

ISSN 2414-3146

Received 1 June 2024 Accepted 16 August 2024

Edited by M. Zeller, Purdue University, USA

‡ UGC-Faculty Recharge Programme, New Delhi, India.

Keywords: coordination compound; nickel; 3,5dimethylpyrazole; 3-(pyridin-2-yl) pyrazole; heteroleptic complex; crystal structure.

CCDC reference: 2346359

Structural data: full structural data are available from iucrdata.iucr.org

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1*H*-pyrazole)nickel(II)]

Thangamuniyandi Pilavadi,^a Soundararajan Krishnan^b and Nagarajan Loganathan^a*‡

^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and ^bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam-613403, Thanjavur, Tamil Nadu, India. *Correspondence e-mail: l.nagarajan@bdu.ac.in

The title compound, $[Ni_2(C_8H_6N_3)_2(C_2H_3O_2)_2(C_5H_8N_2)_2]$ or $[Ni(\mu-OOCCH_3)-(2-PyPz)(Me_2PzH)]_2$ (1) [2-PyPz = 3-(pyridin-2-yl) pyrazole; $Me_2PzH = 3,5-$ dimethyl pyrazole] was synthesized from $Ni(OOCCH_3)_2 \cdot 4H_2O$, 2-PyPzH, Me_2PzH and triethylamine as a base. Compound 1 { $[Ni_2(C_{30}H_{34}N_{10}Ni_2O_4)]$ } at 100 K has monoclinic $(P2_1/n)$ symmetry and the molecules have crystallographic inversion symmetry. Molecules of 1 comprise an almost planar dinuclear Ni^{II} core with an N_4O_2 coordination environment. The equatorial plane consists of N_3,O coordination derived from one of the bidentate acetate O atoms and three of the N atoms of the chelating 2-PyPz ligand while the axial positions are occupied by neutral Me_2PzH and the second O atom of the acetate unit. The Ni atoms are bridged by the nitrogen atom of a deprotonated 2-PyPz ligand. Compound 1 exhibits various inter- and intramolecular $C-H \cdot \cdot O$ and $N-H \cdot \cdot O$ hydrogen bonds.

Structure description

Noble metals such as palladium, platinum or iridium are widely used in catalysis due to their desirable properties such as the ability to tolerate variable coordination states and oxidation states that predispose them towards catalysing two-electron redox processes, while at the same time also being sufficiently stable and thermally stable to be of practical use. A major drawback is, however, their high price and limited availability. As an alternative to scarce 4 and 5*d* metals, their more earth-abundant 3*d* congeners have been investigated, and in particular several nickel-catalysed organic transformation strategies were developed and established (Wilke, 1988; Keim, 1990; Montgomery, 2004; Tasker *et al.*, 2014; Diccianni *et al.*, 2020). These include C–C and C–X (X = heteroatom) cross-coupling (Rosen *et al.*, 2011), cycloaddition (Lautens *et al.*, 1996; Komagawa *et al.*, 2013),

The molecule of **1** (with 50% displacement ellipsoids) with the unlabelled atoms related by crystallographic inversion symmetry (-x, -y, 1 - z). Intramolecular C-H···O, N-H···O and N-H···N hydrogen bonds are shown as dashed lines.

asymmetric hydrogenation (Vermaak et al., 2024), photoredox catalysis (Milligan et al., 2019; Cuesta-Galisteo et al., 2024), reductive coupling (Day et al., 2023) and reductive cyclization reactions (Montgomery, 2004) to name just a few. The inability of nickel to catalyse two-electron transformations can be overcome by the placement of more than one metal atom at the catalytic centre, and dinuclear nickel complexes show an enhanced catalytic activity and a higher robustness that can be traced back to the synergistic interaction between the two metals in the active site (Uyeda & Farley 2021; Xu et al., 2020). Nickel is also a micronutrient and essential for the biosynthesis of hydrogenase, carbon monoxide dehydrogenase (CODH) and urease. These enzymes require more than one metal active site to catalyse the enzymatic process. This also substantiates the crucial role of the presence of more than one metal centre for 3d-metalbased catalysts.

We are interested in synthesizing dimeric Ni^{II} complexes utilizing chelating ligands such as 2-PyPzH [3-(2-pyridyl)pyrazole, C₈H₇N₃]. The use of pyrazole ligands in coordination and organometallic chemistry is well established (Trofimenko, 1972; Mukherjee, 2000; Halcrow, 2009; Viciano-Chumillas et al., 2010). 2-PyPzH usually forms planar dimeric $[M(\mu-2-PyPz)_2]_2$ units that are thermally stable. Copper-based dimeric complexes with a $\{[Cu(\mu-2-PyPz)_2]_2\}_n$ core have been described (Jeffery et al., 1997; Hu et al., 2006; Das et al., 2019). However, to the best of our knowledge, the analogous nickel complex with an $[Ni(\mu-2-PyPz)_2]_n$ core is unknown. Thus, a reaction was carried out between nickel(II)acetate tetrahydrate, 2-PyPzH as the primary ligand and highly lipophilic 3,5-dimethylpyrazole (Me₂PzH) as an ancillary ligand and a small excess of triethylamine base in methanol solvent. This was done in a 1:1:5:3.5 ratio, which resulted in the formation of a green solid, which was then recrystallized from methanol

Table 1		
Hydrogen-bond geometry	(Å,	°).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·· <i>A</i> [4)
NG LIG NO $0.950(19)$ $2.571(19)$ $2.0021(19)$ $1114($	14)
10-10.000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	
N6-H6···N3 0.859 (18) 2.591 (19) 3.3065 (18) 141.4 (16)
$N6-H6\cdots O1^{i}$ 0.859 (18) 2.332 (19) 3.0800 (17) 145.6 (16)
C1-H1···O2 0.95 2.61 3.1281 (19) 115	
$C2-H2\cdots O2^{ii}$ 0.95 2.37 3.2692 (19) 158	
$C4-H4\cdots O1^{iii}$ 0.95 2.62 3.4696 (19) 149	
$C9-H9C\cdots O1^{i}$ 0.98 2.61 3.426 (2) 141	
C13-H13 B ···O2 0.98 2.60 3.530 (2) 159	

Symmetry codes: (i) -x, -y, -z + 1; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x, -y + 1, -z + 1.

solvent to obtain blue crystals of $[Ni_2(\mu-OOCCH_3)_2(2-PyPz)_2(Me_2PzH)_2]$ (1). Interestingly, the initial reaction between nickel(II)acetate tetrahydrate, 2-PyPzH and triethylamine base in a 1:1:1.5 stoichiometry failed and led to an intractable mixture. However, the addition of a large excess of Me_2PzH allowed us to isolate the soluble molecular assembly of 1 (Fig. 1).

Compound 1 crystallizes in the monoclinic $P_{1/n}$ space group, in which the asymmetric unit contains half of the molecule. Compound 1 is a dinuclear heteroleptic nickel(II) complex consisting of two each of anionic 2-PyPz, anionic CH₃COO⁻ and neutral Me₂PzH ligands and the complex molecules have crystallographic inversion symmetry. Overall, the two nickel atoms (Ni1 and Ni1ⁱ) are bridged through the 2-PyPz ligand and each Ni atom has an N₄O₂ octahedral coordination environment around it. The three N-donors (N1, N2 and N3ⁱ) are derived from the 2-PyPz unit, which forms the basal plane of the dimer while the fourth N-coordination (N4) is obtained from the axial neutral Me₂PzH ligand. The acetate ligand (O1 and O2) exhibits a *syn–syn* symmetric binding mode (κ^2 mode) in which O2 is in the equatorial position while the sixth axial position is occupied by O1.

The following is a summary of the bonding parameters found in compound 1 in which each Ni atom exhibits three different Ni-N distances and two different Ni-O distances. The Ni-N distance involving the anionic pyrazole unit is shorter $[Ni1-N2 = 2.0245 (12); Ni1-N3^{i} = 2.0409 (13) Å]$ compared to the pyridinic N of 2-PyPz [Ni1-N1 =2.0964 (13) Å] and the neutral Me₂PzH ligand [Ni1-N4 = 2.0884 (12) Å]. Additionally, the axial Ni-O distances are longer [Ni1 - O1 = 2.1848 (11) Å] than the equatorial distance [Ni1 - O2 = 2.1232 (11) Å]. Furthermore, the C–O distances are not equal [C14-O1 = 1.2576(19); C14-O2 =1.2641 (19) Å]. It is noteworthy that the dimeric [Ni(μ -2-PyPz)(COOCH₃)]₂ unit is almost planar, with the two basal *trans* angles being less than 180° [O1-Ni1-N4 = 170.18 (5); $N1-Ni1-N3^{i} = 177.68 (5)^{\circ}$]. The angle between the two apical positions is the most acute [O2-Ni1-N2] =157.80 (5)°]. Finally, of the twelve right angles around Ni1, seven are closer to 90° [average O-Ni-N = 89.16 (4) and average N-Ni-N = 91.03 (6)°], and the remaining three are obtuse $[N2-Ni1-N3^{1} = 100.88 (5); O1-Ni1-N2 = 99.02 (5);$ $O2-Ni1-N4 = 109.07 (5)^{\circ}].$

Compound 1 exhibits several intra- and intermolecular hydrogen bonds (Table 1, Fig. 2), with atom N6 of Me_2PzH

 $\begin{matrix} [Ni_2(C_8H_6N_3)_2(C_2H_3O_2)_2 - \\ (C_5H_8N_2)_2] \\ 716.09 \end{matrix}$

Monoclinic, $P2_1/n$

15.8088 (11) 92.210 (1)

 $0.12 \times 0.10 \times 0.10$

Multi-scan (SADABS; Krause et

Bruker APEX

1604.88 (18)

11.1045 (7), 9.1489 (6),

100

2 Μο *Κα*

1 23

Figure 2

Perspective view of **1** showing the intra- (red and black dotted lines) and intermolecular $C-H\cdots O$ (pink dotted lines) and intramolecular $N-H\cdots N$ (blue and black dotted lines) interactions with bond distances (several atoms were removed for clarity).

forming intramolecular hydrogen bonds with O1 of the acetate $(N6-H6\cdots O1^{i})$ and the reciprocal $N6^{i} - H6^{i} \cdots O1$ 3.0800 (17) Å; symmetry code: (i) -x, -y, -z + 1), with N2 $[N6-H6\cdots N2 2.9931 (18) Å]$ and N3 $[N6-H6\cdots N3]$ 3.3065 (18) Å] of 2-PvPz, while the two O atoms of acetate (O1 and O2) interact with the pyridine C-H of 2-PyPz and pyrazolyl C-H of Me₂PzH. Thus, the hydrogen bonding between C2-H2···O2ⁱⁱ [3.2692 (19) Å; symmetry code: (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ and C4-H4...O1ⁱⁱⁱ [3.4696 (19) Å; symmetry code: (iii) -x, -y + 1, -z + 1] are intermolecular in nature while the C9-H9C \cdots O1ⁱ [3.426 (2) Å], C1-H1 \cdots O2 [3.1281 (19) Å] and C13-H13B···O2 [3.530 (2) Å] are of intramolecular type.

Synthesis and crystallization

0.5 mmol of Ni(OOCCH₃)₂·4H₂O (0.1244 g) was dissolved in 30 ml of methanol. Then, 0.5 mmol of 2-PyPzH (0.0726 g) and 0.79 mmol of triethylamine (0.11 ml) were added to the solution. Upon addition of these, the solution became milky white and insoluble. It was stirred for 2 h. After every 30 minutes of stirring, 0.5 mmol of lipophilic Me₂PzH (0.2402 g, 2.5 mmol) and equal portions of triethylamine (0.11 ml, 0.79 mmol) were added. The solution slowly turned green and was further stirred for 12 h. It was then filtered and solvents were evaporated in vacuo to obtain a pale-green solid. Finally, the solid was recrystallized from methanol solution, which afforded blue crystals of 1. Crystal yield 45% [based on Ni(OOCCH₃)₂·4H₂O], m.p. 212°C. ESI-MS: $[M - 2H]^+$ 713.479; $[M_1 + \text{Li}]^+$ where $[M_1 = M-2(\text{Me}_2\text{PzH})-\text{CH}_3\text{CO}]$ 487.309. FT–IR (KBr, ν , cm⁻¹): 3122 (s), 3114 (s), 3000 (m), 2937 (s), 2738 (m), 2677 (s), 2015 (m, br), 1470 (m), 1307 (m), 1268 (m), 1407 (m), 1094 (s, br), 1032 (m), 941 (s), 898 (s), 855 (m), 811 (s), 624 (s), 554 (m).

Table 2	
Experimental details.	

Crystal data Chemical formula M_r Crystal system, space group

Temperature (K) a, b, c (Å)

 $\begin{array}{l} \beta \ (^{\circ}) \\ V \ (\text{\AA}^{3}) \\ Z \\ \text{Radiation type} \\ \mu \ (\text{mm}^{-1}) \\ \text{Crystal size (mm)} \end{array}$

Data collection Diffractometer Absorption correction

	al., 2015
T_{\min}, T_{\max}	0.875, 0.905
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10468, 3946, 3617
R _{int}	0.025
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.079, 1.04
No. of reflections	3946
No. of parameters	214
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement

Computer programs: *SMART* and *SAINT* (Bruker, 2012), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2019/2* (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg *et al.*, 2014) and *publCIF* (Westrip, 2010).

0.44, -0.27

Refinement

 $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å⁻³)

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

Dr Orbett Alexander, Department of Chemistry, University of Western Cape, South Africa, is thanked for crystallographic software assistance

Funding information

Funding for this research was provided by: Science and Engineering Research Board, India, Early Career Research Award (award No. ECR/2016/001966 to Nagarajan Loganathan); Science and Engineering Research Board, India, EMEQ Scheme (grant No. EEQ2018/001373 to Nagarajan Loganathan); Rashtriya Uchchatar Shiksha Abhiyan, Physical Sciences 2.0 (RUSA 2.0) (grant to Nagarajan Loganathan).

References

Brandenburg, K., Berndt, M. & Putz, H. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Bruker (2012). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.

- Cuesta-Galisteo, S., Schörgenhumer, J., Hervieu, C. & Nevado, C. (2024). Angew. Chem. Int. Ed. 63, e202313717.
- Das, A. K., De, A., Yadav, P., Lloret, F. & Mukherjee, R. (2019). *Polyhedron*, **171**, 365–373.
- Day, C. S., Rentería-Gómez, Á., Ton, S. J., Gogoi, A. R., Gutierrez, O. & Martin, R. (2023). Nat. Catal. 6, 244–253.
- Diccianni, J., Lin, Q. & Diao, T. (2020). Acc. Chem. Res. 53, 906-919.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.
- Hu, T.-L., Li, J.-R., Liu, C.-S., Shi, X.-S., Zhou, J.-N., Bu, X.-H. & Ribas, J. (2006). *Inorg. Chem.* 45, 162–173.
- Jeffery, J. C., Jones, P. L., Mann, K. L. V., Psillakis, E., McCleverty, J. A., Ward, M. D. & White, C. M. (1997). *Chem. Commun.* pp. 175– 176.
- Keim, W. (1990). Angew. Chem. Int. Ed. Engl. 29, 235-244.
- Komagawa, S., Wang, C., Morokuma, K., Saito, S. & Uchiyama, M. (2013). J. Am. Chem. Soc. 135, 14508–14511.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Lautens, M., Klute, W. & Tam, W. (1996). Chem. Rev. 96, 49-92.

- Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. (2019). Angew. Chem. Int. Ed. 58, 6152–6163.
- Montgomery, J. (2004). Angew. Chem. Int. Ed. 43, 3890-3908.
- Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.
- Rosen, B. M., Quasdorf, K. W., Wilson, D. A., Zhang, N., Resmerita, A., Garg, N. K. & Percec, V. (2011). *Chem. Rev.* 111, 1346–1416.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tasker, S. Z., Standley, E. A. & Jamison, T. F. (2014). *Nature*, **509**, 299–309.
- Trofimenko, S. (1972). Chem. Rev. 72, 497-509.
- Uyeda, C. & Farley, C. M. (2021). Acc. Chem. Res. 54, 3710-3719.
- Vermaak, V., Vosloo, H. C. M. & Swarts, A. J. (2024). Coord. Chem. Rev. 507, 215716.
- Viciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403–3418.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wilke, G. (1988). Angew. Chem. Int. Ed. Engl. 27, 185-206.
- Xu, W., Li, M., Qiao, L. & Xie, J. (2020). Chem. Commun. 56, 8524–8536.

full crystallographic data

IUCrData (2024). **9**, x240810 [https://doi.org/10.1107/S2414314624008101]

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1*H*-pyrazole)-nickel(II)]

Thangamuniyandi Pilavadi, Soundararajan Krishnan and Nagarajan Loganathan

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)]

Crystal data

 $[Ni_{2}(C_{8}H_{6}N_{3})_{2}(C_{2}H_{3}O_{2})_{2}(C_{5}H_{8}N_{2})_{2}]$ $M_{r} = 716.09$ Monoclinic, $P2_{1}/n$ a = 11.1045 (7) Å b = 9.1489 (6) Å c = 15.8088 (11) Å $\beta = 92.210$ (1)° V = 1604.88 (18) Å³ Z = 2

Data collection

Bruker APEX diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015 $T_{\min} = 0.875$, $T_{\max} = 0.905$ 10468 measured reflections 3946 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.079$ S = 1.043946 reflections 214 parameters 0 restraints Primary atom site location: difference Fourier map F(000) = 744 $D_x = 1.482 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5987 reflections $\theta = 2.6-28.3^{\circ}$ $\mu = 1.23 \text{ mm}^{-1}$ T = 100 KPrism, blue $0.12 \times 0.10 \times 0.10 \text{ mm}$

3617 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -14 \rightarrow 14$ $k = -12 \rightarrow 12$ $l = -21 \rightarrow 14$ 4 standard reflections every 22 reflections intensity decay: none

Secondary atom site location: inferred from neighbouring sites Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0457P)^2 + 0.5264P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.44$ e Å⁻³ $\Delta\rho_{min} = -0.27$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the non-hydrogen atoms were refined anisotropically using full-matrix least-square procedures while carbon bound hydrogen atoms were included in idealized positions and the methyl CH₃ were allowed to rotate using a riding model. C—H bonds were constrained to 0.95 Å for aromatic C—H ($U_{iso}(H) = 1.2 U_{eq}(C)$) and 0.98 Å for CH₃ [$U_{iso}(H) = 1.5 U_{eq}(C)$] units, respectively. The N—H proton was added from the difference Fourier map and refined with $U_{iso}(H) = 1.2 U_{eq}(N)$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.11107 (14)	0.40306 (17)	0.31691 (10)	0.0189 (3)	
H1	0.177134	0.357829	0.290855	0.023*	
C2	0.08185 (14)	0.54516 (18)	0.29476 (10)	0.0212 (3)	
H2	0.125431	0.595694	0.253272	0.025*	
C3	-0.01268 (15)	0.61225 (16)	0.33456 (11)	0.0213 (3)	
H3	-0.033162	0.710881	0.321898	0.026*	
C4	-0.07701 (13)	0.53426 (17)	0.39297 (9)	0.0184 (3)	
H4	-0.142463	0.578183	0.420430	0.022*	
C5	-0.04392 (13)	0.39056 (15)	0.41058 (9)	0.0152 (3)	
C6	-0.10578 (12)	0.29590 (16)	0.46928 (9)	0.0154 (3)	
C7	-0.21072 (13)	0.31154 (17)	0.51418 (10)	0.0192 (3)	
H7	-0.263572	0.393132	0.515024	0.023*	
C8	-0.21990 (13)	0.18053 (17)	0.55720 (10)	0.0191 (3)	
H8	-0.282715	0.156611	0.593911	0.023*	
C9	-0.31184 (15)	-0.1728 (2)	0.28848 (11)	0.0268 (4)	
H9A	-0.325502	-0.242347	0.241949	0.040*	
H9B	-0.377717	-0.101487	0.288064	0.040*	
H9C	-0.308875	-0.225503	0.342481	0.040*	
C10	-0.19552 (14)	-0.09537 (16)	0.27774 (10)	0.0195 (3)	
C11	-0.12922 (14)	-0.06840 (18)	0.20783 (10)	0.0206 (3)	
H11	-0.149648	-0.094806	0.150952	0.025*	
C12	-0.02518 (13)	0.00603 (17)	0.23726 (9)	0.0189 (3)	
C13	0.07636 (15)	0.0650 (2)	0.18861 (11)	0.0272 (4)	
H13A	0.101087	-0.008066	0.147390	0.041*	
H13B	0.144532	0.087654	0.227618	0.041*	
H13C	0.050240	0.154119	0.158824	0.041*	
C14	0.30155 (13)	0.17584 (17)	0.44170 (10)	0.0207 (3)	
C15	0.43466 (15)	0.2066 (2)	0.45627 (13)	0.0363 (4)	
H15A	0.473384	0.211363	0.401669	0.054*	
H15B	0.471550	0.128286	0.490694	0.054*	
H15C	0.445230	0.300123	0.485868	0.054*	
N1	0.05042 (11)	0.32623 (14)	0.37348 (8)	0.0158 (2)	
N2	-0.05658 (10)	0.16361 (14)	0.48562 (7)	0.0143 (2)	
N3	-0.12709 (11)	0.09133 (14)	0.53973 (8)	0.0157 (2)	

data reports

N4	-0.02724 (11)	0.02391 (14)	0.32099 (8)	0.0161 (2)
N6	-0.13244 (11)	-0.03814 (14)	0.34435 (8)	0.0179 (3)
01	0.23062 (10)	0.19619 (12)	0.50069 (7)	0.0213 (2)
O2	0.26366 (10)	0.12852 (12)	0.37041 (7)	0.0204 (2)
Ni1	0.08662 (2)	0.11295 (2)	0.41577 (2)	0.01351 (7)
H6	-0.1496 (16)	-0.046 (2)	0.3967 (12)	0.016*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0153 (7)	0.0217 (8)	0.0195 (7)	-0.0015 (5)	0.0013 (6)	0.0017 (6)
C2	0.0190 (7)	0.0229 (8)	0.0218 (8)	-0.0039 (6)	0.0009 (6)	0.0061 (6)
C3	0.0223 (8)	0.0164 (7)	0.0249 (8)	0.0001 (6)	-0.0022 (6)	0.0037 (6)
C4	0.0164 (7)	0.0188 (7)	0.0198 (7)	0.0007 (5)	-0.0014 (6)	-0.0008 (6)
C5	0.0139 (6)	0.0180 (7)	0.0136 (6)	-0.0012 (5)	-0.0024 (5)	-0.0015 (5)
C6	0.0146 (6)	0.0171 (7)	0.0143 (6)	-0.0001 (5)	-0.0008(5)	-0.0009 (5)
C7	0.0171 (7)	0.0205 (8)	0.0200 (7)	0.0040 (6)	0.0022 (6)	0.0005 (6)
C8	0.0152 (7)	0.0234 (8)	0.0189 (7)	0.0029 (6)	0.0037 (5)	0.0013 (6)
C9	0.0225 (8)	0.0303 (9)	0.0271 (8)	-0.0091 (7)	-0.0076 (6)	0.0063 (7)
C10	0.0183 (7)	0.0166 (7)	0.0229 (8)	-0.0001 (5)	-0.0054 (6)	0.0023 (6)
C11	0.0212 (7)	0.0217 (7)	0.0183 (7)	0.0017 (6)	-0.0044 (6)	-0.0010 (6)
C12	0.0180 (7)	0.0200 (7)	0.0186 (7)	0.0032 (6)	-0.0006 (6)	0.0015 (6)
C13	0.0226 (8)	0.0396 (10)	0.0197 (8)	-0.0009 (7)	0.0034 (6)	-0.0011 (7)
C14	0.0144 (7)	0.0201 (7)	0.0275 (8)	-0.0013 (5)	-0.0002 (6)	0.0065 (6)
C15	0.0161 (8)	0.0456 (11)	0.0467 (11)	-0.0063 (7)	-0.0028 (7)	0.0064 (9)
N1	0.0134 (6)	0.0186 (6)	0.0154 (6)	-0.0008(5)	-0.0005 (4)	0.0009 (5)
N2	0.0126 (5)	0.0166 (6)	0.0136 (6)	-0.0005 (5)	0.0013 (4)	0.0009 (5)
N3	0.0129 (6)	0.0196 (6)	0.0147 (6)	0.0006 (5)	0.0023 (4)	0.0016 (5)
N4	0.0134 (6)	0.0165 (6)	0.0183 (6)	0.0001 (4)	0.0011 (5)	0.0012 (5)
N6	0.0162 (6)	0.0204 (6)	0.0172 (6)	-0.0022 (5)	-0.0003 (5)	0.0016 (5)
01	0.0176 (5)	0.0256 (6)	0.0205 (5)	-0.0023 (4)	-0.0009 (4)	0.0005 (4)
O2	0.0164 (5)	0.0240 (6)	0.0210 (6)	0.0005 (4)	0.0043 (4)	0.0027 (4)
Ni1	0.01067 (11)	0.01613 (12)	0.01377 (11)	-0.00014 (6)	0.00125 (7)	0.00074 (6)

Geometric parameters (Å, °)

C1—N1	1.3393 (19)	C11—C12	1.405 (2)
C1—C2	1.382 (2)	C11—H11	0.9500
C1—H1	0.9500	C12—N4	1.3348 (19)
C2—C3	1.388 (2)	C12—C13	1.490 (2)
С2—Н2	0.9500	C13—H13A	0.9800
C3—C4	1.387 (2)	C13—H13B	0.9800
С3—Н3	0.9500	C13—H13C	0.9800
C4—C5	1.390 (2)	C14—O1	1.2576 (19)
C4—H4	0.9500	C14—O2	1.2641 (19)
C5—N1	1.3547 (19)	C14—C15	1.514 (2)
C5—C6	1.460 (2)	C14—Ni1	2.4738 (15)
C6—N2	1.3488 (19)	C15—H15A	0.9800

C6—C7	1.395 (2)	C15—H15B	0.9800
С7—С8	1.384 (2)	C15—H15C	0.9800
С7—Н7	0.9500	N1—Ni1	2 0964 (13)
C_{0} N2	1 2514 (10)		2.0901(13)
C8—N3	1.3514 (19)	N2—N3	1.3341 (17)
С8—Н8	0.9500	N2—N11	2.0245 (12)
C9—C10	1.489 (2)	N3—Ni1 ⁱ	2.0409 (13)
С9—Н9А	0.9800	N4—N6	1.3626 (17)
С9—Н9В	0 9800	N4—Ni1	2.0884(12)
	0.9800		2.000+(12)
C9—H9C	0.9800		0.839 (18)
C10—N6	1.3479 (19)	Ol—Nil	2.1848 (11)
C10—C11	1.374 (2)	O2—Ni1	2.1232 (11)
N1 C1 C2	122.95 (15)	01 C14 Nil	61.03 (8)
NI-CI-UI	122.95 (15)	O1 - C14 - N11	50.12 (8)
NI-CI-HI	118.5	02—C14—N11	59.12 (8)
C2—C1—H1	118.5	C15—C14—Ni1	177.13 (13)
C1—C2—C3	118.39 (14)	C14—C15—H15A	109.5
C1—C2—H2	120.8	C14—C15—H15B	109.5
C_{2} C_{2} H_{2}	120.8	U15A C15 U15P	100.5
$C_3 - C_2 - \Pi_2$	120.8		109.5
C4 - C3 - C2	119.50 (14)	C14—C15—H15C	109.5
C4—C3—H3	120.2	H15A—C15—H15C	109.5
С2—С3—Н3	120.2	H15B—C15—H15C	109.5
C3—C4—C5	118.75 (14)	C1—N1—C5	118.57 (13)
C_{3} C_{4} H_{4}	120.6	$C1$ _N1_N11	127.31(10)
	120.0		127.31(10)
C3-C4-H4	120.0		114.10 (10)
N1—C5—C4	121.80 (14)	C6—N2—N3	108.63 (12)
N1—C5—C6	114.08 (13)	C6—N2—Nil	114.95 (10)
C4—C5—C6	124.12 (14)	N3—N2—Ni1	135.91 (10)
$N^{2}-C^{6}-C^{7}$	109 55 (13)	C8—N3—N2	107.36(12)
N2 C6 C5	107.55(13) 117.10(12)	C_{0} N2 N:1	107.50(12)
N2	117.19(15)		129.94 (10)
C' - C6 - C5	133.25 (14)	$N2-N3-N11^{1}$	122.68 (9)
C8—C7—C6	103.89 (13)	C12—N4—N6	105.39 (12)
С8—С7—Н7	128.1	C12—N4—Ni1	136.57 (11)
С6—С7—Н7	128.1	N6—N4—Ni1	118.01 (9)
N3 C8 C7	110 57 (13)	C10 N6 N/	112.04(13)
$N_{2} = C_{0} = C_{1}$	10.57 (15)		112.04(13)
N3-C8-H8	124.7	C10—N0—H0	120.3 (12)
С7—С8—Н8	124.7	N4—N6—H6	121.3 (12)
С10—С9—Н9А	109.5	C14—O1—Ni1	87.55 (9)
С10—С9—Н9В	109.5	C14—O2—Ni1	90.15 (9)
H9A—C9—H9B	109 5	N2—Ni1—N3 ⁱ	100.88 (5)
C_{10} C_{0} H_{0} C_{0}	109.5	N2 NF1 N/4	100.00(2)
	109.5		90.81 (3)
Н9А—С9—Н9С	109.5	N3'—N11—N4	90.53 (5)
Н9В—С9—Н9С	109.5	N2—Ni1—N1	79.39 (5)
N6-C10-C11	106.28 (14)	N3 ⁱ —Ni1—N1	177.68 (5)
N6—C10—C9	121.53 (15)	N4—Ni1—N1	91.77 (5)
$C_{11} - C_{10} - C_{9}$	132 18 (15)	N2 - Ni1 - O2	157.80 (5)
C10 C11 C12	102.10(13) 106.26(12)	N2i N31 O2	20.05 (5)
	100.20 (15)	105 101 102	69.05 (5)
C10—C11—H11	126.9	N4—N11—O2	109.07 (5)
C12—C11—H11	126.9	N1—Ni1—O2	89.92 (4)

110.03 (14)	N2—Ni1—O1	99.02 (5)
120.64 (14)	N3 ⁱ —Ni1—O1	87.78 (5)
129.31 (14)	N4—Ni1—O1	170.18 (5)
109.5	N1—Ni1—O1	89.91 (4)
109.5	O2—Ni1—O1	61.24 (4)
109.5	N2—Ni1—C14	129.01 (5)
109.5	N3 ⁱ —Ni1—C14	87.58 (5)
109.5	N4—Ni1—C14	139.74 (5)
109.5	N1—Ni1—C14	90.48 (5)
121.02 (14)	O2—Ni1—C14	30.73 (5)
119.71 (15)	O1—Ni1—C14	30.52 (5)
119.27 (15)		
1.7 (2)	C7—C6—N2—N3	0.44 (16)
-2.0 (2)	C5-C6-N2-N3	-178.96 (12)
0.6 (2)	C7—C6—N2—Ni1	173.56 (10)
1.2 (2)	C5—C6—N2—Ni1	-5.84 (16)
-178.64 (14)	C7—C8—N3—N2	0.27 (17)
5.98 (19)	C7—C8—N3—Ni1 ⁱ	178.58 (10)
-174.14 (13)	C6—N2—N3—C8	-0.43 (15)
-173.25 (15)	Ni1—N2—N3—C8	-171.45 (11)
6.6 (3)	C6—N2—N3—Ni1 ⁱ	-178.89 (9)
-0.27 (17)	Ni1—N2—N3—Ni1 ⁱ	10.09 (18)
179.01 (15)	C11—C12—N4—N6	-0.36 (17)
0.00 (17)	C13—C12—N4—N6	178.19 (14)
0.30 (17)	C11—C12—N4—Ni1	177.84 (11)
-178.23 (17)	C13—C12—N4—Ni1	-3.6 (2)
0.04 (18)	C11—C10—N6—N4	-0.55 (17)
-178.35 (16)	C9—C10—N6—N4	178.17 (14)
0.1 (2)	C12—N4—N6—C10	0.57 (16)
-178.23 (11)	Ni1—N4—N6—C10	-178.03 (10)
-1.6 (2)	O2-C14-O1-Ni1	1.96 (15)
178.30 (13)	C15—C14—O1—Ni1	-177.31 (14)
176.96 (11)	O1-C14-O2-Ni1	-2.01 (15)
-3.15 (15)	C15—C14—O2—Ni1	177.26 (14)
	110.03 (14) 120.64 (14) 129.31 (14) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 121.02 (14) 119.71 (15) 119.27 (15) 1.7 (2) -2.0 (2) 0.6 (2) 1.2 (2) -178.64 (14) 5.98 (19) -174.14 (13) -173.25 (15) 6.6 (3) -0.27 (17) 179.01 (15) 0.00 (17) 0.30 (17) -178.23 (17) 0.04 (18) -178.35 (16) 0.1 (2) -178.30 (13) 176.96 (11) -3.15 (15)	110.03 (14)N2-Ni1-O1120.64 (14)N3'-Ni1-O1129.31 (14)N4-Ni1-O1109.5N1-Ni1-O1109.5O2-Ni1-O1109.5N2-Ni1-C14109.5N3'-Ni1-C14109.5N4-Ni-C14109.5N1-Ni-C14109.5N1-Ni-C14109.5N1-Ni-C14109.5N1-Ni-C14119.71 (15)O1-Ni1-C14119.27 (15)1.7 (2)C7-C6-N2-N3-2.0 (2)C5-C6-N2-Ni-2.0 (2)C5-C6-N2-Ni1.2 (2)C5-C6-N2-Ni-178.64 (14)C7-C8-N3-N25.98 (19)C7-C8-N3-N25.98 (19)C7-C8-N3-N1i'-174.14 (13)C6-N2-N3-C86.6 (3)C6-N2-N3-Ni1'-0.27 (17)Ni1-N2-N3-C86.6 (3)C6-N2-N3-Ni1'179.01 (15)C11-C12-N4-N60.00 (17)C13-C12-N4-N60.30 (17)C11-C12-N4-Ni-178.23 (17)C13-C12-N4-Ni0.4 (18)C11-C10-N6-N4-178.35 (16)C9-C10-N6-N40.1 (2)C12-N4-N6-C10-1.6 (2)O2-C14-O1-Ni1178.30 (13)C15-C14-O1-Ni1176.96 (11)O1-C14-O2-Ni1-3.15 (15)C15-C14-O2-Ni1

Symmetry code: (i) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D…A	<i>D</i> —H··· <i>A</i>
N6—H6…N2	0.859 (18)	2.571 (18)	2.9931 (18)	111.4 (14)
N6—H6…N3	0.859 (18)	2.591 (19)	3.3065 (18)	141.4 (16)
N6—H6…O1 ⁱ	0.859 (18)	2.332 (19)	3.0800 (17)	145.6 (16)
C1—H1…O2	0.95	2.61	3.1281 (19)	115
C2—H2···O2 ⁱⁱ	0.95	2.37	3.2692 (19)	158
C4—H4…O1 ⁱⁱⁱ	0.95	2.62	3.4696 (19)	149

				data reports
C9—H9 <i>C</i> …O1 ⁱ	0.98	2.61	3.426 (2)	141
С13—Н13В…О2	0.98	2.60	3.530 (2)	159

Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x, -y+1, -z+1.