15)	-0.0116 (13)	0.0250 (12)	0.0023 (12)
C1	0.0653 (15)	0.0642 (15)	0.0299 (10)	-0.0058 (12)	-0.0055 (10)	0.0061 (10)
C2	0.0572 (14)	0.0649 (15)	0.0377 (12)	-0.0054 (12)	-0.0113 (10)	-0.0033 (10)
C6	0.0440 (13)	0.0738 (17)	0.0774 (19)	-0.0156 (12)	0.0118 (12)	-0.0092 (14)

Geometric parameters (Å, °)

O2—C3	1.218 (2)	С5—Н5В	0.9600
O1—C4	1.222 (2)	C5—H5C	0.9600
N1-C4	1.331 (3)	C1—C2	1.474 (3)
N1—C1	1.452 (3)	C1—H1A	0.9700
N1C5	1.461 (3)	C1—H1B	0.9700
N2—C3	1.333 (3)	C2—H2A	0.9700
N2—C6	1.457 (3)	C2—H2B	0.9700
N2—C2	1.462 (3)	С6—Н6А	0.9600

data reports

C4—C3 C5—H5A	1.537 (3) 0.9600	C6—H6B C6—H6C	0.9600 0.9600
C4—N1—C1 C4—N1—C5 C1—N1—C5 C3—N2—C6 C3—N2—C2 C6—N2—C2 O1—C4—N1 O1—C4—C3 N1—C4—C3 O2—C3—N2 O2—C3—C4	121.47 (18) 120.23 (19) 117.27 (18) 119.7 (2) 121.30 (18) 118.05 (19) 124.1 (2) 118.12 (18) 117.77 (17) 123.9 (2) 118.32 (18)	N1C1C2 N1C1H1A C2C1H1B C2C1H1B H1AC1H1B N2C2C1 N2C2H2A C1C2H2B C1C2H2B	112.27 (18) 109.2 109.2 109.2 109.2 107.9 110.93 (19) 109.5 109.5 109.5
02—C3—C4 N2—C3—C4 N1—C5—H5A N1—C5—H5B H5A—C5—H5B N1—C5—H5C H5A—C5—H5C H5B—C5—H5C	118.32 (18) 117.82 (17) 109.5 109.5 109.5 109.5 109.5 109.5	C1C2H2B H2AC2H2B N2C6H6A N2C6H6B N2C6H6B N2C6H6C H6BC6H6C	109.5 108.0 109.5 109.5 109.5 109.5 109.5 109.5
C1—N1—C4—O1 C5—N1—C4—O1 C1—N1—C4—C3 C5—N1—C4—C3 C6—N2—C3—O2 C2—N2—C3—O2 C6—N2—C3—C4 C2—N2—C3—C4 O1—C4—C3—O2	-175.3 (2) -7.2 (3) 5.3 (3) 173.39 (19) -3.8 (3) -172.4 (2) 176.84 (19) 8.3 (3) 10.5 (3)	N1-C4-C3-O2 O1-C4-C3-N2 N1-C4-C3-N2 C4-N1-C1-C2 C5-N1-C1-C2 C3-N2-C2-C1 C6-N2-C2-C1 N1-C1-C2-N2	-170.0 (2) -170.1 (2) 9.4 (3) -35.3 (3) 156.3 (2) -37.7 (3) 153.5 (2) 49.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
C2— $H2A$ ···O2 ⁱ	0.97	2.49	3.419 (3)	161
C5—H5 <i>C</i> ···O2 ⁱⁱ	0.96	2.54	3.481 (3)	168

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) x+1/2, -y+1/2, z-1/2.