metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[μ-3-(pyridin-2-yl)pyrazolato]bis­­[acetato­(3,5-di­methyl-1H-pyrazole)­nickel(II)]

crossmark logo

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam-613403, Thanjavur, Tamil Nadu, India
*Correspondence e-mail: l.nagarajan@bdu.ac.in

Edited by M. Zeller, Purdue University, USA (Received 1 June 2024; accepted 16 August 2024; online 30 August 2024)

The title compound, [Ni2(C8H6N3)2(C2H3O2)2(C5H8N2)2] or [Ni(μ-OOCCH3)(2-PyPz)(Me2PzH)]2 (1) [2-PyPz = 3-(pyridin-2-yl) pyrazole; Me2PzH = 3,5-dimethyl pyrazole] was synthesized from Ni(OOCCH3)2·4H2O, 2-PyPzH, Me2PzH and tri­ethyl­amine as a base. Compound 1 {[Ni2(C30H34N10Ni2O4)]} at 100 K has monoclinic (P21/n) symmetry and the mol­ecules have crystallographic inversion symmetry. Mol­ecules of 1 comprise an almost planar dinuclear NiII core with an N4O2 coordination environment. The equatorial plane consists of N3,O coordination derived from one of the bidentate acetate O atoms and three of the N atoms of the chelating 2-PyPz ligand while the axial positions are occupied by neutral Me2PzH and the second O atom of the acetate unit. The Ni atoms are bridged by the nitro­gen atom of a deprotonated 2-PyPz ligand. Compound 1 exhibits various inter- and intra­molecular C—H⋯O and N—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Noble metals such as palladium, platinum or iridium are widely used in catalysis due to their desirable properties such as the ability to tolerate variable coordination states and oxidation states that predispose them towards catalysing two-electron redox processes, while at the same time also being sufficiently stable and thermally stable to be of practical use. A major drawback is, however, their high price and limited availability. As an alternative to scarce 4 and 5d metals, their more earth-abundant 3d congeners have been investigated, and in particular several nickel-catalysed organic transform­ation strategies were developed and established (Wilke, 1988[Wilke, G. (1988). Angew. Chem. Int. Ed. Engl. 27, 185-206.]; Keim, 1990[Keim, W. (1990). Angew. Chem. Int. Ed. Engl. 29, 235-244.]; Montgomery, 2004[Montgomery, J. (2004). Angew. Chem. Int. Ed. 43, 3890-3908.]; Tasker et al., 2014[Tasker, S. Z., Standley, E. A. & Jamison, T. F. (2014). Nature, 509, 299-309.]; Diccianni et al., 2020[Diccianni, J., Lin, Q. & Diao, T. (2020). Acc. Chem. Res. 53, 906-919.]). These include C—C and C—X (X = heteroatom) cross-coupling (Rosen et al., 2011[Rosen, B. M., Quasdorf, K. W., Wilson, D. A., Zhang, N., Resmerita, A., Garg, N. K. & Percec, V. (2011). Chem. Rev. 111, 1346-1416.]), cyclo­addition (Lautens et al., 1996[Lautens, M., Klute, W. & Tam, W. (1996). Chem. Rev. 96, 49-92.]; Komagawa et al., 2013[Komagawa, S., Wang, C., Morokuma, K., Saito, S. & Uchiyama, M. (2013). J. Am. Chem. Soc. 135, 14508-14511.]), asymmetric hydrogenation (Vermaak et al., 2024[Vermaak, V., Vosloo, H. C. M. & Swarts, A. J. (2024). Coord. Chem. Rev. 507, 215716.]), photo-redox catalysis (Milligan et al., 2019[Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. (2019). Angew. Chem. Int. Ed. 58, 6152-6163.]; Cuesta-Galisteo et al., 2024[Cuesta-Galisteo, S., Schörgenhumer, J., Hervieu, C. & Nevado, C. (2024). Angew. Chem. Int. Ed. 63, e202313717.]), reductive coupling (Day et al., 2023[Day, C. S., Rentería-Gómez, Á., Ton, S. J., Gogoi, A. R., Gutierrez, O. & Martin, R. (2023). Nat. Catal. 6, 244-253.]) and reductive cyclization reactions (Montgomery, 2004[Montgomery, J. (2004). Angew. Chem. Int. Ed. 43, 3890-3908.]) to name just a few. The inability of nickel to catalyse two-electron transformations can be overcome by the placement of more than one metal atom at the catalytic centre, and dinuclear nickel complexes show an enhanced catalytic activity and a higher robustness that can be traced back to the synergistic inter­action between the two metals in the active site (Uyeda & Farley 2021[Uyeda, C. & Farley, C. M. (2021). Acc. Chem. Res. 54, 3710-3719.]; Xu et al., 2020[Xu, W., Li, M., Qiao, L. & Xie, J. (2020). Chem. Commun. 56, 8524-8536.]). Nickel is also a micronutrient and essential for the biosynthesis of hydrogenase, carbon monoxide de­hydrogenase (CODH) and urease. These enzymes require more than one metal active site to catalyse the enzymatic process. This also substanti­ates the crucial role of the presence of more than one metal centre for 3d-metal-based catalysts.

We are inter­ested in synthesizing dimeric NiII complexes utilizing chelating ligands such as 2-PyPzH [3-(2-pyridyl)pyrazole, C8H7N3]. The use of pyrazole ligands in coordination and organometallic chemistry is well established (Trofimenko, 1972[Trofimenko, S. (1972). Chem. Rev. 72, 497-509.]; Mukherjee, 2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]; Halcrow, 2009[Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.]; Viciano-Chumillas et al., 2010[Viciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403-3418.]). 2-PyPzH usually forms planar dimeric [M(μ-2-PyPz)2]2 units that are thermally stable. Copper-based dimeric complexes with a {[Cu(μ-2-PyPz)2]2}n core have been described (Jeffery et al., 1997[Jeffery, J. C., Jones, P. L., Mann, K. L. V., Psillakis, E., McCleverty, J. A., Ward, M. D. & White, C. M. (1997). Chem. Commun. pp. 175-176.]; Hu et al., 2006[Hu, T.-L., Li, J.-R., Liu, C.-S., Shi, X.-S., Zhou, J.-N., Bu, X.-H. & Ribas, J. (2006). Inorg. Chem. 45, 162-173.]; Das et al., 2019[Das, A. K., De, A., Yadav, P., Lloret, F. & Mukherjee, R. (2019). Polyhedron, 171, 365-373.]). However, to the best of our knowledge, the analogous nickel complex with an [Ni(μ-2-PyPz)2]n core is unknown. Thus, a reaction was carried out between nickel(II)acetate tetra­hydrate, 2-PyPzH as the primary ligand and highly lipophilic 3,5-di­methyl­pyrazole (Me2PzH) as an ancillary ligand and a small excess of tri­ethyl­amine base in methanol solvent. This was done in a 1:1:5:3.5 ratio, which resulted in the formation of a green solid, which was then recrystallized from methanol solvent to obtain blue crystals of [Ni2(μ-OOCCH3)2(2-PyPz)2(Me2PzH)2] (1). Inter­estingly, the initial reaction between nickel(II)acetate tetra­hydrate, 2-PyPzH and tri­ethyl­amine base in a 1:1:1.5 stoichiometry failed and led to an intra­ctable mixture. However, the addition of a large excess of Me2PzH allowed us to isolate the soluble mol­ecular assembly of 1 (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecule of 1 (with 50% displacement ellipsoids) with the unlabelled atoms related by crystallographic inversion symmetry (−x, −y, 1 − z). Intra­molecular C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds are shown as dashed lines.

Compound 1 crystallizes in the monoclinic P21/n space group, in which the asymmetric unit contains half of the mol­ecule. Compound 1 is a dinuclear heteroleptic nickel(II) complex consisting of two each of anionic 2-PyPz, anionic CH3COO and neutral Me2PzH ligands and the complex mol­ecules have crystallographic inversion symmetry. Overall, the two nickel atoms (Ni1 and Ni1i) are bridged through the 2-PyPz ligand and each Ni atom has an N4O2 octa­hedral coordination environment around it. The three N-donors (N1, N2 and N3i) are derived from the 2-PyPz unit, which forms the basal plane of the dimer while the fourth N-coordination (N4) is obtained from the axial neutral Me2PzH ligand. The acetate ligand (O1 and O2) exhibits a synsyn symmetric binding mode (κ2 mode) in which O2 is in the equatorial position while the sixth axial position is occupied by O1.

The following is a summary of the bonding parameters found in compound 1 in which each Ni atom exhibits three different Ni—N distances and two different Ni—O distances. The Ni—N distance involving the anionic pyrazole unit is shorter [Ni1—N2 = 2.0245 (12); Ni1—N3i = 2.0409 (13) Å] compared to the pyridinic N of 2-PyPz [Ni1—N1 = 2.0964 (13) Å] and the neutral Me2PzH ligand [Ni1—N4 = 2.0884 (12) Å]. Additionally, the axial Ni—O distances are longer [Ni1—O1 = 2.1848 (11) Å] than the equatorial distance [Ni1— O2 = 2.1232 (11) Å]. Furthermore, the C—O distances are not equal [C14—O1 = 1.2576 (19); C14—O2 = 1.2641 (19) Å]. It is noteworthy that the dimeric [Ni(μ-2-PyPz)(COOCH3)]2 unit is almost planar, with the two basal trans angles being less than 180° [O1—Ni1—N4 = 170.18 (5); N1—Ni1—N3i = 177.68 (5)°]. The angle between the two apical positions is the most acute [O2—Ni1—N2 = 157.80 (5)°]. Finally, of the twelve right angles around Ni1, seven are closer to 90° [average O—Ni—N = 89.16 (4) and average N—Ni—N = 91.03 (6)°], and the remaining three are obtuse [N2—Ni1—N3i = 100.88 (5); O1—Ni1—N2 = 99.02 (5); O2—Ni1—N4 = 109.07 (5)°].

Compound 1 exhibits several intra- and inter­molecular hydrogen bonds (Table 1[link], Fig. 2[link]), with atom N6 of Me2PzH forming intra­molecular hydrogen bonds with O1 of the acetate (N6—H6⋯O1i and the reciprocal N6i—H6i⋯O1 3.0800 (17) Å; symmetry code: (i) −x, −y, −z + 1), with N2 [N6—H6⋯N2 2.9931 (18) Å] and N3 [N6—H6⋯N3 3.3065 (18) Å] of 2-PyPz, while the two O atoms of acetate (O1 and O2) inter­act with the pyridine C—H of 2-PyPz and pyrazolyl C—H of Me2PzH. Thus, the hydrogen bonding between C2—H2⋯O2ii [3.2692 (19) Å; symmetry code: (ii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]] and C4—H4⋯O1iii [3.4696 (19) Å; symmetry code: (iii) −x, −y + 1, −z + 1] are inter­molecular in nature while the C9—H9C⋯O1i [3.426 (2) Å], C1—H1⋯O2 [3.1281 (19) Å] and C13—H13B⋯O2 [3.530 (2) Å] are of intra­molecular type.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯N2 0.859 (18) 2.571 (18) 2.9931 (18) 111.4 (14)
N6—H6⋯N3 0.859 (18) 2.591 (19) 3.3065 (18) 141.4 (16)
N6—H6⋯O1i 0.859 (18) 2.332 (19) 3.0800 (17) 145.6 (16)
C1—H1⋯O2 0.95 2.61 3.1281 (19) 115
C2—H2⋯O2ii 0.95 2.37 3.2692 (19) 158
C4—H4⋯O1iii 0.95 2.62 3.4696 (19) 149
C9—H9C⋯O1i 0.98 2.61 3.426 (2) 141
C13—H13B⋯O2 0.98 2.60 3.530 (2) 159
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z+1].
[Figure 2]
Figure 2
Perspective view of 1 showing the intra- (red and black dotted lines) and inter­molecular C—H⋯O (pink dotted lines) and intra­molecular N—H⋯N (blue and black dotted lines) inter­actions with bond distances (several atoms were removed for clarity).

Synthesis and crystallization

0.5 mmol of Ni(OOCCH3)2·4H2O (0.1244 g) was dissolved in 30 ml of methanol. Then, 0.5 mmol of 2-PyPzH (0.0726 g) and 0.79 mmol of tri­ethyl­amine (0.11 ml) were added to the solution. Upon addition of these, the solution became milky white and insoluble. It was stirred for 2 h. After every 30 minutes of stirring, 0.5 mmol of lipophilic Me2PzH (0.2402 g, 2.5 mmol) and equal portions of tri­ethyl­amine (0.11 ml, 0.79 mmol) were added. The solution slowly turned green and was further stirred for 12 h. It was then filtered and solvents were evaporated in vacuo to obtain a pale-green solid. Finally, the solid was recrystallized from methanol solution, which afforded blue crystals of 1. Crystal yield 45% [based on Ni(OOCCH3)2·4H2O], m.p. 212°C. ESI–MS: [M − 2H]+ 713.479; [M1 + Li]+ where [M1 = M-2(Me2PzH)-CH3CO] 487.309. FT–IR (KBr, ν, cm−1): 3122 (s), 3114 (s), 3000 (m), 2937 (s), 2738 (m), 2677 (s), 2015 (m, br), 1470 (m), 1307 (m), 1268 (m), 1407 (m), 1094 (s, br), 1032 (m), 941 (s), 898 (s), 855 (m), 811 (s), 624 (s), 554 (m).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ni2(C8H6N3)2(C2H3O2)2(C5H8N2)2]
Mr 716.09
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.1045 (7), 9.1489 (6), 15.8088 (11)
β (°) 92.210 (1)
V3) 1604.88 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.23
Crystal size (mm) 0.12 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]
Tmin, Tmax 0.875, 0.905
No. of measured, independent and observed [I > 2σ(I)] reflections 10468, 3946, 3617
Rint 0.025
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.04
No. of reflections 3946
No. of parameters 214
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.27
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg et al., 2014[Brandenburg, K., Berndt, M. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)] top
Crystal data top
[Ni2(C8H6N3)2(C2H3O2)2(C5H8N2)2]F(000) = 744
Mr = 716.09Dx = 1.482 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.1045 (7) ÅCell parameters from 5987 reflections
b = 9.1489 (6) Åθ = 2.6–28.3°
c = 15.8088 (11) ŵ = 1.23 mm1
β = 92.210 (1)°T = 100 K
V = 1604.88 (18) Å3Prism, blue
Z = 20.12 × 0.10 × 0.10 mm
Data collection top
Bruker APEX
diffractometer
Rint = 0.025
Radiation source: sealed tubeθmax = 28.3°, θmin = 2.2°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015
k = 1212
Tmin = 0.875, Tmax = 0.905l = 2114
10468 measured reflections4 standard reflections every 22 reflections
3946 independent reflections intensity decay: none
3617 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: mixed
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5264P]
where P = (Fo2 + 2Fc2)/3
3946 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the non-hydrogen atoms were refined anisotropically using full-matrix least-square procedures while carbon bound hydrogen atoms were included in idealized positions and the methyl CH3 were allowed to rotate using a riding model. C—H bonds were constrained to 0.95 Å for aromatic C—H (Uiso(H) = 1.2 Ueq(C)) and 0.98 Å for CH3 [Uiso(H) = 1.5 Ueq(C)] units, respectively. The N—H proton was added from the difference Fourier map and refined with Uiso(H) = 1.2 Ueq(N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11107 (14)0.40306 (17)0.31691 (10)0.0189 (3)
H10.1771340.3578290.2908550.023*
C20.08185 (14)0.54516 (18)0.29476 (10)0.0212 (3)
H20.1254310.5956940.2532720.025*
C30.01268 (15)0.61225 (16)0.33456 (11)0.0213 (3)
H30.0331620.7108810.3218980.026*
C40.07701 (13)0.53426 (17)0.39297 (9)0.0184 (3)
H40.1424630.5781830.4204300.022*
C50.04392 (13)0.39056 (15)0.41058 (9)0.0152 (3)
C60.10578 (12)0.29590 (16)0.46928 (9)0.0154 (3)
C70.21072 (13)0.31154 (17)0.51418 (10)0.0192 (3)
H70.2635720.3931320.5150240.023*
C80.21990 (13)0.18053 (17)0.55720 (10)0.0191 (3)
H80.2827150.1566110.5939110.023*
C90.31184 (15)0.1728 (2)0.28848 (11)0.0268 (4)
H9A0.3255020.2423470.2419490.040*
H9B0.3777170.1014870.2880640.040*
H9C0.3088750.2255030.3424810.040*
C100.19552 (14)0.09537 (16)0.27774 (10)0.0195 (3)
C110.12922 (14)0.06840 (18)0.20783 (10)0.0206 (3)
H110.1496480.0948060.1509520.025*
C120.02518 (13)0.00603 (17)0.23726 (9)0.0189 (3)
C130.07636 (15)0.0650 (2)0.18861 (11)0.0272 (4)
H13A0.1010870.0080660.1473900.041*
H13B0.1445320.0876540.2276180.041*
H13C0.0502400.1541190.1588240.041*
C140.30155 (13)0.17584 (17)0.44170 (10)0.0207 (3)
C150.43466 (15)0.2066 (2)0.45627 (13)0.0363 (4)
H15A0.4733840.2113630.4016690.054*
H15B0.4715500.1282860.4906940.054*
H15C0.4452300.3001230.4858680.054*
N10.05042 (11)0.32623 (14)0.37348 (8)0.0158 (2)
N20.05658 (10)0.16361 (14)0.48562 (7)0.0143 (2)
N30.12709 (11)0.09133 (14)0.53973 (8)0.0157 (2)
N40.02724 (11)0.02391 (14)0.32099 (8)0.0161 (2)
N60.13244 (11)0.03814 (14)0.34435 (8)0.0179 (3)
O10.23062 (10)0.19619 (12)0.50069 (7)0.0213 (2)
O20.26366 (10)0.12852 (12)0.37041 (7)0.0204 (2)
Ni10.08662 (2)0.11295 (2)0.41577 (2)0.01351 (7)
H60.1496 (16)0.046 (2)0.3967 (12)0.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0153 (7)0.0217 (8)0.0195 (7)0.0015 (5)0.0013 (6)0.0017 (6)
C20.0190 (7)0.0229 (8)0.0218 (8)0.0039 (6)0.0009 (6)0.0061 (6)
C30.0223 (8)0.0164 (7)0.0249 (8)0.0001 (6)0.0022 (6)0.0037 (6)
C40.0164 (7)0.0188 (7)0.0198 (7)0.0007 (5)0.0014 (6)0.0008 (6)
C50.0139 (6)0.0180 (7)0.0136 (6)0.0012 (5)0.0024 (5)0.0015 (5)
C60.0146 (6)0.0171 (7)0.0143 (6)0.0001 (5)0.0008 (5)0.0009 (5)
C70.0171 (7)0.0205 (8)0.0200 (7)0.0040 (6)0.0022 (6)0.0005 (6)
C80.0152 (7)0.0234 (8)0.0189 (7)0.0029 (6)0.0037 (5)0.0013 (6)
C90.0225 (8)0.0303 (9)0.0271 (8)0.0091 (7)0.0076 (6)0.0063 (7)
C100.0183 (7)0.0166 (7)0.0229 (8)0.0001 (5)0.0054 (6)0.0023 (6)
C110.0212 (7)0.0217 (7)0.0183 (7)0.0017 (6)0.0044 (6)0.0010 (6)
C120.0180 (7)0.0200 (7)0.0186 (7)0.0032 (6)0.0006 (6)0.0015 (6)
C130.0226 (8)0.0396 (10)0.0197 (8)0.0009 (7)0.0034 (6)0.0011 (7)
C140.0144 (7)0.0201 (7)0.0275 (8)0.0013 (5)0.0002 (6)0.0065 (6)
C150.0161 (8)0.0456 (11)0.0467 (11)0.0063 (7)0.0028 (7)0.0064 (9)
N10.0134 (6)0.0186 (6)0.0154 (6)0.0008 (5)0.0005 (4)0.0009 (5)
N20.0126 (5)0.0166 (6)0.0136 (6)0.0005 (5)0.0013 (4)0.0009 (5)
N30.0129 (6)0.0196 (6)0.0147 (6)0.0006 (5)0.0023 (4)0.0016 (5)
N40.0134 (6)0.0165 (6)0.0183 (6)0.0001 (4)0.0011 (5)0.0012 (5)
N60.0162 (6)0.0204 (6)0.0172 (6)0.0022 (5)0.0003 (5)0.0016 (5)
O10.0176 (5)0.0256 (6)0.0205 (5)0.0023 (4)0.0009 (4)0.0005 (4)
O20.0164 (5)0.0240 (6)0.0210 (6)0.0005 (4)0.0043 (4)0.0027 (4)
Ni10.01067 (11)0.01613 (12)0.01377 (11)0.00014 (6)0.00125 (7)0.00074 (6)
Geometric parameters (Å, º) top
C1—N11.3393 (19)C11—C121.405 (2)
C1—C21.382 (2)C11—H110.9500
C1—H10.9500C12—N41.3348 (19)
C2—C31.388 (2)C12—C131.490 (2)
C2—H20.9500C13—H13A0.9800
C3—C41.387 (2)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
C4—C51.390 (2)C14—O11.2576 (19)
C4—H40.9500C14—O21.2641 (19)
C5—N11.3547 (19)C14—C151.514 (2)
C5—C61.460 (2)C14—Ni12.4738 (15)
C6—N21.3488 (19)C15—H15A0.9800
C6—C71.395 (2)C15—H15B0.9800
C7—C81.384 (2)C15—H15C0.9800
C7—H70.9500N1—Ni12.0964 (13)
C8—N31.3514 (19)N2—N31.3541 (17)
C8—H80.9500N2—Ni12.0245 (12)
C9—C101.489 (2)N3—Ni1i2.0409 (13)
C9—H9A0.9800N4—N61.3626 (17)
C9—H9B0.9800N4—Ni12.0884 (12)
C9—H9C0.9800N6—H60.859 (18)
C10—N61.3479 (19)O1—Ni12.1848 (11)
C10—C111.374 (2)O2—Ni12.1232 (11)
N1—C1—C2122.95 (15)O1—C14—Ni161.93 (8)
N1—C1—H1118.5O2—C14—Ni159.12 (8)
C2—C1—H1118.5C15—C14—Ni1177.13 (13)
C1—C2—C3118.39 (14)C14—C15—H15A109.5
C1—C2—H2120.8C14—C15—H15B109.5
C3—C2—H2120.8H15A—C15—H15B109.5
C4—C3—C2119.50 (14)C14—C15—H15C109.5
C4—C3—H3120.2H15A—C15—H15C109.5
C2—C3—H3120.2H15B—C15—H15C109.5
C3—C4—C5118.75 (14)C1—N1—C5118.57 (13)
C3—C4—H4120.6C1—N1—Ni1127.31 (10)
C5—C4—H4120.6C5—N1—Ni1114.10 (10)
N1—C5—C4121.80 (14)C6—N2—N3108.63 (12)
N1—C5—C6114.08 (13)C6—N2—Ni1114.95 (10)
C4—C5—C6124.12 (14)N3—N2—Ni1135.91 (10)
N2—C6—C7109.55 (13)C8—N3—N2107.36 (12)
N2—C6—C5117.19 (13)C8—N3—Ni1i129.94 (10)
C7—C6—C5133.25 (14)N2—N3—Ni1i122.68 (9)
C8—C7—C6103.89 (13)C12—N4—N6105.39 (12)
C8—C7—H7128.1C12—N4—Ni1136.57 (11)
C6—C7—H7128.1N6—N4—Ni1118.01 (9)
N3—C8—C7110.57 (13)C10—N6—N4112.04 (13)
N3—C8—H8124.7C10—N6—H6126.3 (12)
C7—C8—H8124.7N4—N6—H6121.3 (12)
C10—C9—H9A109.5C14—O1—Ni187.55 (9)
C10—C9—H9B109.5C14—O2—Ni190.15 (9)
H9A—C9—H9B109.5N2—Ni1—N3i100.88 (5)
C10—C9—H9C109.5N2—Ni1—N490.81 (5)
H9A—C9—H9C109.5N3i—Ni1—N490.53 (5)
H9B—C9—H9C109.5N2—Ni1—N179.39 (5)
N6—C10—C11106.28 (14)N3i—Ni1—N1177.68 (5)
N6—C10—C9121.53 (15)N4—Ni1—N191.77 (5)
C11—C10—C9132.18 (15)N2—Ni1—O2157.80 (5)
C10—C11—C12106.26 (13)N3i—Ni1—O289.05 (5)
C10—C11—H11126.9N4—Ni1—O2109.07 (5)
C12—C11—H11126.9N1—Ni1—O289.92 (4)
N4—C12—C11110.03 (14)N2—Ni1—O199.02 (5)
N4—C12—C13120.64 (14)N3i—Ni1—O187.78 (5)
C11—C12—C13129.31 (14)N4—Ni1—O1170.18 (5)
C12—C13—H13A109.5N1—Ni1—O189.91 (4)
C12—C13—H13B109.5O2—Ni1—O161.24 (4)
H13A—C13—H13B109.5N2—Ni1—C14129.01 (5)
C12—C13—H13C109.5N3i—Ni1—C1487.58 (5)
H13A—C13—H13C109.5N4—Ni1—C14139.74 (5)
H13B—C13—H13C109.5N1—Ni1—C1490.48 (5)
O1—C14—O2121.02 (14)O2—Ni1—C1430.73 (5)
O1—C14—C15119.71 (15)O1—Ni1—C1430.52 (5)
O2—C14—C15119.27 (15)
N1—C1—C2—C31.7 (2)C7—C6—N2—N30.44 (16)
C1—C2—C3—C42.0 (2)C5—C6—N2—N3178.96 (12)
C2—C3—C4—C50.6 (2)C7—C6—N2—Ni1173.56 (10)
C3—C4—C5—N11.2 (2)C5—C6—N2—Ni15.84 (16)
C3—C4—C5—C6178.64 (14)C7—C8—N3—N20.27 (17)
N1—C5—C6—N25.98 (19)C7—C8—N3—Ni1i178.58 (10)
C4—C5—C6—N2174.14 (13)C6—N2—N3—C80.43 (15)
N1—C5—C6—C7173.25 (15)Ni1—N2—N3—C8171.45 (11)
C4—C5—C6—C76.6 (3)C6—N2—N3—Ni1i178.89 (9)
N2—C6—C7—C80.27 (17)Ni1—N2—N3—Ni1i10.09 (18)
C5—C6—C7—C8179.01 (15)C11—C12—N4—N60.36 (17)
C6—C7—C8—N30.00 (17)C13—C12—N4—N6178.19 (14)
N6—C10—C11—C120.30 (17)C11—C12—N4—Ni1177.84 (11)
C9—C10—C11—C12178.23 (17)C13—C12—N4—Ni13.6 (2)
C10—C11—C12—N40.04 (18)C11—C10—N6—N40.55 (17)
C10—C11—C12—C13178.35 (16)C9—C10—N6—N4178.17 (14)
C2—C1—N1—C50.1 (2)C12—N4—N6—C100.57 (16)
C2—C1—N1—Ni1178.23 (11)Ni1—N4—N6—C10178.03 (10)
C4—C5—N1—C11.6 (2)O2—C14—O1—Ni11.96 (15)
C6—C5—N1—C1178.30 (13)C15—C14—O1—Ni1177.31 (14)
C4—C5—N1—Ni1176.96 (11)O1—C14—O2—Ni12.01 (15)
C6—C5—N1—Ni13.15 (15)C15—C14—O2—Ni1177.26 (14)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N20.859 (18)2.571 (18)2.9931 (18)111.4 (14)
N6—H6···N30.859 (18)2.591 (19)3.3065 (18)141.4 (16)
N6—H6···O1i0.859 (18)2.332 (19)3.0800 (17)145.6 (16)
C1—H1···O20.952.613.1281 (19)115
C2—H2···O2ii0.952.373.2692 (19)158
C4—H4···O1iii0.952.623.4696 (19)149
C9—H9C···O1i0.982.613.426 (2)141
C13—H13B···O20.982.603.530 (2)159
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1.
 

Footnotes

UGC-Faculty Recharge Programme, New Delhi, India.

Acknowledgements

Dr Orbett Alexander, Department of Chemistry, University of Western Cape, South Africa, is thanked for crystallographic software assistance

Funding information

Funding for this research was provided by: Science and Engineering Research Board, India, Early Career Research Award (award No. ECR/2016/001966 to Nagarajan Loganathan); Science and Engineering Research Board, India, EMEQ Scheme (grant No. EEQ2018/001373 to Nagarajan Loganathan); Rashtriya Uchchatar Shiksha Abhiyan, Physical Sciences 2.0 (RUSA 2.0) (grant to Nagarajan Loganathan).

References

First citationBrandenburg, K., Berndt, M. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCuesta–Galisteo, S., Schörgenhumer, J., Hervieu, C. & Nevado, C. (2024). Angew. Chem. Int. Ed. 63, e202313717.  Google Scholar
First citationDas, A. K., De, A., Yadav, P., Lloret, F. & Mukherjee, R. (2019). Polyhedron, 171, 365–373.  CrossRef CAS Google Scholar
First citationDay, C. S., Rentería-Gómez, Á., Ton, S. J., Gogoi, A. R., Gutierrez, O. & Martin, R. (2023). Nat. Catal. 6, 244–253.  CrossRef CAS Google Scholar
First citationDiccianni, J., Lin, Q. & Diao, T. (2020). Acc. Chem. Res. 53, 906–919.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHalcrow, M. A. (2009). Dalton Trans. pp. 2059–2073.  Web of Science CrossRef Google Scholar
First citationHu, T.-L., Li, J.-R., Liu, C.-S., Shi, X.-S., Zhou, J.-N., Bu, X.-H. & Ribas, J. (2006). Inorg. Chem. 45, 162–173.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJeffery, J. C., Jones, P. L., Mann, K. L. V., Psillakis, E., McCleverty, J. A., Ward, M. D. & White, C. M. (1997). Chem. Commun. pp. 175–176.  CrossRef Google Scholar
First citationKeim, W. (1990). Angew. Chem. Int. Ed. Engl. 29, 235–244.  CrossRef Web of Science Google Scholar
First citationKomagawa, S., Wang, C., Morokuma, K., Saito, S. & Uchiyama, M. (2013). J. Am. Chem. Soc. 135, 14508–14511.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLautens, M., Klute, W. & Tam, W. (1996). Chem. Rev. 96, 49–92.  CrossRef PubMed CAS Google Scholar
First citationMilligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. (2019). Angew. Chem. Int. Ed. 58, 6152–6163.  CrossRef CAS Google Scholar
First citationMontgomery, J. (2004). Angew. Chem. Int. Ed. 43, 3890–3908.  CrossRef CAS Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationRosen, B. M., Quasdorf, K. W., Wilson, D. A., Zhang, N., Resmerita, A., Garg, N. K. & Percec, V. (2011). Chem. Rev. 111, 1346–1416.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTasker, S. Z., Standley, E. A. & Jamison, T. F. (2014). Nature, 509, 299–309.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTrofimenko, S. (1972). Chem. Rev. 72, 497–509.  CrossRef CAS Web of Science Google Scholar
First citationUyeda, C. & Farley, C. M. (2021). Acc. Chem. Res. 54, 3710–3719.  CrossRef CAS PubMed Google Scholar
First citationVermaak, V., Vosloo, H. C. M. & Swarts, A. J. (2024). Coord. Chem. Rev. 507, 215716.  CrossRef Google Scholar
First citationViciano–Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403–3418.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilke, G. (1988). Angew. Chem. Int. Ed. Engl. 27, 185–206.  CrossRef Google Scholar
First citationXu, W., Li, M., Qiao, L. & Xie, J. (2020). Chem. Commun. 56, 8524–8536.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146