metal-organic compounds
Bis[μ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)]
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam-613403, Thanjavur, Tamil Nadu, India
*Correspondence e-mail: l.nagarajan@bdu.ac.in
The title compound, [Ni2(C8H6N3)2(C2H3O2)2(C5H8N2)2] or [Ni(μ-OOCCH3)(2-PyPz)(Me2PzH)]2 (1) [2-PyPz = 3-(pyridin-2-yl) pyrazole; Me2PzH = 3,5-dimethyl pyrazole] was synthesized from Ni(OOCCH3)2·4H2O, 2-PyPzH, Me2PzH and triethylamine as a base. Compound 1 {[Ni2(C30H34N10Ni2O4)]} at 100 K has monoclinic (P21/n) symmetry and the molecules have crystallographic inversion symmetry. Molecules of 1 comprise an almost planar dinuclear NiII core with an N4O2 coordination environment. The equatorial plane consists of N3,O coordination derived from one of the bidentate acetate O atoms and three of the N atoms of the chelating 2-PyPz ligand while the axial positions are occupied by neutral Me2PzH and the second O atom of the acetate unit. The Ni atoms are bridged by the nitrogen atom of a deprotonated 2-PyPz ligand. Compound 1 exhibits various inter- and intramolecular C—H⋯O and N—H⋯O hydrogen bonds.
Keywords: coordination compound; nickel; 3,5-dimethylpyrazole; 3-(pyridin-2-yl) pyrazole; heteroleptic complex; crystal structure.
CCDC reference: 2346359
Structure description
Noble metals such as palladium, platinum or iridium are widely used in catalysis due to their desirable properties such as the ability to tolerate variable coordination states and oxidation states that predispose them towards catalysing two-electron redox processes, while at the same time also being sufficiently stable and thermally stable to be of practical use. A major drawback is, however, their high price and limited availability. As an alternative to scarce 4 and 5d metals, their more earth-abundant 3d congeners have been investigated, and in particular several nickel-catalysed organic transformation strategies were developed and established (Wilke, 1988; Keim, 1990; Montgomery, 2004; Tasker et al., 2014; Diccianni et al., 2020). These include C—C and C—X (X = heteroatom) cross-coupling (Rosen et al., 2011), cycloaddition (Lautens et al., 1996; Komagawa et al., 2013), asymmetric hydrogenation (Vermaak et al., 2024), photo-redox catalysis (Milligan et al., 2019; Cuesta-Galisteo et al., 2024), reductive coupling (Day et al., 2023) and reductive reactions (Montgomery, 2004) to name just a few. The inability of nickel to catalyse two-electron transformations can be overcome by the placement of more than one metal atom at the catalytic centre, and dinuclear nickel complexes show an enhanced and a higher robustness that can be traced back to the synergistic interaction between the two metals in the active site (Uyeda & Farley 2021; Xu et al., 2020). Nickel is also a micronutrient and essential for the biosynthesis of hydrogenase, carbon monoxide dehydrogenase (CODH) and urease. These enzymes require more than one metal active site to catalyse the enzymatic process. This also substantiates the crucial role of the presence of more than one metal centre for 3d-metal-based catalysts.
We are interested in synthesizing dimeric NiII complexes utilizing chelating ligands such as 2-PyPzH [3-(2-pyridyl)pyrazole, C8H7N3]. The use of pyrazole ligands in coordination and organometallic chemistry is well established (Trofimenko, 1972; Mukherjee, 2000; Halcrow, 2009; Viciano-Chumillas et al., 2010). 2-PyPzH usually forms planar dimeric [M(μ-2-PyPz)2]2 units that are thermally stable. Copper-based dimeric complexes with a {[Cu(μ-2-PyPz)2]2}n core have been described (Jeffery et al., 1997; Hu et al., 2006; Das et al., 2019). However, to the best of our knowledge, the analogous nickel complex with an [Ni(μ-2-PyPz)2]n core is unknown. Thus, a reaction was carried out between nickel(II)acetate tetrahydrate, 2-PyPzH as the primary ligand and highly lipophilic 3,5-dimethylpyrazole (Me2PzH) as an ancillary ligand and a small excess of triethylamine base in methanol solvent. This was done in a 1:1:5:3.5 ratio, which resulted in the formation of a green solid, which was then recrystallized from methanol solvent to obtain blue crystals of [Ni2(μ-OOCCH3)2(2-PyPz)2(Me2PzH)2] (1). Interestingly, the initial reaction between nickel(II)acetate tetrahydrate, 2-PyPzH and triethylamine base in a 1:1:1.5 stoichiometry failed and led to an intractable mixture. However, the addition of a large excess of Me2PzH allowed us to isolate the soluble molecular assembly of 1 (Fig. 1).
Compound 1 crystallizes in the monoclinic P21/n in which the contains half of the molecule. Compound 1 is a dinuclear heteroleptic nickel(II) complex consisting of two each of anionic 2-PyPz, anionic CH3COO− and neutral Me2PzH ligands and the complex molecules have crystallographic inversion symmetry. Overall, the two nickel atoms (Ni1 and Ni1i) are bridged through the 2-PyPz ligand and each Ni atom has an N4O2 octahedral coordination environment around it. The three N-donors (N1, N2 and N3i) are derived from the 2-PyPz unit, which forms the basal plane of the dimer while the fourth N-coordination (N4) is obtained from the axial neutral Me2PzH ligand. The acetate ligand (O1 and O2) exhibits a syn–syn symmetric binding mode (κ2 mode) in which O2 is in the equatorial position while the sixth axial position is occupied by O1.
The following is a summary of the bonding parameters found in compound 1 in which each Ni atom exhibits three different Ni—N distances and two different Ni—O distances. The Ni—N distance involving the anionic pyrazole unit is shorter [Ni1—N2 = 2.0245 (12); Ni1—N3i = 2.0409 (13) Å] compared to the pyridinic N of 2-PyPz [Ni1—N1 = 2.0964 (13) Å] and the neutral Me2PzH ligand [Ni1—N4 = 2.0884 (12) Å]. Additionally, the axial Ni—O distances are longer [Ni1—O1 = 2.1848 (11) Å] than the equatorial distance [Ni1— O2 = 2.1232 (11) Å]. Furthermore, the C—O distances are not equal [C14—O1 = 1.2576 (19); C14—O2 = 1.2641 (19) Å]. It is noteworthy that the dimeric [Ni(μ-2-PyPz)(COOCH3)]2 unit is almost planar, with the two basal trans angles being less than 180° [O1—Ni1—N4 = 170.18 (5); N1—Ni1—N3i = 177.68 (5)°]. The angle between the two apical positions is the most acute [O2—Ni1—N2 = 157.80 (5)°]. Finally, of the twelve right angles around Ni1, seven are closer to 90° [average O—Ni—N = 89.16 (4) and average N—Ni—N = 91.03 (6)°], and the remaining three are obtuse [N2—Ni1—N3i = 100.88 (5); O1—Ni1—N2 = 99.02 (5); O2—Ni1—N4 = 109.07 (5)°].
Compound 1 exhibits several intra- and intermolecular hydrogen bonds (Table 1, Fig. 2), with atom N6 of Me2PzH forming intramolecular hydrogen bonds with O1 of the acetate (N6—H6⋯O1i and the reciprocal N6i—H6i⋯O1 3.0800 (17) Å; symmetry code: (i) −x, −y, −z + 1), with N2 [N6—H6⋯N2 2.9931 (18) Å] and N3 [N6—H6⋯N3 3.3065 (18) Å] of 2-PyPz, while the two O atoms of acetate (O1 and O2) interact with the pyridine C—H of 2-PyPz and pyrazolyl C—H of Me2PzH. Thus, the hydrogen bonding between C2—H2⋯O2ii [3.2692 (19) Å; symmetry code: (ii) −x + , y + , −z + ] and C4—H4⋯O1iii [3.4696 (19) Å; symmetry code: (iii) −x, −y + 1, −z + 1] are intermolecular in nature while the C9—H9C⋯O1i [3.426 (2) Å], C1—H1⋯O2 [3.1281 (19) Å] and C13—H13B⋯O2 [3.530 (2) Å] are of intramolecular type.
Synthesis and crystallization
0.5 mmol of Ni(OOCCH3)2·4H2O (0.1244 g) was dissolved in 30 ml of methanol. Then, 0.5 mmol of 2-PyPzH (0.0726 g) and 0.79 mmol of triethylamine (0.11 ml) were added to the solution. Upon addition of these, the solution became milky white and insoluble. It was stirred for 2 h. After every 30 minutes of stirring, 0.5 mmol of lipophilic Me2PzH (0.2402 g, 2.5 mmol) and equal portions of triethylamine (0.11 ml, 0.79 mmol) were added. The solution slowly turned green and was further stirred for 12 h. It was then filtered and solvents were evaporated in vacuo to obtain a pale-green solid. Finally, the solid was recrystallized from methanol solution, which afforded blue crystals of 1. Crystal yield 45% [based on Ni(OOCCH3)2·4H2O], m.p. 212°C. ESI–MS: [M − 2H]+ 713.479; [M1 + Li]+ where [M1 = M-2(Me2PzH)-CH3CO] 487.309. FT–IR (KBr, ν, cm−1): 3122 (s), 3114 (s), 3000 (m), 2937 (s), 2738 (m), 2677 (s), 2015 (m, br), 1470 (m), 1307 (m), 1268 (m), 1407 (m), 1094 (s, br), 1032 (m), 941 (s), 898 (s), 855 (m), 811 (s), 624 (s), 554 (m).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2346359
https://doi.org/10.1107/S2414314624008101/zl4073sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624008101/zl4073Isup2.hkl
[Ni2(C8H6N3)2(C2H3O2)2(C5H8N2)2] | F(000) = 744 |
Mr = 716.09 | Dx = 1.482 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1045 (7) Å | Cell parameters from 5987 reflections |
b = 9.1489 (6) Å | θ = 2.6–28.3° |
c = 15.8088 (11) Å | µ = 1.23 mm−1 |
β = 92.210 (1)° | T = 100 K |
V = 1604.88 (18) Å3 | Prism, blue |
Z = 2 | 0.12 × 0.10 × 0.10 mm |
Bruker APEX diffractometer | Rint = 0.025 |
Radiation source: sealed tube | θmax = 28.3°, θmin = 2.2° |
φ and ω scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015 | k = −12→12 |
Tmin = 0.875, Tmax = 0.905 | l = −21→14 |
10468 measured reflections | 4 standard reflections every 22 reflections |
3946 independent reflections | intensity decay: none |
3617 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: mixed |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5264P] where P = (Fo2 + 2Fc2)/3 |
3946 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All the non-hydrogen atoms were refined anisotropically using full-matrix least-square procedures while carbon bound hydrogen atoms were included in idealized positions and the methyl CH3 were allowed to rotate using a riding model. C—H bonds were constrained to 0.95 Å for aromatic C—H (Uiso(H) = 1.2 Ueq(C)) and 0.98 Å for CH3 [Uiso(H) = 1.5 Ueq(C)] units, respectively. The N—H proton was added from the difference Fourier map and refined with Uiso(H) = 1.2 Ueq(N). |
x | y | z | Uiso*/Ueq | ||
C1 | 0.11107 (14) | 0.40306 (17) | 0.31691 (10) | 0.0189 (3) | |
H1 | 0.177134 | 0.357829 | 0.290855 | 0.023* | |
C2 | 0.08185 (14) | 0.54516 (18) | 0.29476 (10) | 0.0212 (3) | |
H2 | 0.125431 | 0.595694 | 0.253272 | 0.025* | |
C3 | −0.01268 (15) | 0.61225 (16) | 0.33456 (11) | 0.0213 (3) | |
H3 | −0.033162 | 0.710881 | 0.321898 | 0.026* | |
C4 | −0.07701 (13) | 0.53426 (17) | 0.39297 (9) | 0.0184 (3) | |
H4 | −0.142463 | 0.578183 | 0.420430 | 0.022* | |
C5 | −0.04392 (13) | 0.39056 (15) | 0.41058 (9) | 0.0152 (3) | |
C6 | −0.10578 (12) | 0.29590 (16) | 0.46928 (9) | 0.0154 (3) | |
C7 | −0.21072 (13) | 0.31154 (17) | 0.51418 (10) | 0.0192 (3) | |
H7 | −0.263572 | 0.393132 | 0.515024 | 0.023* | |
C8 | −0.21990 (13) | 0.18053 (17) | 0.55720 (10) | 0.0191 (3) | |
H8 | −0.282715 | 0.156611 | 0.593911 | 0.023* | |
C9 | −0.31184 (15) | −0.1728 (2) | 0.28848 (11) | 0.0268 (4) | |
H9A | −0.325502 | −0.242347 | 0.241949 | 0.040* | |
H9B | −0.377717 | −0.101487 | 0.288064 | 0.040* | |
H9C | −0.308875 | −0.225503 | 0.342481 | 0.040* | |
C10 | −0.19552 (14) | −0.09537 (16) | 0.27774 (10) | 0.0195 (3) | |
C11 | −0.12922 (14) | −0.06840 (18) | 0.20783 (10) | 0.0206 (3) | |
H11 | −0.149648 | −0.094806 | 0.150952 | 0.025* | |
C12 | −0.02518 (13) | 0.00603 (17) | 0.23726 (9) | 0.0189 (3) | |
C13 | 0.07636 (15) | 0.0650 (2) | 0.18861 (11) | 0.0272 (4) | |
H13A | 0.101087 | −0.008066 | 0.147390 | 0.041* | |
H13B | 0.144532 | 0.087654 | 0.227618 | 0.041* | |
H13C | 0.050240 | 0.154119 | 0.158824 | 0.041* | |
C14 | 0.30155 (13) | 0.17584 (17) | 0.44170 (10) | 0.0207 (3) | |
C15 | 0.43466 (15) | 0.2066 (2) | 0.45627 (13) | 0.0363 (4) | |
H15A | 0.473384 | 0.211363 | 0.401669 | 0.054* | |
H15B | 0.471550 | 0.128286 | 0.490694 | 0.054* | |
H15C | 0.445230 | 0.300123 | 0.485868 | 0.054* | |
N1 | 0.05042 (11) | 0.32623 (14) | 0.37348 (8) | 0.0158 (2) | |
N2 | −0.05658 (10) | 0.16361 (14) | 0.48562 (7) | 0.0143 (2) | |
N3 | −0.12709 (11) | 0.09133 (14) | 0.53973 (8) | 0.0157 (2) | |
N4 | −0.02724 (11) | 0.02391 (14) | 0.32099 (8) | 0.0161 (2) | |
N6 | −0.13244 (11) | −0.03814 (14) | 0.34435 (8) | 0.0179 (3) | |
O1 | 0.23062 (10) | 0.19619 (12) | 0.50069 (7) | 0.0213 (2) | |
O2 | 0.26366 (10) | 0.12852 (12) | 0.37041 (7) | 0.0204 (2) | |
Ni1 | 0.08662 (2) | 0.11295 (2) | 0.41577 (2) | 0.01351 (7) | |
H6 | −0.1496 (16) | −0.046 (2) | 0.3967 (12) | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0153 (7) | 0.0217 (8) | 0.0195 (7) | −0.0015 (5) | 0.0013 (6) | 0.0017 (6) |
C2 | 0.0190 (7) | 0.0229 (8) | 0.0218 (8) | −0.0039 (6) | 0.0009 (6) | 0.0061 (6) |
C3 | 0.0223 (8) | 0.0164 (7) | 0.0249 (8) | 0.0001 (6) | −0.0022 (6) | 0.0037 (6) |
C4 | 0.0164 (7) | 0.0188 (7) | 0.0198 (7) | 0.0007 (5) | −0.0014 (6) | −0.0008 (6) |
C5 | 0.0139 (6) | 0.0180 (7) | 0.0136 (6) | −0.0012 (5) | −0.0024 (5) | −0.0015 (5) |
C6 | 0.0146 (6) | 0.0171 (7) | 0.0143 (6) | −0.0001 (5) | −0.0008 (5) | −0.0009 (5) |
C7 | 0.0171 (7) | 0.0205 (8) | 0.0200 (7) | 0.0040 (6) | 0.0022 (6) | 0.0005 (6) |
C8 | 0.0152 (7) | 0.0234 (8) | 0.0189 (7) | 0.0029 (6) | 0.0037 (5) | 0.0013 (6) |
C9 | 0.0225 (8) | 0.0303 (9) | 0.0271 (8) | −0.0091 (7) | −0.0076 (6) | 0.0063 (7) |
C10 | 0.0183 (7) | 0.0166 (7) | 0.0229 (8) | −0.0001 (5) | −0.0054 (6) | 0.0023 (6) |
C11 | 0.0212 (7) | 0.0217 (7) | 0.0183 (7) | 0.0017 (6) | −0.0044 (6) | −0.0010 (6) |
C12 | 0.0180 (7) | 0.0200 (7) | 0.0186 (7) | 0.0032 (6) | −0.0006 (6) | 0.0015 (6) |
C13 | 0.0226 (8) | 0.0396 (10) | 0.0197 (8) | −0.0009 (7) | 0.0034 (6) | −0.0011 (7) |
C14 | 0.0144 (7) | 0.0201 (7) | 0.0275 (8) | −0.0013 (5) | −0.0002 (6) | 0.0065 (6) |
C15 | 0.0161 (8) | 0.0456 (11) | 0.0467 (11) | −0.0063 (7) | −0.0028 (7) | 0.0064 (9) |
N1 | 0.0134 (6) | 0.0186 (6) | 0.0154 (6) | −0.0008 (5) | −0.0005 (4) | 0.0009 (5) |
N2 | 0.0126 (5) | 0.0166 (6) | 0.0136 (6) | −0.0005 (5) | 0.0013 (4) | 0.0009 (5) |
N3 | 0.0129 (6) | 0.0196 (6) | 0.0147 (6) | 0.0006 (5) | 0.0023 (4) | 0.0016 (5) |
N4 | 0.0134 (6) | 0.0165 (6) | 0.0183 (6) | 0.0001 (4) | 0.0011 (5) | 0.0012 (5) |
N6 | 0.0162 (6) | 0.0204 (6) | 0.0172 (6) | −0.0022 (5) | −0.0003 (5) | 0.0016 (5) |
O1 | 0.0176 (5) | 0.0256 (6) | 0.0205 (5) | −0.0023 (4) | −0.0009 (4) | 0.0005 (4) |
O2 | 0.0164 (5) | 0.0240 (6) | 0.0210 (6) | 0.0005 (4) | 0.0043 (4) | 0.0027 (4) |
Ni1 | 0.01067 (11) | 0.01613 (12) | 0.01377 (11) | −0.00014 (6) | 0.00125 (7) | 0.00074 (6) |
C1—N1 | 1.3393 (19) | C11—C12 | 1.405 (2) |
C1—C2 | 1.382 (2) | C11—H11 | 0.9500 |
C1—H1 | 0.9500 | C12—N4 | 1.3348 (19) |
C2—C3 | 1.388 (2) | C12—C13 | 1.490 (2) |
C2—H2 | 0.9500 | C13—H13A | 0.9800 |
C3—C4 | 1.387 (2) | C13—H13B | 0.9800 |
C3—H3 | 0.9500 | C13—H13C | 0.9800 |
C4—C5 | 1.390 (2) | C14—O1 | 1.2576 (19) |
C4—H4 | 0.9500 | C14—O2 | 1.2641 (19) |
C5—N1 | 1.3547 (19) | C14—C15 | 1.514 (2) |
C5—C6 | 1.460 (2) | C14—Ni1 | 2.4738 (15) |
C6—N2 | 1.3488 (19) | C15—H15A | 0.9800 |
C6—C7 | 1.395 (2) | C15—H15B | 0.9800 |
C7—C8 | 1.384 (2) | C15—H15C | 0.9800 |
C7—H7 | 0.9500 | N1—Ni1 | 2.0964 (13) |
C8—N3 | 1.3514 (19) | N2—N3 | 1.3541 (17) |
C8—H8 | 0.9500 | N2—Ni1 | 2.0245 (12) |
C9—C10 | 1.489 (2) | N3—Ni1i | 2.0409 (13) |
C9—H9A | 0.9800 | N4—N6 | 1.3626 (17) |
C9—H9B | 0.9800 | N4—Ni1 | 2.0884 (12) |
C9—H9C | 0.9800 | N6—H6 | 0.859 (18) |
C10—N6 | 1.3479 (19) | O1—Ni1 | 2.1848 (11) |
C10—C11 | 1.374 (2) | O2—Ni1 | 2.1232 (11) |
N1—C1—C2 | 122.95 (15) | O1—C14—Ni1 | 61.93 (8) |
N1—C1—H1 | 118.5 | O2—C14—Ni1 | 59.12 (8) |
C2—C1—H1 | 118.5 | C15—C14—Ni1 | 177.13 (13) |
C1—C2—C3 | 118.39 (14) | C14—C15—H15A | 109.5 |
C1—C2—H2 | 120.8 | C14—C15—H15B | 109.5 |
C3—C2—H2 | 120.8 | H15A—C15—H15B | 109.5 |
C4—C3—C2 | 119.50 (14) | C14—C15—H15C | 109.5 |
C4—C3—H3 | 120.2 | H15A—C15—H15C | 109.5 |
C2—C3—H3 | 120.2 | H15B—C15—H15C | 109.5 |
C3—C4—C5 | 118.75 (14) | C1—N1—C5 | 118.57 (13) |
C3—C4—H4 | 120.6 | C1—N1—Ni1 | 127.31 (10) |
C5—C4—H4 | 120.6 | C5—N1—Ni1 | 114.10 (10) |
N1—C5—C4 | 121.80 (14) | C6—N2—N3 | 108.63 (12) |
N1—C5—C6 | 114.08 (13) | C6—N2—Ni1 | 114.95 (10) |
C4—C5—C6 | 124.12 (14) | N3—N2—Ni1 | 135.91 (10) |
N2—C6—C7 | 109.55 (13) | C8—N3—N2 | 107.36 (12) |
N2—C6—C5 | 117.19 (13) | C8—N3—Ni1i | 129.94 (10) |
C7—C6—C5 | 133.25 (14) | N2—N3—Ni1i | 122.68 (9) |
C8—C7—C6 | 103.89 (13) | C12—N4—N6 | 105.39 (12) |
C8—C7—H7 | 128.1 | C12—N4—Ni1 | 136.57 (11) |
C6—C7—H7 | 128.1 | N6—N4—Ni1 | 118.01 (9) |
N3—C8—C7 | 110.57 (13) | C10—N6—N4 | 112.04 (13) |
N3—C8—H8 | 124.7 | C10—N6—H6 | 126.3 (12) |
C7—C8—H8 | 124.7 | N4—N6—H6 | 121.3 (12) |
C10—C9—H9A | 109.5 | C14—O1—Ni1 | 87.55 (9) |
C10—C9—H9B | 109.5 | C14—O2—Ni1 | 90.15 (9) |
H9A—C9—H9B | 109.5 | N2—Ni1—N3i | 100.88 (5) |
C10—C9—H9C | 109.5 | N2—Ni1—N4 | 90.81 (5) |
H9A—C9—H9C | 109.5 | N3i—Ni1—N4 | 90.53 (5) |
H9B—C9—H9C | 109.5 | N2—Ni1—N1 | 79.39 (5) |
N6—C10—C11 | 106.28 (14) | N3i—Ni1—N1 | 177.68 (5) |
N6—C10—C9 | 121.53 (15) | N4—Ni1—N1 | 91.77 (5) |
C11—C10—C9 | 132.18 (15) | N2—Ni1—O2 | 157.80 (5) |
C10—C11—C12 | 106.26 (13) | N3i—Ni1—O2 | 89.05 (5) |
C10—C11—H11 | 126.9 | N4—Ni1—O2 | 109.07 (5) |
C12—C11—H11 | 126.9 | N1—Ni1—O2 | 89.92 (4) |
N4—C12—C11 | 110.03 (14) | N2—Ni1—O1 | 99.02 (5) |
N4—C12—C13 | 120.64 (14) | N3i—Ni1—O1 | 87.78 (5) |
C11—C12—C13 | 129.31 (14) | N4—Ni1—O1 | 170.18 (5) |
C12—C13—H13A | 109.5 | N1—Ni1—O1 | 89.91 (4) |
C12—C13—H13B | 109.5 | O2—Ni1—O1 | 61.24 (4) |
H13A—C13—H13B | 109.5 | N2—Ni1—C14 | 129.01 (5) |
C12—C13—H13C | 109.5 | N3i—Ni1—C14 | 87.58 (5) |
H13A—C13—H13C | 109.5 | N4—Ni1—C14 | 139.74 (5) |
H13B—C13—H13C | 109.5 | N1—Ni1—C14 | 90.48 (5) |
O1—C14—O2 | 121.02 (14) | O2—Ni1—C14 | 30.73 (5) |
O1—C14—C15 | 119.71 (15) | O1—Ni1—C14 | 30.52 (5) |
O2—C14—C15 | 119.27 (15) | ||
N1—C1—C2—C3 | 1.7 (2) | C7—C6—N2—N3 | 0.44 (16) |
C1—C2—C3—C4 | −2.0 (2) | C5—C6—N2—N3 | −178.96 (12) |
C2—C3—C4—C5 | 0.6 (2) | C7—C6—N2—Ni1 | 173.56 (10) |
C3—C4—C5—N1 | 1.2 (2) | C5—C6—N2—Ni1 | −5.84 (16) |
C3—C4—C5—C6 | −178.64 (14) | C7—C8—N3—N2 | 0.27 (17) |
N1—C5—C6—N2 | 5.98 (19) | C7—C8—N3—Ni1i | 178.58 (10) |
C4—C5—C6—N2 | −174.14 (13) | C6—N2—N3—C8 | −0.43 (15) |
N1—C5—C6—C7 | −173.25 (15) | Ni1—N2—N3—C8 | −171.45 (11) |
C4—C5—C6—C7 | 6.6 (3) | C6—N2—N3—Ni1i | −178.89 (9) |
N2—C6—C7—C8 | −0.27 (17) | Ni1—N2—N3—Ni1i | 10.09 (18) |
C5—C6—C7—C8 | 179.01 (15) | C11—C12—N4—N6 | −0.36 (17) |
C6—C7—C8—N3 | 0.00 (17) | C13—C12—N4—N6 | 178.19 (14) |
N6—C10—C11—C12 | 0.30 (17) | C11—C12—N4—Ni1 | 177.84 (11) |
C9—C10—C11—C12 | −178.23 (17) | C13—C12—N4—Ni1 | −3.6 (2) |
C10—C11—C12—N4 | 0.04 (18) | C11—C10—N6—N4 | −0.55 (17) |
C10—C11—C12—C13 | −178.35 (16) | C9—C10—N6—N4 | 178.17 (14) |
C2—C1—N1—C5 | 0.1 (2) | C12—N4—N6—C10 | 0.57 (16) |
C2—C1—N1—Ni1 | −178.23 (11) | Ni1—N4—N6—C10 | −178.03 (10) |
C4—C5—N1—C1 | −1.6 (2) | O2—C14—O1—Ni1 | 1.96 (15) |
C6—C5—N1—C1 | 178.30 (13) | C15—C14—O1—Ni1 | −177.31 (14) |
C4—C5—N1—Ni1 | 176.96 (11) | O1—C14—O2—Ni1 | −2.01 (15) |
C6—C5—N1—Ni1 | −3.15 (15) | C15—C14—O2—Ni1 | 177.26 (14) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6···N2 | 0.859 (18) | 2.571 (18) | 2.9931 (18) | 111.4 (14) |
N6—H6···N3 | 0.859 (18) | 2.591 (19) | 3.3065 (18) | 141.4 (16) |
N6—H6···O1i | 0.859 (18) | 2.332 (19) | 3.0800 (17) | 145.6 (16) |
C1—H1···O2 | 0.95 | 2.61 | 3.1281 (19) | 115 |
C2—H2···O2ii | 0.95 | 2.37 | 3.2692 (19) | 158 |
C4—H4···O1iii | 0.95 | 2.62 | 3.4696 (19) | 149 |
C9—H9C···O1i | 0.98 | 2.61 | 3.426 (2) | 141 |
C13—H13B···O2 | 0.98 | 2.60 | 3.530 (2) | 159 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x, −y+1, −z+1. |
Footnotes
‡UGC-Faculty Recharge Programme, New Delhi, India.
Acknowledgements
Dr Orbett Alexander, Department of Chemistry, University of Western Cape, South Africa, is thanked for crystallographic software assistance
Funding information
Funding for this research was provided by: Science and Engineering Research Board, India, Early Career Research Award (award No. ECR/2016/001966 to Nagarajan Loganathan); Science and Engineering Research Board, India, EMEQ Scheme (grant No. EEQ2018/001373 to Nagarajan Loganathan); Rashtriya Uchchatar Shiksha Abhiyan, Physical Sciences 2.0 (RUSA 2.0) (grant to Nagarajan Loganathan).
References
Brandenburg, K., Berndt, M. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2012). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cuesta–Galisteo, S., Schörgenhumer, J., Hervieu, C. & Nevado, C. (2024). Angew. Chem. Int. Ed. 63, e202313717. Google Scholar
Das, A. K., De, A., Yadav, P., Lloret, F. & Mukherjee, R. (2019). Polyhedron, 171, 365–373. CrossRef CAS Google Scholar
Day, C. S., Rentería-Gómez, Á., Ton, S. J., Gogoi, A. R., Gutierrez, O. & Martin, R. (2023). Nat. Catal. 6, 244–253. CrossRef CAS Google Scholar
Diccianni, J., Lin, Q. & Diao, T. (2020). Acc. Chem. Res. 53, 906–919. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Halcrow, M. A. (2009). Dalton Trans. pp. 2059–2073. Web of Science CrossRef Google Scholar
Hu, T.-L., Li, J.-R., Liu, C.-S., Shi, X.-S., Zhou, J.-N., Bu, X.-H. & Ribas, J. (2006). Inorg. Chem. 45, 162–173. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jeffery, J. C., Jones, P. L., Mann, K. L. V., Psillakis, E., McCleverty, J. A., Ward, M. D. & White, C. M. (1997). Chem. Commun. pp. 175–176. CrossRef Google Scholar
Keim, W. (1990). Angew. Chem. Int. Ed. Engl. 29, 235–244. CrossRef Web of Science Google Scholar
Komagawa, S., Wang, C., Morokuma, K., Saito, S. & Uchiyama, M. (2013). J. Am. Chem. Soc. 135, 14508–14511. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lautens, M., Klute, W. & Tam, W. (1996). Chem. Rev. 96, 49–92. CrossRef PubMed CAS Google Scholar
Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. (2019). Angew. Chem. Int. Ed. 58, 6152–6163. CrossRef CAS Google Scholar
Montgomery, J. (2004). Angew. Chem. Int. Ed. 43, 3890–3908. CrossRef CAS Google Scholar
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS Google Scholar
Rosen, B. M., Quasdorf, K. W., Wilson, D. A., Zhang, N., Resmerita, A., Garg, N. K. & Percec, V. (2011). Chem. Rev. 111, 1346–1416. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tasker, S. Z., Standley, E. A. & Jamison, T. F. (2014). Nature, 509, 299–309. Web of Science CrossRef CAS PubMed Google Scholar
Trofimenko, S. (1972). Chem. Rev. 72, 497–509. CrossRef CAS Web of Science Google Scholar
Uyeda, C. & Farley, C. M. (2021). Acc. Chem. Res. 54, 3710–3719. CrossRef CAS PubMed Google Scholar
Vermaak, V., Vosloo, H. C. M. & Swarts, A. J. (2024). Coord. Chem. Rev. 507, 215716. CrossRef Google Scholar
Viciano–Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403–3418. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilke, G. (1988). Angew. Chem. Int. Ed. Engl. 27, 185–206. CrossRef Google Scholar
Xu, W., Li, M., Qiao, L. & Xie, J. (2020). Chem. Commun. 56, 8524–8536. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.