metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-4-iso­butyl-1,2,4-triazol-5-yl­­idene)(tri­phenyl­phosphane)rhodium(I) tetra­fluorido­borate

crossmark logo

aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 26 July 2024; accepted 29 July 2024; online 2 August 2024)

A new, cationic N-heterocyclic carbene RhI complex with a tetra­fluorido­borate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit. Each complex cation exhibits a distorted square-planar conformation around the RhI atom. Bond lengths and bond angles are as expected for an Rh–NHC complex. There are several close, non-standard C—H⋯F hydrogen-bonding inter­actions between the ions. One of the tetra­fluorido­borate anions shows statistical disorder of the F atoms.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-heterocyclic carbene (NHC) complexes of transition metals have been studied extensively in homogeneous catalysis, especially in transfer hydrogenation of unsaturated bonds (Cazin, 2013[Cazin, C. S. J. (2013). Dalton Trans. 42, 7254.]; Diez-González et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]; Rovis & Nolan, 2013[Rovis, T. & Nolan, S. (2013). Synlett, 24, 1188-1189.]; Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). Their catalytic activity in the transfer hydrogenation of ketones and imines has also been studied and reported (Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]). The NHC ligands can be tuned both sterically and electronically by having different substituents on the nitro­gen atoms (Diez-González & Nolan, 2007[Díez-González, S. & Nolan, S. P. (2007). Coord. Chem. Rev. 251, 874-883.]; Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Many imidazole- and triazole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]; Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]). We continue to synthesize new imidazole- and triazole-based NHC complexes of rhodium and iridium, to study the effect of different substituents on the NHCs and the other ligands coordinating to the metal in transfer hydrogenation reactions (Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.],b[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.]; Rood et al., 2021[Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.]; Rushlow et al., 2021[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.]; Newman et al., 2021[Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.]; Castaldi et al., 2021[Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.]; Maynard et al., 2023[Maynard, A., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230903.]; Lerch et al., 2024a[Lerch, T. G., Gau, M., Albert, D. R. & Rajaseelan, E. (2024a). IUCrData, 9, x240501.],b[Lerch, T. G., Gau, M., Albert, D. R. & Rajaseelan, E. (2024b). IUCrData, 9, x240060.]).

The title complex, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4 (2), comprises a cationic RhI complex and a tetra­fluorido­borate counter-anion, with mol­ecular structures illustrated in Fig. 1[link]; there are two independent ion pairs in the asymmetric unit. The coordination sphere around the RhI cation, formed by the bidentate COD, NHC, and tri­phenyl­phosphane ligands, results in a distorted square-planar conformation, characterized by CNHC—Rh—P bond angles of 89.6 (2)° for cation A and 89.8 (2)° for cation B. The N—C—N bond angles of the NHC ligand are 102.4 (7) and 103.8 (6)° for cations A and B, respectively. Other selected bond lengths in cations A and B are Rh—CNHC = 2.030 (8) and 2.043 (8) Å, Rh—P = 2.3211 (18) and 2.3260 (15) Å, respectively.

[Figure 1]
Figure 1
Mol­ecular structures of the four ions comprising the asymmetric unit of the title salt showing the atom-labeling scheme. Cation A, containing Rh1, is shown on the right. Displacement ellipsoids are drawn at the 50% probability level. Both orientations of the statistically disordered B2-tetra­fluorido­borate anion are shown.

Fig. 2[link] shows a mol­ecular packing diagram of the salt viewed along the a axis, with several close C—H⋯F contacts (likely, non-standard hydrogen-bonding inter­actions) stabilizing the orientation of the [BF4] anions with respect to the RhI complex cations. The non-standard hydrogen-bonding inter­actions are shown as dotted orange lines in Fig. 2[link] and are summarized in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F3i 0.95 2.36 3.177 (8) 144
C8—H8C⋯F1 0.98 2.50 3.404 (10) 153
C13—H13⋯F5* 0.95 2.52 3.396 (17) 153
C20—H20⋯F2ii 0.95 2.34 3.291 (9) 178
C16′—H16′⋯F7* 0.95 2.40 3.351 (17) 177
C29′—H29D⋯F8ii 0.99 2.51 3.37 (2) 146
Symmetry codes: (i) [x-1, y, z]; (ii) [x-1, y-1, z].
[Figure 2]
Figure 2
Mol­ecular packing diagram of the title salt visualized along the a axis with non-standard hydrogen-bonding inter­actions shown as dotted orange lines.

An overlay of the neutral precursor complex, chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene](1-ethyl-4-isobutyl-1,2,4-tri­azol-5-yl­idene)rhodium(I) (1) (Lerch et al., 2024c[Lerch, T. G., Gau, M., Albert, D. R. & Rajaseelan, E. (2024c). IUCrData, 9, x240704.]), and cation A of the title salt (2) (Fig. 3[link]), shows that in (2) the Rh—CNHC bond, and hence the entire NHC ligand, is rotated by almost 180° with respect to the remainder of the complex as visualized by the ethyl and isobutyl substituents not overlapping when the CNHC, Rh, and Cl/P atoms are matched with the neutral complex (1). A similar rotation is observed in complex B. The two cations in the asymmetric-unit exhibit different configurations of the ethyl and isobutyl substituents with cation A showing a syn-configuration and cation B showing an anti-configuration with respect to each other when the CNHC, Rh, and P atoms are matched between A and B, as seen in Fig. 4[link].

[Figure 3]
Figure 3
Overlay of complex A of the salt, shown in red, with previously characterized (Lerch et al., 2024c[Lerch, T. G., Gau, M., Albert, D. R. & Rajaseelan, E. (2024c). IUCrData, 9, x240704.]) neutral complex (1), showing that the Rh—CNHC bond has rotated 180° in the synthesis of the cationic complex from the neutral precursor. The overlay is constructed with CNHC, Rh, and Cl/P atoms matched between the neutral complex (1) and complex A of the title salt (2) with an r.m.s. deviation of 0.029 Å between the matched atoms.
[Figure 4]
Figure 4
Overlay of complex A, shown in red, with complex B of the title salt showing the difference in orientation of the ethyl and isobutyl substituents with respect to the NHC ligand. The overlay is constructed with CNHC, Rh, and P atoms matched between the two cations of with an r.m.s. deviation of 0.008 Å between the matched atoms.

Synthesis and crystallization

The synthesis and structure of chlorido­[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-yl­idene)rhodium(I) (1) have been published (Lerch et al. 2024c[Lerch, T. G., Gau, M., Albert, D. R. & Rajaseelan, E. (2024c). IUCrData, 9, x240704.]). All other compounds used in the syntheses, as shown in Fig. 5[link], were obtained from Sigma-Aldrich and Strem and used as received; all syntheses were performed under a nitro­gen atmosphere. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz (operating at 100 MHz for 1H and 13C, and 162 MHz for 31P) Varian spectrometer and referenced to the residual solvent peak (δ in p.p.m.). The title salt (2) was crystallized by slow diffusion of pentane into a CH2Cl­2 solution.

[Figure 5]
Figure 5
Reaction scheme for the synthesis of the title salt (2).

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-4-isobutyl-1,2,4-tri­azol-5-yl­idene)(tri­phenyl­phosphane)rhodium(I) tetra­fluorido­borate (2): Tri­phenyl­phosphane (0.097 g, 0.372 mmol) and AgBF4 (0.072 g, 0.372 mmol) were added to (1) (0.149 g, 0.372 mmol) in CH2Cl2 (15 ml). The solution was stirred in the dark for 1.5 h. The resulting mixture was filtered through Celite and the solvent was removed under reduced pressure. The bright-yellow solid product (2) was dried under vacuum. Yield: 0.266 g (100%). 1H NMR: δ 8.08 (s, 1H, N—C3H—N), 7.48–7.25 (m, 15H, Haromatic), 4.72 (q, 2H, N—CH2 of eth­yl), 4.47 (d, 2H, N—CH2 of isobut­yl), 4.24 (m, 2H, CH of COD), 4.08 (m, 2H, CH of COD), 2.60 (m, 4H, CH2 of COD), 2.48 (m, 2H, CH2 of COD), 2.23 (m, 2H, CH2 of COD), 2.06 (m, 1H, CH of isobut­yl), 1.23 (t, 3H, CH3 of eth­yl), 0.92 (d, 6H, CH3 of isobut­yl). 13C NMR: δ 181.43 (d, Rh—C, JC—Rh = 49.3 Hz), 143.88 (N—C3H—N), 133.47–128.49 (Caromatic), 95.54, 95.46, 95.18, 95.06 (CH of COD), 55.70 (N—CH2 of isobut­yl), 48.11 (N—CH2 of eth­yl), 30.85, 30.50, 30.48, 30.19 (CH2 of COD), 29.22 (CH of isobut­yl), 19.98 (CH3 of isobut­yl), 13.93 (CH3 of eth­yl).31P NMR: δ 25.10 (d, JRh—P = 152.77 Hz).

Refinement

Refinement details are summarized in Table 2[link]. One of the tetra­fluorido­borate anions shows positional disorder of the F atoms over adjacent sites in a 1:1 ratio. The absolute structure was determined based on differences in Friedel pairs included in the data set (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). The maximum and minimum electron density peaks of 2.51 and 1.08 e Å−3, respectively, were each located 0.87 Å from the Rh1 atom. Two reflections, i.e. 0[\overline{1}]1 and 1[\overline{1}]0, were omitted from the final cycles of refinement owing to poor agreement.

Table 2
Experimental details

Crystal data
Chemical formula [Rh(C8H12)(C8H15N3)(C18H15P)]BF4
Mr 713.39
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 10.0296 (3), 10.3718 (3), 18.1424 (4)
α, β, γ (°) 99.270 (2), 93.906 (2), 118.766 (3)
V3) 1609.47 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.63
Crystal size (mm) 0.23 × 0.13 × 0.12
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.823, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 46659, 15088, 13740
Rint 0.047
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.03
No. of reflections 15088
No. of parameters 835
No. of restraints 135
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.51, −1.08
Absolute structure Flack x determined using 5836 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.029 (12)
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

[(1,2,5,6-η)-Cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)(triphenylphosphane)rhodium(I) tetrafluoridoborate top
Crystal data top
[Rh(C8H12)(C8H15N3)(C18H15P)]BF4Z = 2
Mr = 713.39F(000) = 736
Triclinic, P1Dx = 1.472 Mg m3
a = 10.0296 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3718 (3) ÅCell parameters from 24773 reflections
c = 18.1424 (4) Åθ = 2.2–28.3°
α = 99.270 (2)°µ = 0.63 mm1
β = 93.906 (2)°T = 100 K
γ = 118.766 (3)°Block, yellow
V = 1609.47 (9) Å30.23 × 0.13 × 0.12 mm
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
13740 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.047
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2024)
h = 1313
Tmin = 0.823, Tmax = 1.000k = 1313
46659 measured reflectionsl = 2424
15088 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0858P)2 + 0.5161P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max = 0.001
S = 1.03Δρmax = 2.51 e Å3
15088 reflectionsΔρmin = 1.08 e Å3
835 parametersAbsolute structure: Flack x determined using 5836 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
135 restraintsAbsolute structure parameter: 0.029 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.37193 (4)0.44291 (4)1.05195 (2)0.01839 (12)
P10.2676 (2)0.3571 (2)0.92393 (10)0.0209 (4)
N10.1208 (7)0.5098 (7)1.0896 (3)0.0287 (12)
N20.0659 (7)0.6073 (7)1.0954 (3)0.0297 (12)
N30.2903 (8)0.6987 (7)1.0545 (3)0.0276 (12)
C10.2574 (9)0.5596 (9)1.0644 (4)0.0250 (16)
C20.1698 (7)0.7192 (8)1.0741 (4)0.0281 (14)
H20.1650920.8079111.0719370.034*
C30.0256 (8)0.3582 (8)1.1035 (5)0.0345 (16)
H3A0.0836150.3032851.0984270.041*
H3B0.0690260.3016721.0646780.041*
C40.0190 (9)0.3642 (9)1.1814 (5)0.0381 (17)
H4A0.0881580.2615411.1871220.057*
H4B0.0718160.4229361.1875070.057*
H4C0.0739620.4120301.2199870.057*
C50.4182 (8)0.7952 (9)1.0209 (4)0.0312 (15)
H5A0.3811740.7810820.9666420.037*
H5B0.4968670.7636871.0239050.037*
C60.4922 (8)0.9587 (8)1.0579 (4)0.0327 (15)
H60.4101320.9870451.0606470.039*
C70.6059 (9)1.0527 (9)1.0102 (5)0.0396 (18)
H7A0.6783301.0160961.0009760.059*
H7B0.6631841.1587041.0373070.059*
H7C0.5492241.0435430.9616540.059*
C80.5722 (9)0.9875 (10)1.1382 (5)0.0399 (17)
H8A0.4971700.9241821.1670180.060*
H8B0.6159631.0939761.1629300.060*
H8C0.6550180.9629591.1361970.060*
C90.3857 (8)0.4998 (8)0.8729 (4)0.0251 (13)
C100.5391 (8)0.6020 (8)0.9045 (4)0.0259 (13)
H100.5805190.5952110.9515060.031*
C110.6322 (8)0.7130 (8)0.8689 (4)0.0316 (15)
H110.7377160.7798610.8903520.038*
C120.5703 (10)0.7264 (9)0.8008 (4)0.0371 (17)
H120.6320140.8053710.7770580.045*
C130.4172 (9)0.6229 (10)0.7684 (4)0.0351 (16)
H130.3759490.6294270.7213270.042*
C140.3259 (8)0.5123 (9)0.8033 (4)0.0313 (15)
H140.2215010.4433040.7807580.038*
C150.2629 (7)0.1842 (8)0.8756 (4)0.0262 (13)
C160.3457 (9)0.1843 (10)0.8164 (4)0.0366 (17)
H160.3985190.2724640.7971020.044*
C170.3504 (9)0.0567 (11)0.7866 (5)0.047 (2)
H170.4073990.0578970.7467470.057*
C180.2734 (10)0.0747 (10)0.8133 (5)0.047 (2)
H180.2787770.1619380.7925930.056*
C190.1903 (10)0.0755 (10)0.8698 (5)0.0401 (19)
H190.1367140.1647180.8882610.048*
C200.1825 (8)0.0532 (8)0.9013 (4)0.0278 (14)
H200.1224050.0502440.9399230.033*
C210.0720 (8)0.3266 (8)0.8986 (4)0.0243 (14)
C220.0583 (8)0.1847 (8)0.8783 (4)0.0271 (14)
H220.0480150.0974590.8730230.033*
C230.2036 (8)0.1692 (9)0.8656 (4)0.0327 (16)
H230.2920640.0712380.8520930.039*
C240.2216 (8)0.2935 (10)0.8723 (4)0.0342 (16)
H240.3218880.2812750.8635500.041*
C250.0923 (8)0.4376 (10)0.8920 (4)0.0332 (16)
H250.1038990.5240970.8971970.040*
C260.0545 (8)0.4537 (8)0.9039 (4)0.0273 (14)
H260.1431240.5516560.9158190.033*
C270.5324 (10)0.3584 (9)1.0335 (5)0.0249 (9)
H270.5266280.3157670.9791070.030*
C280.4182 (8)0.2608 (8)1.0673 (4)0.0248 (8)
H280.3449940.1614111.0324370.030*
C290.4340 (8)0.2524 (8)1.1503 (4)0.0290 (9)
H29A0.3716260.1459531.1540310.035*
H29B0.5431940.2868401.1695270.035*
C300.3829 (8)0.3469 (8)1.2002 (4)0.0292 (9)
H30A0.4337360.3705081.2531810.035*
H30B0.2701660.2865611.1986450.035*
C310.4201 (9)0.4951 (9)1.1771 (4)0.0283 (9)
H310.3685930.5479361.2023300.034*
C320.5541 (8)0.5877 (8)1.1532 (4)0.0286 (9)
H320.5814680.6959991.1632890.034*
C330.6937 (8)0.5643 (8)1.1506 (4)0.0280 (9)
H33A0.6956740.5076041.1892690.034*
H33B0.7892460.6639421.1638800.034*
C340.6924 (8)0.4783 (8)1.0726 (4)0.0267 (8)
H34A0.7396400.5509691.0400350.032*
H34B0.7563110.4308091.0793280.032*
Rh1'0.30754 (4)0.16819 (4)0.54548 (2)0.01794 (12)
P1'0.33122 (17)0.18483 (19)0.41940 (9)0.0182 (3)
N1'0.5965 (7)0.1941 (7)0.5643 (3)0.0277 (12)
N2'0.6483 (7)0.2947 (8)0.5817 (4)0.0350 (14)
N3'0.3968 (6)0.4103 (7)0.5856 (3)0.0263 (11)
C1'0.4451 (8)0.2603 (9)0.5656 (4)0.0231 (15)
C2'0.5245 (8)0.4232 (9)0.5937 (4)0.0323 (15)
H2'0.5219250.5169550.6067500.039*
C3'0.7094 (8)0.0336 (9)0.5485 (4)0.0318 (15)
H3'A0.7553300.0082150.5943420.038*
H3'B0.6566190.0249560.5362510.038*
C4'0.8378 (9)0.0117 (10)0.4826 (5)0.0388 (17)
H4'A0.9113230.1200260.4740290.058*
H4'B0.7930670.0107230.4367180.058*
H4'C0.8912480.0449670.4947340.058*
C5'0.2378 (8)0.5324 (8)0.5908 (4)0.0270 (13)
H5'A0.2308720.5770800.5459790.032*
H5'B0.1684510.4894840.5896410.032*
C6'0.1816 (8)0.6576 (8)0.6627 (4)0.0298 (14)
H6'0.2571160.6944910.6652910.036*
C7'0.0273 (9)0.7875 (9)0.6568 (5)0.0385 (17)
H7'A0.0501350.7555190.6574730.058*
H7'B0.0038660.8722600.6998070.058*
H7'C0.0356950.8189150.6094070.058*
C8'0.1733 (10)0.5997 (9)0.7340 (4)0.0368 (17)
H8'A0.2755640.5174050.7366320.055*
H8'B0.1389140.6819620.7787490.055*
H8'C0.0999480.5626930.7325630.055*
C9'0.3310 (7)0.3517 (7)0.3987 (3)0.0223 (12)
C10'0.2087 (8)0.4634 (7)0.3730 (4)0.0259 (13)
H10'0.1244890.4500460.3616080.031*
C11'0.2089 (8)0.5946 (8)0.3640 (4)0.0305 (15)
H11'0.1257180.6692540.3458310.037*
C12'0.3316 (9)0.6160 (8)0.3818 (4)0.0324 (15)
H12'0.3306610.7062170.3767930.039*
C13'0.4533 (8)0.5063 (8)0.4064 (4)0.0283 (14)
H13'0.5369140.5204090.4180970.034*
C14'0.4544 (8)0.3744 (8)0.4143 (4)0.0243 (13)
H14'0.5401210.2985020.4304230.029*
C15'0.1893 (8)0.1649 (7)0.3684 (3)0.0224 (12)
C16'0.0320 (8)0.2722 (8)0.3934 (4)0.0276 (14)
H16'0.0020650.3587090.4323650.033*
C17'0.0795 (8)0.2505 (9)0.3605 (5)0.0348 (16)
H17'0.1855450.3229880.3773860.042*
C18'0.0380 (9)0.1254 (10)0.3039 (5)0.0378 (17)
H18'0.1153200.1118680.2822480.045*
C19'0.1165 (9)0.0195 (9)0.2786 (4)0.0324 (15)
H19'0.1455550.0662250.2392510.039*
C20'0.2290 (8)0.0395 (8)0.3113 (4)0.0263 (13)
H20'0.3347440.0340210.2943110.032*
C21'0.5153 (6)0.0283 (7)0.3674 (3)0.0194 (11)
C22'0.5830 (7)0.1071 (8)0.3910 (4)0.0270 (13)
H22'0.5336690.1160600.4349590.032*
C23'0.7211 (8)0.2292 (8)0.3516 (4)0.0336 (16)
H23'0.7643790.3219920.3674770.040*
C24'0.7962 (8)0.2154 (9)0.2886 (4)0.0320 (15)
H24'0.8912400.2988110.2616930.038*
C25'0.7340 (8)0.0826 (8)0.2652 (4)0.0292 (14)
H25'0.7869310.0740980.2224460.035*
C26'0.5930 (8)0.0413 (8)0.3036 (4)0.0249 (13)
H26'0.5500250.1331200.2868030.030*
C27'0.0969 (7)0.1462 (7)0.5524 (4)0.0212 (12)
H27'0.0262730.1963410.5170120.025*
C28'0.2235 (9)0.0073 (8)0.5178 (4)0.0238 (15)
H28'0.2262230.0241950.4623870.029*
C29'0.3087 (9)0.1220 (8)0.5551 (4)0.0287 (15)
H29C0.2510290.1767950.5572680.034*
H29D0.4110920.1928220.5234980.034*
C30'0.3314 (8)0.0732 (8)0.6355 (4)0.0285 (14)
H30C0.4210290.1590970.6482840.034*
H30D0.2390490.0461100.6718540.034*
C31'0.3579 (7)0.0599 (8)0.6437 (3)0.0255 (13)
H31'0.4606950.0366230.6575880.031*
C32'0.2456 (9)0.2096 (9)0.6699 (4)0.0263 (16)
H32'0.2830700.2723860.6992770.032*
C33'0.0763 (8)0.2717 (8)0.6884 (4)0.0236 (13)
H33C0.0507080.2640140.7406400.028*
H33D0.0225210.3799610.6870400.028*
C34'0.0169 (7)0.1899 (8)0.6338 (4)0.0251 (13)
H34C0.0953480.2561440.6363440.030*
H34D0.0327100.0977680.6502800.030*
F10.7916 (6)0.8417 (6)1.0710 (4)0.0515 (13)
F20.9662 (7)1.0421 (6)1.0313 (4)0.0536 (14)
F31.0502 (8)0.9503 (8)1.1177 (3)0.071 (2)
F40.9502 (5)0.8151 (5)0.9960 (3)0.0373 (10)
B10.9416 (10)0.9128 (10)1.0536 (5)0.0312 (17)
F50.1255 (16)0.5093 (16)0.5876 (9)0.060 (3)0.5
F5*0.2022 (19)0.5151 (17)0.5939 (9)0.065 (3)0.5
F60.298 (3)0.755 (3)0.6206 (9)0.040 (3)0.5
F6*0.303 (3)0.762 (3)0.5970 (11)0.055 (5)0.5
F70.1238 (17)0.6497 (17)0.5094 (8)0.052 (3)0.5
F7*0.0761 (16)0.5857 (18)0.5254 (9)0.058 (3)0.5
F80.320 (2)0.598 (2)0.5211 (10)0.057 (3)0.5
F8*0.298 (2)0.606 (2)0.4955 (8)0.056 (4)0.5
B20.2230 (11)0.6249 (11)0.5550 (6)0.0387 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.0198 (2)0.0243 (3)0.0178 (2)0.0156 (2)0.00022 (18)0.00819 (19)
P10.0199 (8)0.0294 (9)0.0187 (8)0.0159 (7)0.0008 (6)0.0082 (7)
N10.024 (3)0.041 (3)0.025 (3)0.022 (3)0.003 (2)0.003 (2)
N20.029 (3)0.036 (3)0.032 (3)0.024 (3)0.000 (2)0.006 (2)
N30.036 (3)0.029 (3)0.027 (3)0.024 (3)0.002 (2)0.008 (2)
C10.027 (4)0.031 (4)0.021 (3)0.017 (3)0.001 (3)0.009 (3)
C20.024 (3)0.032 (3)0.036 (4)0.021 (3)0.000 (3)0.004 (3)
C30.016 (3)0.036 (4)0.045 (4)0.009 (3)0.003 (3)0.005 (3)
C40.033 (4)0.040 (4)0.042 (4)0.017 (3)0.007 (3)0.012 (3)
C50.023 (3)0.037 (4)0.040 (4)0.018 (3)0.002 (3)0.014 (3)
C60.026 (3)0.036 (4)0.041 (4)0.019 (3)0.004 (3)0.010 (3)
C70.029 (4)0.036 (4)0.061 (5)0.017 (3)0.009 (3)0.025 (4)
C80.036 (4)0.042 (4)0.043 (4)0.022 (4)0.002 (3)0.009 (3)
C90.026 (3)0.037 (3)0.021 (3)0.020 (3)0.006 (2)0.015 (3)
C100.029 (3)0.035 (3)0.020 (3)0.020 (3)0.004 (2)0.010 (3)
C110.028 (3)0.038 (4)0.034 (4)0.018 (3)0.007 (3)0.016 (3)
C120.052 (5)0.045 (4)0.029 (4)0.030 (4)0.017 (3)0.021 (3)
C130.043 (4)0.055 (5)0.022 (3)0.033 (4)0.006 (3)0.017 (3)
C140.028 (3)0.047 (4)0.023 (3)0.020 (3)0.001 (3)0.013 (3)
C150.021 (3)0.036 (3)0.025 (3)0.020 (3)0.004 (2)0.000 (3)
C160.027 (3)0.052 (5)0.028 (4)0.021 (3)0.001 (3)0.001 (3)
C170.032 (4)0.068 (6)0.039 (4)0.030 (4)0.001 (3)0.012 (4)
C180.037 (4)0.050 (5)0.049 (5)0.028 (4)0.012 (4)0.016 (4)
C190.038 (4)0.042 (4)0.041 (4)0.027 (4)0.014 (3)0.005 (4)
C200.028 (3)0.031 (3)0.027 (3)0.020 (3)0.005 (3)0.002 (3)
C210.023 (3)0.039 (4)0.020 (3)0.022 (3)0.002 (2)0.011 (3)
C220.025 (3)0.040 (4)0.023 (3)0.020 (3)0.001 (2)0.014 (3)
C230.019 (3)0.047 (4)0.028 (3)0.012 (3)0.000 (3)0.016 (3)
C240.028 (3)0.059 (5)0.033 (4)0.032 (3)0.005 (3)0.016 (3)
C250.030 (3)0.057 (5)0.029 (3)0.033 (3)0.003 (3)0.017 (3)
C260.028 (3)0.038 (4)0.021 (3)0.021 (3)0.002 (2)0.006 (3)
C270.0282 (16)0.0274 (16)0.0275 (16)0.0205 (14)0.0028 (14)0.0085 (14)
C280.0288 (16)0.0275 (16)0.0270 (16)0.0208 (13)0.0035 (13)0.0097 (13)
C290.0317 (16)0.0304 (16)0.0269 (16)0.0168 (14)0.0035 (14)0.0101 (14)
C300.0321 (16)0.0310 (16)0.0259 (16)0.0168 (14)0.0036 (14)0.0103 (14)
C310.0314 (16)0.0301 (16)0.0259 (16)0.0178 (14)0.0033 (14)0.0084 (14)
C320.0311 (16)0.0294 (16)0.0268 (16)0.0173 (14)0.0033 (13)0.0066 (14)
C330.0298 (16)0.0290 (15)0.0281 (16)0.0176 (14)0.0035 (13)0.0077 (14)
C340.0286 (16)0.0283 (16)0.0283 (16)0.0187 (14)0.0026 (14)0.0075 (14)
Rh1'0.0168 (2)0.0229 (3)0.0164 (2)0.0112 (2)0.00022 (17)0.00689 (18)
P1'0.0186 (7)0.0239 (8)0.0170 (7)0.0138 (6)0.0007 (5)0.0078 (6)
N1'0.024 (3)0.039 (3)0.027 (3)0.019 (2)0.004 (2)0.011 (3)
N2'0.029 (3)0.043 (3)0.041 (3)0.024 (3)0.009 (3)0.007 (3)
N3'0.023 (3)0.032 (3)0.027 (3)0.017 (2)0.002 (2)0.006 (2)
C1'0.023 (3)0.030 (3)0.017 (3)0.014 (3)0.002 (3)0.008 (3)
C2'0.027 (3)0.038 (4)0.036 (4)0.022 (3)0.007 (3)0.002 (3)
C3'0.022 (3)0.040 (4)0.035 (4)0.014 (3)0.005 (3)0.018 (3)
C4'0.024 (3)0.046 (4)0.042 (4)0.015 (3)0.002 (3)0.009 (3)
C5'0.030 (3)0.029 (3)0.027 (3)0.020 (3)0.000 (3)0.006 (3)
C6'0.033 (3)0.032 (3)0.030 (3)0.021 (3)0.001 (3)0.006 (3)
C7'0.032 (4)0.036 (4)0.041 (4)0.014 (3)0.006 (3)0.006 (3)
C8'0.047 (5)0.034 (4)0.033 (4)0.025 (4)0.005 (3)0.004 (3)
C9'0.023 (3)0.025 (3)0.019 (3)0.014 (2)0.003 (2)0.005 (2)
C10'0.026 (3)0.029 (3)0.027 (3)0.016 (3)0.001 (2)0.010 (3)
C11'0.030 (3)0.026 (3)0.031 (3)0.009 (3)0.001 (3)0.012 (3)
C12'0.045 (4)0.025 (3)0.029 (3)0.022 (3)0.009 (3)0.004 (3)
C13'0.031 (3)0.032 (3)0.027 (3)0.023 (3)0.007 (3)0.002 (3)
C14'0.026 (3)0.029 (3)0.020 (3)0.015 (3)0.000 (2)0.006 (2)
C15'0.031 (3)0.029 (3)0.020 (3)0.021 (3)0.007 (2)0.015 (2)
C16'0.027 (3)0.033 (3)0.029 (3)0.016 (3)0.005 (3)0.017 (3)
C17'0.026 (3)0.044 (4)0.042 (4)0.020 (3)0.009 (3)0.022 (3)
C18'0.039 (4)0.055 (5)0.043 (4)0.035 (4)0.021 (3)0.029 (4)
C19'0.044 (4)0.039 (4)0.030 (3)0.031 (3)0.013 (3)0.013 (3)
C20'0.029 (3)0.033 (3)0.024 (3)0.019 (3)0.003 (3)0.013 (3)
C21'0.013 (2)0.024 (3)0.019 (3)0.008 (2)0.001 (2)0.004 (2)
C22'0.023 (3)0.031 (3)0.024 (3)0.011 (3)0.001 (2)0.010 (3)
C23'0.031 (4)0.026 (3)0.037 (4)0.008 (3)0.003 (3)0.012 (3)
C24'0.025 (3)0.036 (4)0.028 (3)0.011 (3)0.002 (3)0.003 (3)
C25'0.026 (3)0.043 (4)0.023 (3)0.022 (3)0.003 (2)0.005 (3)
C26'0.026 (3)0.033 (3)0.023 (3)0.021 (3)0.000 (2)0.007 (3)
C27'0.018 (3)0.030 (3)0.023 (3)0.016 (3)0.002 (2)0.013 (3)
C28'0.030 (4)0.027 (4)0.022 (3)0.020 (3)0.000 (3)0.008 (3)
C29'0.027 (3)0.020 (3)0.040 (4)0.012 (3)0.003 (3)0.013 (3)
C30'0.027 (3)0.027 (3)0.027 (3)0.009 (3)0.000 (3)0.012 (3)
C31'0.022 (3)0.037 (3)0.018 (3)0.013 (3)0.002 (2)0.015 (3)
C32'0.026 (4)0.037 (4)0.014 (3)0.015 (3)0.002 (2)0.006 (3)
C33'0.021 (3)0.027 (3)0.020 (3)0.010 (3)0.001 (2)0.009 (2)
C34'0.020 (3)0.031 (3)0.025 (3)0.012 (3)0.002 (2)0.013 (3)
F10.043 (3)0.042 (3)0.085 (4)0.026 (2)0.030 (3)0.029 (3)
F20.071 (4)0.043 (3)0.076 (4)0.042 (3)0.037 (3)0.031 (3)
F30.085 (4)0.096 (5)0.051 (3)0.076 (4)0.032 (3)0.020 (3)
F40.046 (3)0.042 (2)0.034 (2)0.031 (2)0.0011 (19)0.0067 (19)
B10.034 (4)0.037 (4)0.032 (4)0.024 (4)0.002 (3)0.014 (3)
F50.053 (6)0.047 (5)0.070 (6)0.012 (5)0.012 (6)0.029 (4)
F5*0.076 (7)0.057 (5)0.069 (6)0.034 (6)0.006 (6)0.032 (5)
F60.036 (5)0.039 (5)0.036 (7)0.015 (4)0.012 (6)0.006 (6)
F6*0.042 (5)0.040 (6)0.068 (10)0.012 (5)0.005 (9)0.003 (9)
F70.049 (7)0.069 (7)0.050 (6)0.039 (6)0.010 (5)0.020 (5)
F7*0.037 (6)0.072 (7)0.067 (7)0.033 (5)0.003 (5)0.001 (6)
F80.051 (6)0.067 (5)0.078 (8)0.048 (4)0.010 (6)0.019 (6)
F8*0.044 (6)0.082 (7)0.052 (7)0.032 (5)0.020 (6)0.032 (6)
B20.033 (3)0.045 (4)0.050 (4)0.027 (3)0.006 (3)0.019 (3)
Geometric parameters (Å, º) top
Rh1—P12.3211 (18)P1'—C9'1.828 (7)
Rh1—C12.030 (8)P1'—C15'1.824 (7)
Rh1—C272.193 (8)P1'—C21'1.822 (6)
Rh1—C282.204 (6)N1'—N2'1.377 (9)
Rh1—C312.210 (7)N1'—C1'1.328 (9)
Rh1—C322.232 (7)N1'—C3'1.457 (10)
P1—C91.831 (7)N2'—C2'1.282 (10)
P1—C151.842 (7)N3'—C1'1.362 (10)
P1—C211.842 (7)N3'—C2'1.366 (9)
N1—N21.359 (8)N3'—C5'1.467 (9)
N1—C11.353 (10)C2'—H2'0.9500
N1—C31.471 (10)C3'—H3'A0.9900
N2—C21.271 (10)C3'—H3'B0.9900
N3—C11.363 (10)C3'—C4'1.528 (10)
N3—C21.384 (9)C4'—H4'A0.9800
N3—C51.444 (10)C4'—H4'B0.9800
C2—H20.9500C4'—H4'C0.9800
C3—H3A0.9900C5'—H5'A0.9900
C3—H3B0.9900C5'—H5'B0.9900
C3—C41.513 (11)C5'—C6'1.533 (9)
C4—H4A0.9800C6'—H6'1.0000
C4—H4B0.9800C6'—C7'1.512 (11)
C4—H4C0.9800C6'—C8'1.526 (11)
C5—H5A0.9900C7'—H7'A0.9800
C5—H5B0.9900C7'—H7'B0.9800
C5—C61.494 (11)C7'—H7'C0.9800
C6—H61.0000C8'—H8'A0.9800
C6—C71.529 (11)C8'—H8'B0.9800
C6—C81.525 (11)C8'—H8'C0.9800
C7—H7A0.9800C9'—C10'1.395 (9)
C7—H7B0.9800C9'—C14'1.405 (9)
C7—H7C0.9800C10'—H10'0.9500
C8—H8A0.9800C10'—C11'1.397 (10)
C8—H8B0.9800C11'—H11'0.9500
C8—H8C0.9800C11'—C12'1.401 (11)
C9—C101.391 (10)C12'—H12'0.9500
C9—C141.413 (9)C12'—C13'1.373 (11)
C10—H100.9500C13'—H13'0.9500
C10—C111.379 (10)C13'—C14'1.393 (10)
C11—H110.9500C14'—H14'0.9500
C11—C121.402 (10)C15'—C16'1.408 (10)
C12—H120.9500C15'—C20'1.391 (10)
C12—C131.394 (12)C16'—H16'0.9500
C13—H130.9500C16'—C17'1.395 (10)
C13—C141.363 (11)C17'—H17'0.9500
C14—H140.9500C17'—C18'1.381 (12)
C15—C161.402 (10)C18'—H18'0.9500
C15—C201.384 (11)C18'—C19'1.386 (12)
C16—H160.9500C19'—H19'0.9500
C16—C171.371 (12)C19'—C20'1.395 (10)
C17—H170.9500C20'—H20'0.9500
C17—C181.392 (15)C21'—C22'1.391 (9)
C18—H180.9500C21'—C26'1.411 (8)
C18—C191.363 (13)C22'—H22'0.9500
C19—H190.9500C22'—C23'1.386 (10)
C19—C201.406 (11)C23'—H23'0.9500
C20—H200.9500C23'—C24'1.390 (10)
C21—C221.385 (10)C24'—H24'0.9500
C21—C261.401 (10)C24'—C25'1.365 (11)
C22—H220.9500C25'—H25'0.9500
C22—C231.385 (9)C25'—C26'1.402 (9)
C23—H230.9500C26'—H26'0.9500
C23—C241.372 (12)C27'—H27'1.0000
C24—H240.9500C27'—C28'1.386 (10)
C24—C251.394 (12)C27'—C34'1.518 (9)
C25—H250.9500C28'—H28'1.0000
C25—C261.396 (9)C28'—C29'1.501 (10)
C26—H260.9500C29'—H29C0.9900
C27—H271.0000C29'—H29D0.9900
C27—C281.376 (11)C29'—C30'1.534 (10)
C27—C341.505 (11)C30'—H30C0.9900
C28—H281.0000C30'—H30D0.9900
C28—C291.524 (9)C30'—C31'1.513 (10)
C29—H29A0.9900C31'—H31'1.0000
C29—H29B0.9900C31'—C32'1.383 (10)
C29—C301.518 (10)C32'—H32'1.0000
C30—H30A0.9900C32'—C33'1.486 (10)
C30—H30B0.9900C33'—H33C0.9900
C30—C311.535 (10)C33'—H33D0.9900
C31—H311.0000C33'—C34'1.534 (10)
C31—C321.374 (11)C34'—H34C0.9900
C32—H321.0000C34'—H34D0.9900
C32—C331.535 (10)F1—B11.407 (11)
C33—H33A0.9900F2—B11.376 (10)
C33—H33B0.9900F3—B11.402 (10)
C33—C341.542 (10)F4—B11.372 (11)
C34—H34A0.9900F5—B21.386 (16)
C34—H34B0.9900F5*—B21.374 (17)
Rh1'—P1'2.3260 (15)F6—B21.48 (2)
Rh1'—C1'2.043 (8)F6*—B21.31 (3)
Rh1'—C27'2.229 (6)F7—B21.394 (15)
Rh1'—C28'2.211 (7)F7*—B21.367 (16)
Rh1'—C31'2.216 (6)F8—B21.30 (2)
Rh1'—C32'2.216 (7)F8*—B21.40 (2)
C1—Rh1—P189.6 (2)C28'—Rh1'—C32'95.5 (3)
C1—Rh1—C27168.5 (3)C31'—Rh1'—P1'157.09 (18)
C1—Rh1—C28154.6 (3)C31'—Rh1'—C27'86.1 (2)
C1—Rh1—C3185.6 (3)C32'—Rh1'—P1'166.5 (2)
C1—Rh1—C3295.0 (3)C32'—Rh1'—C27'79.8 (3)
C27—Rh1—P190.3 (2)C32'—Rh1'—C31'36.4 (3)
C27—Rh1—C2836.5 (3)C9'—P1'—Rh1'118.0 (2)
C27—Rh1—C3196.6 (3)C15'—P1'—Rh1'114.5 (2)
C27—Rh1—C3280.6 (3)C15'—P1'—C9'105.8 (3)
C28—Rh1—P198.75 (18)C21'—P1'—Rh1'109.4 (2)
C28—Rh1—C3181.3 (3)C21'—P1'—C9'103.9 (3)
C28—Rh1—C3287.1 (3)C21'—P1'—C15'103.7 (3)
C31—Rh1—P1167.8 (2)N2'—N1'—C3'117.9 (6)
C31—Rh1—C3236.0 (3)C1'—N1'—N2'113.4 (6)
C32—Rh1—P1156.0 (2)C1'—N1'—C3'128.7 (6)
C9—P1—Rh1109.1 (2)C2'—N2'—N1'103.1 (6)
C9—P1—C15104.3 (3)C1'—N3'—C2'107.2 (6)
C9—P1—C21103.9 (3)C1'—N3'—C5'125.1 (6)
C15—P1—Rh1116.3 (2)C2'—N3'—C5'127.5 (6)
C15—P1—C21105.9 (3)N1'—C1'—Rh1'130.2 (6)
C21—P1—Rh1116.0 (2)N1'—C1'—N3'103.8 (6)
N2—N1—C3119.7 (6)N3'—C1'—Rh1'126.0 (5)
C1—N1—N2114.8 (6)N2'—C2'—N3'112.4 (7)
C1—N1—C3125.3 (6)N2'—C2'—H2'123.8
C2—N2—N1102.8 (6)N3'—C2'—H2'123.8
C1—N3—C2106.9 (6)N1'—C3'—H3'A109.2
C1—N3—C5125.0 (6)N1'—C3'—H3'B109.2
C2—N3—C5127.7 (6)N1'—C3'—C4'112.1 (6)
N1—C1—Rh1124.4 (6)H3'A—C3'—H3'B107.9
N1—C1—N3102.4 (7)C4'—C3'—H3'A109.2
N3—C1—Rh1133.2 (6)C4'—C3'—H3'B109.2
N2—C2—N3113.1 (6)C3'—C4'—H4'A109.5
N2—C2—H2123.4C3'—C4'—H4'B109.5
N3—C2—H2123.4C3'—C4'—H4'C109.5
N1—C3—H3A109.2H4'A—C4'—H4'B109.5
N1—C3—H3B109.2H4'A—C4'—H4'C109.5
N1—C3—C4111.9 (6)H4'B—C4'—H4'C109.5
H3A—C3—H3B107.9N3'—C5'—H5'A108.9
C4—C3—H3A109.2N3'—C5'—H5'B108.9
C4—C3—H3B109.2N3'—C5'—C6'113.5 (6)
C3—C4—H4A109.5H5'A—C5'—H5'B107.7
C3—C4—H4B109.5C6'—C5'—H5'A108.9
C3—C4—H4C109.5C6'—C5'—H5'B108.9
H4A—C4—H4B109.5C5'—C6'—H6'108.1
H4A—C4—H4C109.5C7'—C6'—C5'109.1 (6)
H4B—C4—H4C109.5C7'—C6'—H6'108.1
N3—C5—H5A108.8C7'—C6'—C8'111.6 (6)
N3—C5—H5B108.8C8'—C6'—C5'111.7 (6)
N3—C5—C6113.7 (6)C8'—C6'—H6'108.1
H5A—C5—H5B107.7C6'—C7'—H7'A109.5
C6—C5—H5A108.8C6'—C7'—H7'B109.5
C6—C5—H5B108.8C6'—C7'—H7'C109.5
C5—C6—H6108.7H7'A—C7'—H7'B109.5
C5—C6—C7109.5 (7)H7'A—C7'—H7'C109.5
C5—C6—C8110.0 (6)H7'B—C7'—H7'C109.5
C7—C6—H6108.7C6'—C8'—H8'A109.5
C8—C6—H6108.7C6'—C8'—H8'B109.5
C8—C6—C7111.3 (6)C6'—C8'—H8'C109.5
C6—C7—H7A109.5H8'A—C8'—H8'B109.5
C6—C7—H7B109.5H8'A—C8'—H8'C109.5
C6—C7—H7C109.5H8'B—C8'—H8'C109.5
H7A—C7—H7B109.5C10'—C9'—P1'123.0 (5)
H7A—C7—H7C109.5C10'—C9'—C14'118.1 (6)
H7B—C7—H7C109.5C14'—C9'—P1'118.7 (5)
C6—C8—H8A109.5C9'—C10'—H10'119.7
C6—C8—H8B109.5C9'—C10'—C11'120.7 (6)
C6—C8—H8C109.5C11'—C10'—H10'119.7
H8A—C8—H8B109.5C10'—C11'—H11'120.0
H8A—C8—H8C109.5C10'—C11'—C12'120.0 (6)
H8B—C8—H8C109.5C12'—C11'—H11'120.0
C10—C9—P1119.0 (5)C11'—C12'—H12'120.1
C10—C9—C14118.6 (6)C13'—C12'—C11'119.8 (6)
C14—C9—P1122.5 (5)C13'—C12'—H12'120.1
C9—C10—H10119.4C12'—C13'—H13'119.9
C11—C10—C9121.2 (6)C12'—C13'—C14'120.2 (7)
C11—C10—H10119.4C14'—C13'—H13'119.9
C10—C11—H11120.2C9'—C14'—H14'119.4
C10—C11—C12119.6 (7)C13'—C14'—C9'121.2 (6)
C12—C11—H11120.2C13'—C14'—H14'119.4
C11—C12—H12120.3C16'—C15'—P1'118.5 (5)
C13—C12—C11119.4 (7)C20'—C15'—P1'122.4 (5)
C13—C12—H12120.3C20'—C15'—C16'118.7 (6)
C12—C13—H13119.6C15'—C16'—H16'120.2
C14—C13—C12120.8 (7)C17'—C16'—C15'119.5 (7)
C14—C13—H13119.6C17'—C16'—H16'120.2
C9—C14—H14119.8C16'—C17'—H17'119.5
C13—C14—C9120.4 (7)C18'—C17'—C16'121.0 (7)
C13—C14—H14119.8C18'—C17'—H17'119.5
C16—C15—P1121.6 (6)C17'—C18'—H18'120.1
C20—C15—P1119.0 (5)C17'—C18'—C19'119.9 (7)
C20—C15—C16119.2 (7)C19'—C18'—H18'120.1
C15—C16—H16120.1C18'—C19'—H19'120.2
C17—C16—C15119.8 (8)C18'—C19'—C20'119.6 (7)
C17—C16—H16120.1C20'—C19'—H19'120.2
C16—C17—H17119.2C15'—C20'—C19'121.2 (6)
C16—C17—C18121.6 (8)C15'—C20'—H20'119.4
C18—C17—H17119.2C19'—C20'—H20'119.4
C17—C18—H18120.7C22'—C21'—P1'119.8 (5)
C19—C18—C17118.6 (8)C22'—C21'—C26'118.7 (6)
C19—C18—H18120.7C26'—C21'—P1'121.6 (5)
C18—C19—H19119.4C21'—C22'—H22'119.5
C18—C19—C20121.2 (9)C23'—C22'—C21'121.1 (6)
C20—C19—H19119.4C23'—C22'—H22'119.5
C15—C20—C19119.6 (7)C22'—C23'—H23'120.1
C15—C20—H20120.2C22'—C23'—C24'119.7 (7)
C19—C20—H20120.2C24'—C23'—H23'120.1
C22—C21—P1123.1 (5)C23'—C24'—H24'119.8
C22—C21—C26118.9 (6)C25'—C24'—C23'120.4 (6)
C26—C21—P1118.0 (5)C25'—C24'—H24'119.8
C21—C22—H22119.8C24'—C25'—H25'119.6
C21—C22—C23120.4 (7)C24'—C25'—C26'120.7 (6)
C23—C22—H22119.8C26'—C25'—H25'119.6
C22—C23—H23119.5C21'—C26'—H26'120.3
C24—C23—C22120.9 (7)C25'—C26'—C21'119.4 (6)
C24—C23—H23119.5C25'—C26'—H26'120.3
C23—C24—H24120.1Rh1'—C27'—H27'113.8
C23—C24—C25119.8 (6)C28'—C27'—Rh1'71.1 (4)
C25—C24—H24120.1C28'—C27'—H27'113.8
C24—C25—H25120.3C28'—C27'—C34'125.3 (6)
C24—C25—C26119.5 (7)C34'—C27'—Rh1'111.3 (4)
C26—C25—H25120.3C34'—C27'—H27'113.8
C21—C26—H26119.8Rh1'—C28'—H28'114.0
C25—C26—C21120.5 (7)C27'—C28'—Rh1'72.5 (4)
C25—C26—H26119.8C27'—C28'—H28'114.0
Rh1—C27—H27113.8C27'—C28'—C29'126.0 (6)
C28—C27—Rh172.2 (4)C29'—C28'—Rh1'108.3 (5)
C28—C27—H27113.8C29'—C28'—H28'114.0
C28—C27—C34125.9 (7)C28'—C29'—H29C108.9
C34—C27—Rh1109.4 (5)C28'—C29'—H29D108.9
C34—C27—H27113.8C28'—C29'—C30'113.5 (6)
Rh1—C28—H28113.6H29C—C29'—H29D107.7
C27—C28—Rh171.3 (4)C30'—C29'—H29C108.9
C27—C28—H28113.6C30'—C29'—H29D108.9
C27—C28—C29125.7 (6)C29'—C30'—H30C109.1
C29—C28—Rh1111.5 (5)C29'—C30'—H30D109.1
C29—C28—H28113.6H30C—C30'—H30D107.9
C28—C29—H29A108.9C31'—C30'—C29'112.4 (5)
C28—C29—H29B108.9C31'—C30'—H30C109.1
H29A—C29—H29B107.7C31'—C30'—H30D109.1
C30—C29—C28113.4 (6)Rh1'—C31'—H31'113.2
C30—C29—H29A108.9C30'—C31'—Rh1'112.6 (4)
C30—C29—H29B108.9C30'—C31'—H31'113.2
C29—C30—H30A108.8C32'—C31'—Rh1'71.8 (4)
C29—C30—H30B108.8C32'—C31'—C30'125.6 (6)
C29—C30—C31113.9 (6)C32'—C31'—H31'113.2
H30A—C30—H30B107.7Rh1'—C32'—H32'113.8
C31—C30—H30A108.8C31'—C32'—Rh1'71.9 (4)
C31—C30—H30B108.8C31'—C32'—H32'113.8
Rh1—C31—H31114.6C31'—C32'—C33'127.1 (7)
C30—C31—Rh1106.5 (5)C33'—C32'—Rh1'107.9 (5)
C30—C31—H31114.6C33'—C32'—H32'113.8
C32—C31—Rh172.9 (4)C32'—C33'—H33C109.0
C32—C31—C30125.2 (7)C32'—C33'—H33D109.0
C32—C31—H31114.6C32'—C33'—C34'113.0 (6)
Rh1—C32—H32113.9H33C—C33'—H33D107.8
C31—C32—Rh171.1 (4)C34'—C33'—H33C109.0
C31—C32—H32113.9C34'—C33'—H33D109.0
C31—C32—C33125.2 (6)C27'—C34'—C33'112.8 (5)
C33—C32—Rh1110.9 (5)C27'—C34'—H34C109.0
C33—C32—H32113.9C27'—C34'—H34D109.0
C32—C33—H33A108.9C33'—C34'—H34C109.0
C32—C33—H33B108.9C33'—C34'—H34D109.0
C32—C33—C34113.4 (5)H34C—C34'—H34D107.8
H33A—C33—H33B107.7F2—B1—F1107.8 (7)
C34—C33—H33A108.9F2—B1—F3109.5 (8)
C34—C33—H33B108.9F3—B1—F1110.0 (8)
C27—C34—C33112.7 (6)F4—B1—F1108.0 (7)
C27—C34—H34A109.0F4—B1—F2110.9 (7)
C27—C34—H34B109.0F4—B1—F3110.5 (6)
C33—C34—H34A109.0F5—B2—F6102.2 (12)
C33—C34—H34B109.0F5—B2—F7104.3 (11)
H34A—C34—H34B107.8F5*—B2—F8*106.1 (12)
C1'—Rh1'—P1'89.8 (2)F6*—B2—F5*113.4 (14)
C1'—Rh1'—C27'159.2 (3)F6*—B2—F7*113.8 (17)
C1'—Rh1'—C28'163.4 (3)F6*—B2—F8*110.8 (16)
C1'—Rh1'—C31'93.4 (3)F7—B2—F6106.1 (14)
C1'—Rh1'—C32'87.5 (3)F7*—B2—F5*103.7 (12)
C27'—Rh1'—P1'98.72 (16)F7*—B2—F8*108.5 (11)
C28'—Rh1'—P1'90.87 (19)F8—B2—F5113.8 (13)
C28'—Rh1'—C27'36.4 (3)F8—B2—F6113.7 (15)
C28'—Rh1'—C31'79.7 (3)F8—B2—F7115.5 (12)
Rh1—P1—C9—C1024.0 (6)Rh1'—P1'—C9'—C10'109.3 (5)
Rh1—P1—C9—C14154.5 (6)Rh1'—P1'—C9'—C14'66.0 (5)
Rh1—P1—C15—C16116.9 (5)Rh1'—P1'—C15'—C16'62.2 (5)
Rh1—P1—C15—C2059.3 (6)Rh1'—P1'—C15'—C20'110.6 (5)
Rh1—P1—C21—C22105.0 (5)Rh1'—P1'—C21'—C22'28.4 (6)
Rh1—P1—C21—C2671.7 (6)Rh1'—P1'—C21'—C26'150.9 (5)
Rh1—C27—C28—C29103.6 (7)Rh1'—C27'—C28'—C29'100.2 (7)
Rh1—C27—C34—C3339.8 (7)Rh1'—C27'—C34'—C33'13.2 (7)
Rh1—C28—C29—C3011.8 (7)Rh1'—C28'—C29'—C30'40.7 (7)
Rh1—C31—C32—C33102.7 (7)Rh1'—C31'—C32'—C33'99.1 (7)
Rh1—C32—C33—C3413.4 (7)Rh1'—C32'—C33'—C34'42.9 (7)
P1—C9—C10—C11179.0 (6)P1'—C9'—C10'—C11'174.7 (5)
P1—C9—C14—C13178.3 (6)P1'—C9'—C14'—C13'173.9 (5)
P1—C15—C16—C17174.1 (6)P1'—C15'—C16'—C17'173.2 (5)
P1—C15—C20—C19173.8 (5)P1'—C15'—C20'—C19'173.2 (5)
P1—C21—C22—C23174.9 (5)P1'—C21'—C22'—C23'178.5 (6)
P1—C21—C26—C25174.3 (5)P1'—C21'—C26'—C25'179.7 (5)
N1—N2—C2—N30.2 (8)N1'—N2'—C2'—N3'0.5 (9)
N2—N1—C1—Rh1178.5 (5)N2'—N1'—C1'—Rh1'179.5 (5)
N2—N1—C1—N30.6 (8)N2'—N1'—C1'—N3'0.8 (8)
N2—N1—C3—C457.3 (8)N2'—N1'—C3'—C4'58.1 (9)
N3—C5—C6—C7170.1 (6)N3'—C5'—C6'—C7'171.6 (6)
N3—C5—C6—C867.3 (8)N3'—C5'—C6'—C8'64.6 (8)
C1—N1—N2—C20.5 (8)C1'—N1'—N2'—C2'0.2 (8)
C1—N1—C3—C4128.9 (7)C1'—N1'—C3'—C4'123.0 (8)
C1—N3—C2—N20.2 (8)C1'—N3'—C2'—N2'1.0 (9)
C1—N3—C5—C6142.1 (7)C1'—N3'—C5'—C6'134.7 (7)
C2—N3—C1—Rh1178.1 (6)C2'—N3'—C1'—Rh1'179.8 (5)
C2—N3—C1—N10.4 (7)C2'—N3'—C1'—N1'1.1 (8)
C2—N3—C5—C646.2 (10)C2'—N3'—C5'—C6'50.7 (9)
C3—N1—N2—C2174.9 (6)C3'—N1'—N2'—C2'178.9 (6)
C3—N1—C1—Rh17.4 (10)C3'—N1'—C1'—Rh1'0.5 (11)
C3—N1—C1—N3174.6 (6)C3'—N1'—C1'—N3'178.2 (6)
C5—N3—C1—Rh18.7 (11)C5'—N3'—C1'—Rh1'4.7 (10)
C5—N3—C1—N1173.6 (6)C5'—N3'—C1'—N1'176.5 (6)
C5—N3—C2—N2173.1 (7)C5'—N3'—C2'—N2'176.4 (7)
C9—P1—C15—C163.2 (6)C9'—P1'—C15'—C16'69.6 (5)
C9—P1—C15—C20179.4 (5)C9'—P1'—C15'—C20'117.7 (5)
C9—P1—C21—C22135.3 (6)C9'—P1'—C21'—C22'155.3 (5)
C9—P1—C21—C2648.0 (6)C9'—P1'—C21'—C26'24.0 (6)
C9—C10—C11—C122.1 (11)C9'—C10'—C11'—C12'0.9 (10)
C10—C9—C14—C130.2 (11)C10'—C9'—C14'—C13'1.7 (9)
C10—C11—C12—C133.0 (12)C10'—C11'—C12'—C13'1.5 (10)
C11—C12—C13—C142.3 (12)C11'—C12'—C13'—C14'0.5 (10)
C12—C13—C14—C90.7 (12)C12'—C13'—C14'—C9'1.2 (10)
C14—C9—C10—C110.5 (10)C14'—C9'—C10'—C11'0.7 (9)
C15—P1—C9—C10100.9 (6)C15'—P1'—C9'—C10'20.4 (6)
C15—P1—C9—C1480.6 (6)C15'—P1'—C9'—C14'164.3 (5)
C15—P1—C21—C2225.7 (6)C15'—P1'—C21'—C22'94.3 (6)
C15—P1—C21—C26157.6 (5)C15'—P1'—C21'—C26'86.5 (6)
C15—C16—C17—C180.4 (12)C15'—C16'—C17'—C18'0.1 (11)
C16—C15—C20—C192.6 (10)C16'—C15'—C20'—C19'0.5 (9)
C16—C17—C18—C190.9 (12)C16'—C17'—C18'—C19'0.4 (11)
C17—C18—C19—C200.5 (12)C17'—C18'—C19'—C20'0.7 (11)
C18—C19—C20—C151.3 (11)C18'—C19'—C20'—C15'0.8 (10)
C20—C15—C16—C172.2 (10)C20'—C15'—C16'—C17'0.1 (9)
C21—P1—C9—C10148.3 (6)C21'—P1'—C9'—C10'129.3 (5)
C21—P1—C9—C1430.2 (7)C21'—P1'—C9'—C14'55.3 (5)
C21—P1—C15—C16112.5 (6)C21'—P1'—C15'—C16'178.6 (5)
C21—P1—C15—C2071.2 (6)C21'—P1'—C15'—C20'8.6 (6)
C21—C22—C23—C240.5 (10)C21'—C22'—C23'—C24'1.9 (12)
C22—C21—C26—C252.5 (10)C22'—C21'—C26'—C25'1.0 (9)
C22—C23—C24—C250.1 (11)C22'—C23'—C24'—C25'0.4 (12)
C23—C24—C25—C260.6 (11)C23'—C24'—C25'—C26'0.7 (11)
C24—C25—C26—C212.0 (10)C24'—C25'—C26'—C21'0.4 (10)
C26—C21—C22—C231.8 (10)C26'—C21'—C22'—C23'2.2 (10)
C27—C28—C29—C3093.7 (9)C27'—C28'—C29'—C30'40.6 (10)
C28—C27—C34—C3341.8 (10)C28'—C27'—C34'—C33'94.6 (8)
C28—C29—C30—C3135.6 (8)C28'—C29'—C30'—C31'35.4 (8)
C29—C30—C31—Rh140.3 (7)C29'—C30'—C31'—Rh1'11.8 (7)
C29—C30—C31—C3240.1 (10)C29'—C30'—C31'—C32'95.0 (8)
C30—C31—C32—Rh198.4 (7)C30'—C31'—C32'—Rh1'105.2 (6)
C30—C31—C32—C334.3 (11)C30'—C31'—C32'—C33'6.1 (11)
C31—C32—C33—C3494.5 (8)C31'—C32'—C33'—C34'37.6 (9)
C32—C33—C34—C2735.7 (8)C32'—C33'—C34'—C27'38.1 (8)
C34—C27—C28—Rh1101.4 (8)C34'—C27'—C28'—Rh1'103.2 (6)
C34—C27—C28—C292.1 (12)C34'—C27'—C28'—C29'3.0 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F3i0.952.363.177 (8)144
C8—H8C···F10.982.503.404 (10)153
C13—H13···F5*0.952.523.396 (17)153
C20—H20···F2ii0.952.343.291 (9)178
C16—H16···F7*0.952.403.351 (17)177
C29—H29D···F8ii0.992.513.37 (2)146
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z.
 

Acknowledgements

TGL was supported in this work by the Millersville University Neimeyer–Hodgson student research grant and student grants for research and creativity activities.

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationCastaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.  Google Scholar
First citationCazin, C. S. J. (2013). Dalton Trans. 42, 7254.  Web of Science CrossRef Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDíez-González, S. & Nolan, S. P. (2007). Coord. Chem. Rev. 251, 874–883.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.  Google Scholar
First citationLerch, T. G., Gau, M., Albert, D. R. & Rajaseelan, E. (2024a). IUCrData, 9, x240501.  Google Scholar
First citationLerch, T. G., Gau, M., Albert, D. R. & Rajaseelan, E. (2024b). IUCrData, 9, x240060.  Google Scholar
First citationLerch, T. G., Gau, M., Albert, D. R. & Rajaseelan, E. (2024c). IUCrData, 9, x240704.  Google Scholar
First citationMaynard, A., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230903.  Google Scholar
First citationNewman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.  Google Scholar
First citationRovis, T. & Nolan, S. (2013). Synlett, 24, 1188–1189.  Web of Science CrossRef CAS Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146