metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(η6-Benzene)­chlorido­[(S)-2-(4-iso­propyl-4,5-di­hydro­oxazol-2-yl)phenolato]ruthenium(II)

crossmark logo

aDepartment of Chemical Sciences, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
*Correspondence e-mail: mansieurkelani@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 15 July 2024; accepted 21 July 2024; online 26 July 2024)

The title compound, [Ru(C12H14NO2)Cl(η6-C6H6)], exhibits a half-sandwich tripod stand structure and crystallizes in the ortho­rhom­bic space group P212121. The arene group is η6 π-coordinated to the Ru atom with a centroid-to-metal distance of 1.6590 (5) Å, with the (S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolate chelate ligand forming a bite angle of 86.88 (19)° through its N and phenolate O atoms. The pseudo-octa­hedral geometry assumed by the complex is completed by a chloride ligand. The coordination of the optically pure bidentate ligand induces metal centered chirality onto the complex with a Flack parameter of −0.056.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ruthenium complexes have profound applications in various studies relating to chemotherapeutics (Chan et al., 2017[Chan, H., Ghrayche, J. B., Wei, J. & Renfrew, A. K. (2017). Eur. J. Inorg. Chem. pp. 1679-1686.]), catalysis (Chavarot et al., 2003[Chavarot, M., Ménage, S., Hamelin, O., Charnay, F., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem. 42, 4810-4816.]; Hamelin et al., 2007[Hamelin, O., Rimboud, M., Pécaut, J. & Fontecave, M. (2007). Inorg. Chem. 46, 5354-5360.]), electrochemistry (Ryabov et al., 2005[Ryabov, A. D., Le Lagadec, R., Estevez, H., Toscano, R. A., Hernandez, S., Alexandrova, L., Kurova, V. S., Fischer, A., Sirlin, C. & Pfeffer, M. (2005). Inorg. Chem. 44, 1626-1634.]), and photochemistry (Huisman et al., 2016[Huisman, M., White, J. K., Lewalski, V. G., Podgorski, I., Turro, C. & Kodanko, J. J. (2016). Chem. Commun. 52, 12590-12593.]). The optically pure salicyloxazoline coordinating ligand of the complex is often employed as an auxiliary ligand towards the enantioselective synthesis of chiral-at-metal complexes. The approach relies on the leaving propensity of the benzene and the halo ligands for replacement in the octa­hedral geometry with another achiral ligand system as a strategy in most cases. The choice of the salicyloxazoline ligand is due to its reversible coord­ination upon acid protonation of its phenolate leaving the stereochemistry of the metal complex preserved (Gong et al., 2013[Gong, L., Wenzel, M. & Meggers, E. (2013). Acc. Chem. Res. 46, 2635-2644.]). Thus, the use of the compound is extremely helpful in the synthesis of enanti­omerically pure transition-metal complexes with metal-centred chirality (Gong et al., 2009[Gong, L., Mulcahy, S. P., Harms, K. & Meggers, E. (2009). J. Am. Chem. Soc. 131, 9602-9603.], 2010[Gong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). Inorg. Chem. 49, 7692-7699.]). The title compound (Fig. 1[link]) features an optically pure bidentate salicyloxazoline and a chloride ligand within a pseudo-octa­hedral confinement of the three-legged stool while an arene ring occupying the seat of the stool completes the coordination sphere of the ruthenium(II) complex. The bite angle, 86.88 (19)°, of the bidentate ligand is comparable to those of its cymene analogues, 86.68° (Brunner et al., 1998[Brunner, H., Nuber, B. & Prommesberger, M. (1998). Tetrahedron Asymmetry, 9, 3223-3229.]), 88.29° (Davenport et al., 2004[Davenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). Dalton Trans. pp. 1481-1492.]) and mesitylene analogue, 86.91° (Davenport et al., 2004[Davenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). Dalton Trans. pp. 1481-1492.]) reported in the literature. The Ru forms bond lengths of 2.4176 (19), 2.063 (5) and 2.083 (6) Å to Cl1, O1 and N1, respectively. The crystal packing features weak C—H⋯X hydrogen bonding (X = O or Cl) in a manner in which each molecular unit is skewed like a satellite dish. Selected torsion angles are given in Table 1[link] and details of the hydrogen-bonding geometry in Table 2[link].

Table 1
Selected torsion angles (°)

O2—C1—C2—N1 −16.4 (7) C8—C7—C12—O1 179.3 (6)
O2—C1—C2—C3 103.6 (6) O2—C6—N1—Ru1 174.7 (4)
C6—C7—C8—C9 179.4 (6) C3—C2—N1—Ru1 71.5 (7)
C10—C11—C12—O1 −179.3 (7) C7—C6—O2—C1 174.8 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2 0.93 2.38 2.725 (9) 102
C17—H17⋯Cl1i 0.93 2.80 3.440 (8) 127
C18—H18⋯O1i 0.93 2.54 3.405 (8) 156
Symmetry code: (i) [x+1, y, z].
[Figure 1]
Figure 1
ORTEP drawing of the title compound with 50% probability displacement ellipsoids.

Synthesis and crystallization

[η6-C6H6)2RuCl2]2 (200 mg, 0.40 mmol, 1 eq), (S)-isopropyl-2-(2-hy­droxy­phen­yl)oxazoline (174 mg, 0.84 mmol, 2 eq) and K2CO3 (122 mg, 0.88 mmol, 2 eq) were dissolved in aceto­nitrile and refluxed for 3 h with continuous stirring. The reaction mixture was cooled to room temperature and then concentrated in vacuo under reduced pressure to obtain a single enantiomer of the expected compound. The crude product was purified using column chromatography with silica gel to obtain an orange crystalline compound. Yield, 165 mg (46%, 0.4 mmol). 1H NMR (DMSO-d6) δ 7.24 (d, J = 7.5 Hz, 1H), 7.05 (t, J = 7.0 and 7.5 Hz, 1H), 6.62 (d, J = 8.5 Hz, 1H), 6.28 (t, J = 7.5 Hz, 1H), 5.71 (s, 6H), 4.84 (d, J = 9.0 Hz, 1H), 4.59 (dd, J = 3.0 and 8.0 Hz, 1H), 4.41 (t, J = 9.0 Hz, 1H), 2.56 (m, J = 6.0 and 7.5 Hz, 1H), 1.0 (d, J = 7.0 Hz, 3H), 0.68 (d, J = 6.5 Hz, 3H); 13C NMR (DMSO-d6) δ 164.50, 133.10, 128.57, 128.26, 122.00, 112.40, 108.80, 83.33, 74.71, 67.07, 29.23, 19.12, 14.82; FTIR (neat, cm−1) 3067, 1540, 1522, 1489, 1446, 1349, 1255, 1183, 1140, 1069, 826, 763; Elemental analysis calculated for C18H20ClNO2Ru: C, 51.61; H, 4.81; N, 3.34. Found: C, 50.73; H, 4.95; N, 3.64.

Refinement

Details of the crystal data collection, solution and refinement are provided in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Ru(C12H14NO2)Cl(C6H6)]
Mr 418.87
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 6.5669 (18), 9.414 (3), 27.570 (9)
V3) 1704.5 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.09
Crystal size (mm) 0.47 × 0.18 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.662, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9005, 4074, 2937
Rint 0.053
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.089, 0.98
No. of reflections 4074
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.41
Absolute structure Flack x determined using 934 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (6)
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al.., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

(η6-Benzene)chlorido[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato]ruthenium(II) top
Crystal data top
[Ru(C12H14NO2)Cl(C6H6)]Dx = 1.632 Mg m3
Mr = 418.87Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1424 reflections
a = 6.5669 (18) Åθ = 2.6–22.4°
b = 9.414 (3) ŵ = 1.09 mm1
c = 27.570 (9) ÅT = 293 K
V = 1704.5 (9) Å3Plate, orange
Z = 40.47 × 0.18 × 0.15 mm
F(000) = 848
Data collection top
Bruker APEXII CCD
diffractometer
2937 reflections with I > 2σ(I)
Detector resolution: φ and ω scans pixels mm-1Rint = 0.053
Bruker APEXII CCD scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 86
Tmin = 0.662, Tmax = 0.746k = 1212
9005 measured reflectionsl = 3626
4074 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0264P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.002
4074 reflectionsΔρmax = 0.66 e Å3
210 parametersΔρmin = 0.41 e Å3
0 restraintsAbsolute structure: Flack x determined using 934 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.05 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure solution and refinement were implemented using WinGX software program (Farrugia, 2012). The highest peak and deepest hole are 0.66 and -0.41 e Å-3, respectively, which are 1.13 and 0.83 Å away from the ruthenium center. The refinement of the hydrogen atoms was performed isotropically in their idealized geometry while sitting and riding on their anisotropically refined parent atoms with Uiso = 1.2Ueq for the aromatic and methine protons, and Uiso = 1.5Ueq for the methyl protons.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2589 (12)1.2854 (9)0.8188 (3)0.047 (2)
H1A0.3794571.3206780.8351650.057*
H1B0.2677891.3094920.7846130.057*
C20.2375 (11)1.1261 (8)0.8256 (2)0.0362 (17)
H20.3646171.0868110.8384710.043*
C30.1761 (10)1.0454 (9)0.7791 (2)0.0409 (19)
H30.1377530.9486220.7884520.049*
C40.0048 (18)1.1122 (8)0.7531 (2)0.0508 (17)
H4A0.0300431.2067610.7430360.076*
H4B0.1192131.1159280.7747740.076*
H4C0.0392251.0561710.7252380.076*
C50.3629 (12)1.0355 (12)0.7454 (3)0.070 (3)
H5A0.3336020.9719680.7191310.105*
H5B0.4775091.0004710.7634430.105*
H5C0.3939651.1280340.7327860.105*
C60.0089 (13)1.2403 (6)0.86639 (19)0.0312 (13)
C70.1874 (9)1.2786 (7)0.8950 (2)0.0316 (16)
C80.2721 (11)1.4153 (8)0.8885 (2)0.0394 (17)
H80.2121651.4776390.8665310.047*
C90.4400 (11)1.4573 (9)0.9137 (3)0.053 (2)
H90.4984661.5458250.9081800.064*
C100.5219 (15)1.3655 (9)0.9478 (3)0.056 (2)
H100.6325141.3953620.9662500.067*
C110.4456 (10)1.2333 (9)0.9552 (3)0.047 (2)
H110.5064471.1743170.9780420.057*
C120.2755 (10)1.1833 (8)0.9288 (2)0.0319 (16)
C130.2044 (11)0.9128 (8)0.9641 (2)0.0424 (19)
H130.2386070.9790150.9877440.051*
C140.0350 (12)0.8234 (7)0.9705 (2)0.042 (2)
H140.0414860.8302650.9988370.050*
C150.0200 (14)0.7245 (7)0.9352 (2)0.0456 (18)
H150.1302350.6642620.9402330.055*
C160.0933 (11)0.7167 (8)0.8916 (3)0.047 (2)
H160.0528120.6544500.8672150.057*
C170.2667 (11)0.8025 (8)0.8847 (3)0.0443 (19)
H170.3437410.7943850.8565570.053*
C180.3229 (10)0.9013 (8)0.9212 (3)0.043 (2)
H180.4370090.9585220.9169530.052*
N10.0747 (7)1.1175 (6)0.86312 (18)0.0311 (14)
O10.2134 (7)1.0558 (5)0.93758 (15)0.0381 (11)
O20.0756 (7)1.3444 (5)0.84022 (17)0.0456 (14)
Cl10.2594 (3)0.8953 (2)0.84198 (6)0.0507 (5)
Ru10.00224 (9)0.93480 (5)0.90217 (2)0.02858 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.044 (5)0.057 (5)0.040 (4)0.015 (4)0.012 (4)0.001 (4)
C20.027 (4)0.054 (5)0.027 (3)0.001 (4)0.008 (3)0.000 (3)
C30.040 (4)0.047 (5)0.036 (4)0.006 (4)0.010 (3)0.003 (4)
C40.052 (4)0.061 (5)0.039 (3)0.005 (8)0.013 (4)0.001 (3)
C50.061 (6)0.106 (9)0.044 (5)0.030 (6)0.012 (4)0.004 (5)
C60.041 (4)0.028 (3)0.025 (3)0.010 (5)0.001 (4)0.001 (2)
C70.027 (4)0.037 (4)0.030 (4)0.000 (3)0.000 (3)0.012 (3)
C80.045 (4)0.038 (4)0.036 (4)0.003 (4)0.008 (3)0.004 (3)
C90.054 (6)0.048 (5)0.058 (5)0.017 (4)0.015 (4)0.021 (4)
C100.045 (5)0.066 (5)0.055 (4)0.011 (6)0.008 (5)0.026 (4)
C110.043 (6)0.049 (5)0.051 (4)0.002 (4)0.014 (3)0.017 (4)
C120.029 (4)0.038 (4)0.029 (3)0.001 (3)0.003 (3)0.013 (3)
C130.040 (4)0.047 (5)0.040 (4)0.002 (4)0.014 (3)0.008 (4)
C140.050 (6)0.041 (4)0.035 (3)0.003 (4)0.007 (4)0.012 (3)
C150.046 (5)0.035 (4)0.056 (4)0.010 (5)0.008 (5)0.013 (3)
C160.052 (5)0.035 (4)0.056 (5)0.001 (4)0.001 (4)0.003 (4)
C170.029 (4)0.045 (5)0.059 (5)0.008 (4)0.009 (4)0.001 (4)
C180.027 (4)0.044 (5)0.059 (5)0.001 (3)0.004 (3)0.010 (4)
N10.019 (3)0.047 (4)0.028 (3)0.008 (3)0.005 (2)0.001 (3)
O10.039 (3)0.037 (3)0.039 (2)0.001 (3)0.017 (2)0.002 (2)
O20.049 (3)0.043 (3)0.046 (3)0.007 (2)0.012 (2)0.008 (2)
Cl10.0276 (10)0.0772 (16)0.0475 (10)0.0096 (10)0.0033 (8)0.0106 (10)
Ru10.0237 (2)0.0325 (2)0.0295 (2)0.0020 (4)0.0034 (3)0.0008 (2)
Geometric parameters (Å, º) top
C1—O21.452 (8)C9—C101.386 (11)
C1—C21.519 (10)C9—H90.9300
C1—H1A0.9700C10—C111.357 (11)
C1—H1B0.9700C10—H100.9300
C2—N11.490 (7)C11—C121.414 (9)
C2—C31.542 (9)C11—H110.9300
C2—H20.9800C12—O11.291 (8)
C3—C41.523 (12)C13—C141.406 (9)
C3—C51.541 (9)C13—C181.420 (9)
C3—H30.9800C13—H130.9300
C4—H4A0.9600C14—C151.396 (9)
C4—H4B0.9600C14—H140.9300
C4—H4C0.9600C15—C161.416 (10)
C5—H5A0.9600C15—H150.9300
C5—H5B0.9600C16—C171.409 (10)
C5—H5C0.9600C16—H160.9300
C6—N11.282 (8)C17—C181.418 (10)
C6—O21.338 (7)C17—H170.9300
C6—C71.458 (10)C18—H180.9300
C7—C81.413 (9)N1—Ru12.084 (6)
C7—C121.418 (9)O1—Ru12.063 (5)
C8—C91.363 (9)Cl1—Ru12.4176 (19)
C8—H80.9300
O2—C1—C2104.5 (6)C8—C9—C10118.6 (8)
O2—C1—H1A110.9C8—C9—H9120.7
C2—C1—H1A110.9C10—C9—H9120.7
O2—C1—H1B110.9C11—C10—C9122.0 (8)
C2—C1—H1B110.9C11—C10—H10119.0
H1A—C1—H1B108.9C9—C10—H10119.0
N1—C2—C1101.9 (6)C10—C11—C12121.4 (8)
N1—C2—C3111.3 (5)C10—C11—H11119.3
C1—C2—C3114.1 (6)C12—C11—H11119.3
N1—C2—H2109.8O1—C12—C11117.5 (7)
C1—C2—H2109.8O1—C12—C7125.7 (6)
C3—C2—H2109.8C11—C12—C7116.7 (7)
C4—C3—C5111.3 (6)C14—C13—C18119.6 (7)
C4—C3—C2113.0 (6)C14—C13—H13120.2
C5—C3—C2108.8 (6)C18—C13—H13120.2
C4—C3—H3107.9C15—C14—C13121.0 (7)
C5—C3—H3107.9C15—C14—H14119.5
C2—C3—H3107.9C13—C14—H14119.5
C3—C4—H4A109.5C14—C15—C16119.5 (7)
C3—C4—H4B109.5C14—C15—H15120.3
H4A—C4—H4B109.5C16—C15—H15120.3
C3—C4—H4C109.5C17—C16—C15120.6 (7)
H4A—C4—H4C109.5C17—C16—H16119.7
H4B—C4—H4C109.5C15—C16—H16119.7
C3—C5—H5A109.5C16—C17—C18119.5 (7)
C3—C5—H5B109.5C16—C17—H17120.3
H5A—C5—H5B109.5C18—C17—H17120.3
C3—C5—H5C109.5C17—C18—C13119.8 (7)
H5A—C5—H5C109.5C17—C18—H18120.1
H5B—C5—H5C109.5C13—C18—H18120.1
N1—C6—O2116.4 (7)C6—N1—C2107.9 (6)
N1—C6—C7127.3 (6)C6—N1—Ru1127.6 (4)
O2—C6—C7116.3 (6)C2—N1—Ru1124.5 (5)
C8—C7—C12120.0 (6)C12—O1—Ru1129.9 (4)
C8—C7—C6118.3 (6)C6—O2—C1106.5 (6)
C12—C7—C6121.8 (6)O1—Ru1—N186.9 (2)
C9—C8—C7121.2 (7)O1—Ru1—Cl185.52 (14)
C9—C8—H8119.4N1—Ru1—Cl186.26 (15)
C7—C8—H8119.4
O2—C1—C2—N116.4 (7)C6—C7—C12—C11178.7 (6)
O2—C1—C2—C3103.6 (6)C18—C13—C14—C150.7 (11)
N1—C2—C3—C465.7 (8)C13—C14—C15—C161.7 (11)
C1—C2—C3—C448.8 (9)C14—C15—C16—C173.3 (11)
N1—C2—C3—C5170.2 (6)C15—C16—C17—C182.5 (11)
C1—C2—C3—C575.2 (8)C16—C17—C18—C130.1 (11)
N1—C6—C7—C8171.5 (7)C14—C13—C18—C171.5 (11)
O2—C6—C7—C87.7 (9)O2—C6—N1—C25.5 (8)
N1—C6—C7—C128.9 (11)C7—C6—N1—C2173.7 (6)
O2—C6—C7—C12172.0 (6)O2—C6—N1—Ru1174.7 (4)
C12—C7—C8—C90.9 (10)C7—C6—N1—Ru16.2 (10)
C6—C7—C8—C9179.4 (6)C1—C2—N1—C613.7 (7)
C7—C8—C9—C102.9 (11)C3—C2—N1—C6108.3 (7)
C8—C9—C10—C113.0 (13)C1—C2—N1—Ru1166.5 (4)
C9—C10—C11—C121.1 (13)C3—C2—N1—Ru171.5 (7)
C10—C11—C12—O1179.3 (7)C11—C12—O1—Ru1171.7 (4)
C10—C11—C12—C70.9 (10)C7—C12—O1—Ru18.6 (10)
C8—C7—C12—O1179.3 (6)N1—C6—O2—C15.9 (8)
C6—C7—C12—O11.1 (10)C7—C6—O2—C1174.8 (6)
C8—C7—C12—C111.0 (9)C2—C1—O2—C614.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.382.725 (9)102
C17—H17···Cl1i0.932.803.440 (8)127
C18—H18···O1i0.932.543.405 (8)156
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We appreciate Dr B. Vatsha at the Department of Chemical Sciences, University of Johannesburg, for the collection of data.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 120842).

References

First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunner, H., Nuber, B. & Prommesberger, M. (1998). Tetrahedron Asymmetry, 9, 3223–3229.  CrossRef CAS Google Scholar
First citationChan, H., Ghrayche, J. B., Wei, J. & Renfrew, A. K. (2017). Eur. J. Inorg. Chem. pp. 1679–1686.  CrossRef Google Scholar
First citationChavarot, M., Ménage, S., Hamelin, O., Charnay, F., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem. 42, 4810–4816.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDavenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). Dalton Trans. pp. 1481–1492.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). Inorg. Chem. 49, 7692–7699.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGong, L., Mulcahy, S. P., Harms, K. & Meggers, E. (2009). J. Am. Chem. Soc. 131, 9602–9603.  CrossRef PubMed CAS Google Scholar
First citationGong, L., Wenzel, M. & Meggers, E. (2013). Acc. Chem. Res. 46, 2635–2644.  CrossRef CAS PubMed Google Scholar
First citationHamelin, O., Rimboud, M., Pécaut, J. & Fontecave, M. (2007). Inorg. Chem. 46, 5354–5360.  CrossRef PubMed CAS Google Scholar
First citationHuisman, M., White, J. K., Lewalski, V. G., Podgorski, I., Turro, C. & Kodanko, J. J. (2016). Chem. Commun. 52, 12590–12593.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRyabov, A. D., Le Lagadec, R., Estevez, H., Toscano, R. A., Hernandez, S., Alexandrova, L., Kurova, V. S., Fischer, A., Sirlin, C. & Pfeffer, M. (2005). Inorg. Chem. 44, 1626–1634.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146