inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ti4Fe2C0.82O0.18

crossmark logo

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, bHebei Key Lab for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, People's Republic of China, and cSchool of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 March 2024; accepted 11 September 2024; online 30 September 2024)

The phase with composition Ti4Fe2C0.82O0.18, tetra­titanium diiron carbide oxide, was unexpectedly synthesized by high-pressure sinter­ing (HPS) of a stoichiometric mixture with nominal composition Ti2Fe. The Ti4Fe2C0.82O0.18 phase crystallizes in the Fd[\overline{3}]m space group and can be considered as the Ti2Fe structure filled with C and O atoms co-occupying the same octa­hedral void [occupancy ratio 0.82 (7):0.18 (7)]. The Ti4Fe2C0.82O0.18 phase is isotypic with Ti4Ni2C and Ti4Fe2O0.407, and is the first example where C and O atoms co-occupy the same site in filled Ti2Fe structures.

3D view (loading...)
[Scheme 3D1]

Structure description

Inter­metallic phases usually are classified by structural or chemical similarities. For example, Duwez & Taylor (1950[Duwez, P. & Taylor, J. L. (1950). Trans AIME. Journal of Metals, 188, 1173-1176.]) investigated the crystal structure of Ti2Fe on the basis of X-ray powder data. They determined that the Ti2Fe phase crystallizes in a face centered cubic (f.c.c.) unit cell, with cell parameter a = 11.305 Å and with 96 atoms per unit cell. The related crystal structure of cubic Ti4Fe2O0.407 was refined on the basis of neutron powder diffraction, affording the cell parameter a = 11.3326 (5) Å in space group Fd[\overline{3}]m with Ti on position 48 f and on 16 d, Fe on 32 e and O (with a site occupation factor of 0.407) on 16 c (Rupp & Fischer, 1988[Rupp, B. & Fischer, P. (1988). J. Less-Common Met. 144, 275-281.]). Liu et al. (2024[Liu, H., Liang, X., Liu, Y., Fan, C., Wen, B. & Zhang, L. (2024). IUCrData, 9, x240043.]) reported the isotypic crystal structure of Ti4Ni2C [a = 11.3235 (8) Å] by using single-crystal X-ray diffraction (SXRD) measurements. The latter phase can be considered as a partially filled Ti2Ni structure with the C atom occupying an octa­hedral void. Holleck & Thummler (1967[Holleck, H. & Thummler, F. (1967). Monatshefte f?r Chemie, 98, 133-134.]) studied a series of carbides, nitrides and oxides in ternary systems including Nb4Ni2C (a = 11.64 Å) and Ta4Ni2C (a =11.61 Å) phases. Although the title Ti4Fe2C0.82O0.18 phase is isotypic with Ti4Ni2C and Ti4Fe2O0.407, no detailed study has been performed so far with respect to a phase where C and O atoms co-occupy the same site. The carbon present in the crystal structure of Ti4Fe2C0.82O0.18 most likely originated from the graphite crucible used during high pressure sinter­ing (HPS), whereas oxygen may be incorporated due to surface oxidation during sample storage and subsequent HPS.

Ti4Fe2C0.82O0.18 crystallizes isotypically with Ti4Fe2O0.407 and Ti4Ni2C in a partially filled Ti2Fe structure in space group type Fd[\overline{3}]m. Fig. 1[link] shows the distribution of the atoms in the the unit cell of Ti4Fe2C0.82O0.18. The environments of the Ti1 and (C1/O1) sites are shown in Figs. 2[link] and 3[link], respectively. The Ti1 atom is situated at a position with site symmetry .[\overline{3}]m (multiplicity 16, Wyckoff letter c). It is surrounded by six Ti2 atoms (2.mm, 48 f) and six Fe1 atoms (.3m, 32 e), defining the center of an icosa­hedron. The (C1/O1) atoms co-occupy a position with site symmetry .[\overline{3}]m (16 d) and center an octa­hedron defined by six Ti2 atoms. The shortest Ti1 to Ti2 separation is 2.9084 (10) Å and the shortest Ti1 to Fe1 separation is 2.4650 (4) Å; the (C1/O1)—Ti2 bond length is 2.1273 (5) Å.

[Figure 1]
Figure 1
The crystal structure of Ti4Fe2C0.82O0.18, with displacement ellipsoids drawn at the 99.9% probability level.
[Figure 2]
Figure 2
(a) The icosa­hedron formed around the Ti1 atom at the 16 c site; (b) the environment of the Ti1 atom with displacement ellipsoids drawn at the 99.9% probability level. [Symmetry codes: (i) −x, y − [{1\over 4}], z − [{1\over 4}]; (ii) x, −y + [{1\over 4}], −z + [{1\over 4}]; (iii) −x + [{1\over 4}], −y + [{1\over 4}], z; (iv) −x + [{1\over 4}], y, −z + [{1\over 4}]; (v) x − [{1\over 4}], −y, z − [{1\over 4}]; (vi) x − [{1\over 4}], y − [{1\over 4}], −z; (vii) y − [{1\over 4}], −z, x − [{1\over 4}]; (viii) z, −x + [{1\over 4}], −y + [{1\over 4}]; (ix) −z, x − [{1\over 4}], y − [{1\over 4}]; (x) −y + [{1\over 4}], z, −x + [{1\over 4}].]
[Figure 3]
Figure 3
(a) The octa­hedron formed around the (C1/O1) atoms at the 16 d site; (b) the environment of the (C1/O1) atoms with displacement ellipsoids drawn at the 99.9% probability level. [Symmetry codes: (xvi) −z + [{1\over 2}], −x + 1, −y + [{1\over 2}]; (xvii) z + [{1\over 2}], x, y + [{1\over 2}]; (xviii) x, y + [{1\over 2}], z + [{1\over 2}]; (xix) −x + 1, −y + [{1\over 2}], −z + [{1\over 2}]; (xx) −y + [{1\over 2}], −z + [{1\over 2}], −x + 1; (xxi) y + [{1\over 2}], z + [{1\over 2}], x.]

Synthesis and crystallization

Pure titanium powder (indicated purity 99.5%, 0.6312 g) and iron powder (indicated purity 99.9%, 0.3693 g) were evenly mixed according to the stoichiometric ratio of 2:1 and thoroughly ground in an agate mortar. The mixed powder was put into a 5 mm cemented carbide grinding mould and pressed into a tablet at about 6 MPa for 2 min to obtain a cylindrical block without deformations or cracks. Details of the high-pressure sinter­ing experiment using a six-anvil high-temperature and high-pressure apparatus can be found elsewhere (Liu & Fan, 2018[Liu, C. & Fan, C. (2018). IUCrData, 3, x180363.]). The sample was pressurized up to 6 GPa and heated to 1473 K for 20 minutes, cooled to 1173 K, held at the temperature for 1 h, and then the furnace power was turned off to rapidly cool to room temperature. Different phases were isolated from two samples from the same batch. Ti4Fe2C0.82O0.18 originated from sample 1, together with TiFe. The refined chemical formula of Ti4Fe2C0.82O0.18 from sample 1 is in accordance with the complementary EDX results (see Table S1 of the electronic supporting information, ESI). Another phase with very similar refined composition, Ti4Fe2C0.87O0.13, was isolated from sample 2, and its composition is also in accordance with the complementary EDX results (see Table S2 of the ESI). Different options for refinements for the two phases Ti4Fe2C1-δOδ (δ = 0.18; δ = 0.13) are listed in Table S3 of the ESI. The crystal structures of Ti4Fe2C0.82O0.18 and Ti4Fe2C0.87O0.13 are very similar, just different in atomic proportions at the 16 d site, so the Ti4Fe2C0.82O0.18 phase was selected for the current report. Structural data for Ti4Fe2C0.87O0.13 can be found in Table S4 of the ESI.

Refinement

Crystal data, data collection and structure refinement details of Ti4Fe2C0.82O0.18 are summarized in Table 1[link]. The labeling scheme and atomic coordinates of Ti4Fe2C0.82O0.18 were adapted from Ti4Ni2C for better comparison (Liu et al., 2024[Liu, H., Liang, X., Liu, Y., Fan, C., Wen, B. & Zhang, L. (2024). IUCrData, 9, x240043.]). The 16 d site is co-occupied by C and O atoms, with site occupancies refined to 0.82 (7) for C1 and 0.18 (7) for O1, assuming full occupancy. Both atoms were refined with the same displacement parameters. The maximum and minimum residual electron densities in the final difference map are located 1.16 Å from site Fe1 and 1.67 Å from Fe1, respectively.

Table 1
Experimental details

Crystal data
Chemical formula Ti4Fe2C0.82O0.18
Mr 316.02
Crystal system, space group Cubic, Fd[\overline{3}]m
Temperature (K) 296
a (Å) 11.323 (4)
V3) 1451.6 (3)
Z 16
Radiation type Mo Kα
μ (mm−1) 15.91
Crystal size (mm) 0.10 × 0.06 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.429, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 5363, 102, 82
Rint 0.155
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.040, 1.14
No. of reflections 102
No. of parameters 13
Δρmax, Δρmin (e Å−3) 0.58, −0.83
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2017[Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Tetratitanium diiron carbide oxide top
Crystal data top
Ti4Fe2C0.82O0.18Mo Kα radiation, λ = 0.71073 Å
Mr = 316.02Cell parameters from 1378 reflections
Cubic, Fd3mθ = 3.1–26.7°
a = 11.323 (4) ŵ = 15.91 mm1
V = 1451.6 (3) Å3T = 296 K
Z = 16Lump, gray
F(000) = 23420.10 × 0.06 × 0.06 mm
Dx = 5.784 Mg m3
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
82 reflections with I > 2σ(I)
phi and ω scansRint = 0.155
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.2°, θmin = 3.1°
Tmin = 0.429, Tmax = 0.746h = 1414
5363 measured reflectionsk = 1314
102 independent reflectionsl = 1414
Refinement top
Refinement on F213 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0069P)2 + 29.2966P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.040(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.58 e Å3
102 reflectionsΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.0000000.0000000.0000000.0018 (5)
Fe10.21037 (6)0.21037 (6)0.21037 (6)0.0028 (4)
Ti20.43636 (12)0.1250000.1250000.0021 (4)
C10.5000000.5000000.5000000.012 (4)0.82 (7)
O10.5000000.5000000.5000000.012 (4)0.18 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0018 (5)0.0018 (5)0.0018 (5)0.0004 (6)0.0004 (6)0.0004 (6)
Fe10.0028 (4)0.0028 (4)0.0028 (4)0.0007 (3)0.0007 (3)0.0007 (3)
Ti20.0033 (8)0.0016 (5)0.0016 (5)0.0000.0000.0010 (5)
C10.012 (4)0.012 (4)0.012 (4)0.002 (4)0.002 (4)0.002 (4)
O10.012 (4)0.012 (4)0.012 (4)0.002 (4)0.002 (4)0.002 (4)
Geometric parameters (Å, º) top
Ti1—Fe1i2.4650 (4)Fe1—Ti2xiii2.6501 (10)
Ti1—Fe1ii2.4650 (4)Fe1—Fe1iii2.734 (2)
Ti1—Fe1iii2.4650 (4)Fe1—Fe1ii2.734 (2)
Ti1—Fe1iv2.4650 (4)Fe1—Fe1iv2.734 (2)
Ti1—Fe1v2.4650 (4)Fe1—Ti22.9011 (12)
Ti1—Fe1vi2.4650 (4)Fe1—Ti2xiv2.9011 (12)
Ti1—Ti2vii2.9084 (10)Fe1—Ti2xv2.9011 (12)
Ti1—Ti2iii2.9084 (10)Ti2—C1xvi2.1273 (5)
Ti1—Ti2vi2.9084 (10)Ti2—C1xvii2.1273 (5)
Ti1—Ti2viii2.9084 (10)Ti2—Ti2xviii2.9963 (6)
Ti1—Ti2ix2.9084 (10)Ti2—Ti2xix2.9963 (6)
Ti1—Ti2x2.9084 (10)Ti2—Ti2xi2.9963 (6)
Fe1—Ti2xi2.6501 (10)Ti2—Ti2xii2.9963 (6)
Fe1—Ti2xii2.6501 (10)
Fe1i—Ti1—Fe1ii180.0Ti2xi—Fe1—Ti2xiv65.152 (14)
Fe1i—Ti1—Fe1iii112.64 (4)Ti2xii—Fe1—Ti2xiv124.00 (6)
Fe1ii—Ti1—Fe1iii67.36 (4)Ti2xiii—Fe1—Ti2xiv65.152 (14)
Fe1i—Ti1—Fe1iv112.64 (4)Fe1iii—Fe1—Ti2xiv112.83 (2)
Fe1ii—Ti1—Fe1iv67.36 (4)Fe1ii—Fe1—Ti2xiv112.83 (2)
Fe1iii—Ti1—Fe1iv67.36 (4)Fe1iv—Fe1—Ti2xiv61.89 (3)
Fe1i—Ti1—Fe1v67.36 (4)Ti2—Fe1—Ti2xiv118.474 (12)
Fe1ii—Ti1—Fe1v112.64 (4)Ti1ii—Fe1—Ti2xv65.047 (6)
Fe1iii—Ti1—Fe1v112.64 (4)Ti1iii—Fe1—Ti2xv166.80 (5)
Fe1iv—Ti1—Fe1v180.0Ti1iv—Fe1—Ti2xv65.047 (6)
Fe1i—Ti1—Fe1vi67.36 (4)Ti2xi—Fe1—Ti2xv124.00 (6)
Fe1ii—Ti1—Fe1vi112.64 (4)Ti2xii—Fe1—Ti2xv65.152 (14)
Fe1iii—Ti1—Fe1vi180.0Ti2xiii—Fe1—Ti2xv65.152 (14)
Fe1iv—Ti1—Fe1vi112.64 (4)Fe1iii—Fe1—Ti2xv61.89 (3)
Fe1v—Ti1—Fe1vi67.36 (4)Fe1ii—Fe1—Ti2xv112.83 (2)
Fe1i—Ti1—Ti2vii64.739 (17)Fe1iv—Fe1—Ti2xv112.83 (2)
Fe1ii—Ti1—Ti2vii115.261 (17)Ti2—Fe1—Ti2xv118.474 (12)
Fe1iii—Ti1—Ti2vii58.40 (3)Ti2xiv—Fe1—Ti2xv118.474 (12)
Fe1iv—Ti1—Ti2vii115.261 (17)C1xvi—Ti2—C1xvii140.40 (7)
Fe1v—Ti1—Ti2vii64.739 (17)C1xvi—Ti2—Fe1xx88.009 (14)
Fe1vi—Ti1—Ti2vii121.60 (3)C1xvii—Ti2—Fe1xx88.009 (14)
Fe1i—Ti1—Ti2iii58.40 (3)C1xvi—Ti2—Fe1xxi88.009 (14)
Fe1ii—Ti1—Ti2iii121.60 (3)C1xvii—Ti2—Fe1xxi88.009 (14)
Fe1iii—Ti1—Ti2iii64.739 (17)Fe1xx—Ti2—Fe1xxi168.22 (7)
Fe1iv—Ti1—Ti2iii64.739 (17)C1xvi—Ti2—Fe1ii137.91 (5)
Fe1v—Ti1—Ti2iii115.261 (17)C1xvii—Ti2—Fe1ii81.68 (3)
Fe1vi—Ti1—Ti2iii115.261 (17)Fe1xx—Ti2—Fe1ii95.19 (3)
Ti2vii—Ti1—Ti2iii62.010 (9)Fe1xxi—Ti2—Fe1ii95.19 (3)
Fe1i—Ti1—Ti2vi121.60 (3)C1xvi—Ti2—Fe181.69 (3)
Fe1ii—Ti1—Ti2vi58.40 (3)C1xvii—Ti2—Fe1137.91 (5)
Fe1iii—Ti1—Ti2vi115.261 (17)Fe1xx—Ti2—Fe195.19 (3)
Fe1iv—Ti1—Ti2vi115.261 (17)Fe1xxi—Ti2—Fe195.19 (3)
Fe1v—Ti1—Ti2vi64.739 (17)Fe1ii—Ti2—Fe156.23 (6)
Fe1vi—Ti1—Ti2vi64.739 (17)C1xvi—Ti2—Ti1iv104.226 (19)
Ti2vii—Ti1—Ti2vi117.990 (9)C1xvii—Ti2—Ti1iv104.226 (19)
Ti2iii—Ti1—Ti2vi180.0Fe1xx—Ti2—Ti1iv52.40 (2)
Fe1i—Ti1—Ti2viii115.261 (17)Fe1xxi—Ti2—Ti1iv139.38 (5)
Fe1ii—Ti1—Ti2viii64.739 (17)Fe1ii—Ti2—Ti1iv50.21 (2)
Fe1iii—Ti1—Ti2viii64.739 (17)Fe1—Ti2—Ti1iv50.21 (2)
Fe1iv—Ti1—Ti2viii121.60 (3)C1xvi—Ti2—Ti1iii104.226 (19)
Fe1v—Ti1—Ti2viii58.40 (3)C1xvii—Ti2—Ti1iii104.226 (19)
Fe1vi—Ti1—Ti2viii115.261 (17)Fe1xx—Ti2—Ti1iii139.38 (5)
Ti2vii—Ti1—Ti2viii62.010 (9)Fe1xxi—Ti2—Ti1iii52.40 (2)
Ti2iii—Ti1—Ti2viii117.990 (9)Fe1ii—Ti2—Ti1iii50.21 (2)
Ti2vi—Ti1—Ti2viii62.010 (9)Fe1—Ti2—Ti1iii50.21 (2)
Fe1i—Ti1—Ti2ix64.739 (17)Ti1iv—Ti2—Ti1iii86.98 (4)
Fe1ii—Ti1—Ti2ix115.261 (17)C1xvi—Ti2—Ti2xviii149.47 (3)
Fe1iii—Ti1—Ti2ix115.261 (17)C1xvii—Ti2—Ti2xviii45.23 (2)
Fe1iv—Ti1—Ti2ix58.40 (3)Fe1xx—Ti2—Ti2xviii121.68 (3)
Fe1v—Ti1—Ti2ix121.60 (3)Fe1xxi—Ti2—Ti2xviii61.47 (2)
Fe1vi—Ti1—Ti2ix64.739 (17)Fe1ii—Ti2—Ti2xviii53.38 (3)
Ti2vii—Ti1—Ti2ix117.990 (9)Fe1—Ti2—Ti2xviii100.81 (3)
Ti2iii—Ti1—Ti2ix62.010 (9)Ti1iv—Ti2—Ti2xviii100.29 (4)
Ti2vi—Ti1—Ti2ix117.990 (9)Ti1iii—Ti2—Ti2xviii58.995 (4)
Ti2viii—Ti1—Ti2ix180.0C1xvi—Ti2—Ti2xix149.47 (3)
Fe1i—Ti1—Ti2x115.261 (17)C1xvii—Ti2—Ti2xix45.23 (2)
Fe1ii—Ti1—Ti2x64.739 (17)Fe1xx—Ti2—Ti2xix61.47 (2)
Fe1iii—Ti1—Ti2x121.60 (3)Fe1xxi—Ti2—Ti2xix121.68 (3)
Fe1iv—Ti1—Ti2x64.739 (17)Fe1ii—Ti2—Ti2xix53.38 (3)
Fe1v—Ti1—Ti2x115.261 (17)Fe1—Ti2—Ti2xix100.81 (3)
Fe1vi—Ti1—Ti2x58.40 (3)Ti1iv—Ti2—Ti2xix58.995 (4)
Ti2vii—Ti1—Ti2x180.0Ti1iii—Ti2—Ti2xix100.29 (4)
Ti2iii—Ti1—Ti2x117.990 (9)Ti2xviii—Ti2—Ti2xix60.54 (6)
Ti2vi—Ti1—Ti2x62.010 (9)C1xvi—Ti2—Ti2xi45.23 (2)
Ti2viii—Ti1—Ti2x117.990 (9)C1xvii—Ti2—Ti2xi149.47 (3)
Ti2ix—Ti1—Ti2x62.010 (9)Fe1xx—Ti2—Ti2xi121.68 (3)
Ti1ii—Fe1—Ti1iii108.58 (3)Fe1xxi—Ti2—Ti2xi61.47 (2)
Ti1ii—Fe1—Ti1iv108.58 (3)Fe1ii—Ti2—Ti2xi100.81 (3)
Ti1iii—Fe1—Ti1iv108.58 (3)Fe1—Ti2—Ti2xi53.38 (3)
Ti1ii—Fe1—Ti2xi124.77 (2)Ti1iv—Ti2—Ti2xi100.29 (4)
Ti1iii—Fe1—Ti2xi69.20 (3)Ti1iii—Ti2—Ti2xi58.995 (4)
Ti1iv—Fe1—Ti2xi124.77 (2)Ti2xviii—Ti2—Ti2xi112.60 (3)
Ti1ii—Fe1—Ti2xii124.77 (2)Ti2xix—Ti2—Ti2xi153.19 (5)
Ti1iii—Fe1—Ti2xii124.77 (2)C1xvi—Ti2—Ti2xii45.23 (2)
Ti1iv—Fe1—Ti2xii69.20 (3)C1xvii—Ti2—Ti2xii149.47 (3)
Ti2xi—Fe1—Ti2xii69.49 (5)Fe1xx—Ti2—Ti2xii61.47 (2)
Ti1ii—Fe1—Ti2xiii69.20 (3)Fe1xxi—Ti2—Ti2xii121.68 (3)
Ti1iii—Fe1—Ti2xiii124.77 (2)Fe1ii—Ti2—Ti2xii100.81 (3)
Ti1iv—Fe1—Ti2xiii124.77 (2)Fe1—Ti2—Ti2xii53.38 (3)
Ti2xi—Fe1—Ti2xiii69.49 (5)Ti1iv—Ti2—Ti2xii58.995 (4)
Ti2xii—Fe1—Ti2xiii69.49 (5)Ti1iii—Ti2—Ti2xii100.29 (4)
Ti1ii—Fe1—Fe1iii56.32 (2)Ti2xviii—Ti2—Ti2xii153.19 (5)
Ti1iii—Fe1—Fe1iii104.92 (3)Ti2xix—Ti2—Ti2xii112.60 (3)
Ti1iv—Fe1—Fe1iii56.32 (2)Ti2xi—Ti2—Ti2xii60.54 (6)
Ti2xi—Fe1—Fe1iii174.11 (3)Ti2xxii—C1—Ti2xxiii180.0
Ti2xii—Fe1—Fe1iii115.14 (3)Ti2xxii—C1—Ti2xxiv89.54 (5)
Ti2xiii—Fe1—Fe1iii115.14 (3)Ti2xxiii—C1—Ti2xxiv90.46 (5)
Ti1ii—Fe1—Fe1ii104.92 (3)Ti2xxii—C1—Ti2xxv90.46 (5)
Ti1iii—Fe1—Fe1ii56.32 (2)Ti2xxiii—C1—Ti2xxv89.54 (5)
Ti1iv—Fe1—Fe1ii56.32 (2)Ti2xxiv—C1—Ti2xxv180.0
Ti2xi—Fe1—Fe1ii115.14 (3)Ti2xxii—C1—Ti2xxvi90.46 (5)
Ti2xii—Fe1—Fe1ii115.14 (3)Ti2xxiii—C1—Ti2xxvi89.54 (5)
Ti2xiii—Fe1—Fe1ii174.11 (3)Ti2xxiv—C1—Ti2xxvi89.54 (5)
Fe1iii—Fe1—Fe1ii60.0Ti2xxv—C1—Ti2xxvi90.46 (5)
Ti1ii—Fe1—Fe1iv56.32 (2)Ti2xxii—C1—Ti2xxvii89.54 (5)
Ti1iii—Fe1—Fe1iv56.32 (2)Ti2xxiii—C1—Ti2xxvii90.46 (5)
Ti1iv—Fe1—Fe1iv104.92 (3)Ti2xxiv—C1—Ti2xxvii90.46 (5)
Ti2xi—Fe1—Fe1iv115.14 (3)Ti2xxv—C1—Ti2xxvii89.54 (5)
Ti2xii—Fe1—Fe1iv174.11 (3)Ti2xxvi—C1—Ti2xxvii180.0
Ti2xiii—Fe1—Fe1iv115.14 (3)Ti2xxii—O1—Ti2xxiii180.0
Fe1iii—Fe1—Fe1iv60.0Ti2xxii—O1—Ti2xxiv89.54 (5)
Fe1ii—Fe1—Fe1iv60.0Ti2xxiii—O1—Ti2xxiv90.46 (5)
Ti1ii—Fe1—Ti2166.80 (5)Ti2xxii—O1—Ti2xxv90.46 (5)
Ti1iii—Fe1—Ti265.047 (6)Ti2xxiii—O1—Ti2xxv89.54 (5)
Ti1iv—Fe1—Ti265.047 (6)Ti2xxiv—O1—Ti2xxv180.0
Ti2xi—Fe1—Ti265.152 (14)Ti2xxii—O1—Ti2xxvi90.46 (5)
Ti2xii—Fe1—Ti265.152 (14)Ti2xxiii—O1—Ti2xxvi89.54 (5)
Ti2xiii—Fe1—Ti2124.00 (6)Ti2xxiv—O1—Ti2xxvi89.54 (5)
Fe1iii—Fe1—Ti2112.83 (2)Ti2xxv—O1—Ti2xxvi90.46 (5)
Fe1ii—Fe1—Ti261.89 (3)Ti2xxii—O1—Ti2xxvii89.54 (5)
Fe1iv—Fe1—Ti2112.83 (2)Ti2xxiii—O1—Ti2xxvii90.46 (5)
Ti1ii—Fe1—Ti2xiv65.047 (6)Ti2xxiv—O1—Ti2xxvii90.46 (5)
Ti1iii—Fe1—Ti2xiv65.047 (6)Ti2xxv—O1—Ti2xxvii89.54 (5)
Ti1iv—Fe1—Ti2xiv166.80 (5)Ti2xxvi—O1—Ti2xxvii180.0
Symmetry codes: (i) x, y1/4, z1/4; (ii) x, y+1/4, z+1/4; (iii) x+1/4, y+1/4, z; (iv) x+1/4, y, z+1/4; (v) x1/4, y, z1/4; (vi) x1/4, y1/4, z; (vii) y1/4, z, x1/4; (viii) z, x+1/4, y+1/4; (ix) z, x1/4, y1/4; (x) y+1/4, z, x+1/4; (xi) y+1/4, z+1/2, x1/4; (xii) z+1/2, x1/4, y+1/4; (xiii) x1/4, y+1/4, z+1/2; (xiv) z, x, y; (xv) y, z, x; (xvi) x, y+3/4, z+3/4; (xvii) x, y1/2, z1/2; (xviii) z+1/2, x+1/2, y; (xix) y+1/2, z, x+1/2; (xx) x+1/4, y1/4, z+1/2; (xxi) x+1/4, y+1/2, z1/4; (xxii) z+1/2, x+1, y+1/2; (xxiii) z+1/2, x, y+1/2; (xxiv) x, y+1/2, z+1/2; (xxv) x+1, y+1/2, z+1/2; (xxvi) y+1/2, z+1/2, x+1; (xxvii) y+1/2, z+1/2, x.
 

Acknowledgements

The authors are indebted to Dr Bing Zhang from State Key Laboratory of Metastable Materials Science and Technology, Yanshan University for assistance in performing the SEM/EDX measurements.

Funding information

Funding for this research was provided by: The National Natural Science Foundation of China (grant Nos. 52173231 and 51925105); Hebei Natural Science Foundation (grant No. E2022203182); The Innovation Ability Promotion Project of Hebei supported by Hebei Key Lab for Optimizing Metal Product Technology and Performance (grant No. 22567609H).

References

First citationBrandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.  Google Scholar
First citationDuwez, P. & Taylor, J. L. (1950). Trans AIME. Journal of Metals, 188, 1173–1176.  CAS Google Scholar
First citationHolleck, H. & Thummler, F. (1967). Monatshefte f?r Chemie, 98, 133–134.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, C. & Fan, C. (2018). IUCrData, 3, x180363.  Google Scholar
First citationLiu, H., Liang, X., Liu, Y., Fan, C., Wen, B. & Zhang, L. (2024). IUCrData, 9, x240043.  Google Scholar
First citationRupp, B. & Fischer, P. (1988). J. Less-Common Met. 144, 275–281.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146