metal-organic compounds
(η6-Benzene)chlorido[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato]ruthenium(II)
aDepartment of Chemical Sciences, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
*Correspondence e-mail: mansieurkelani@gmail.com
The title compound, [Ru(C12H14NO2)Cl(η6-C6H6)], exhibits a half-sandwich tripod stand structure and crystallizes in the orthorhombic P212121. The arene group is η6 π-coordinated to the Ru atom with a centroid-to-metal distance of 1.6590 (5) Å, with the (S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolate chelate ligand forming a bite angle of 86.88 (19)° through its N and phenolate O atoms. The pseudo-octahedral geometry assumed by the complex is completed by a chloride ligand. The coordination of the optically pure bidentate ligand induces metal centered onto the complex with a of −0.056.
Keywords: crystal structure; orthorhombic; ruthenium.
CCDC reference: 2372332
Structure description
Ruthenium complexes have profound applications in various studies relating to chemotherapeutics (Chan et al., 2017), catalysis (Chavarot et al., 2003; Hamelin et al., 2007), electrochemistry (Ryabov et al., 2005), and (Huisman et al., 2016). The optically pure salicyloxazoline coordinating ligand of the complex is often employed as an auxiliary ligand towards the enantioselective synthesis of chiral-at-metal complexes. The approach relies on the leaving propensity of the benzene and the halo ligands for replacement in the octahedral geometry with another achiral ligand system as a strategy in most cases. The choice of the salicyloxazoline ligand is due to its reversible coordination upon acid protonation of its phenolate leaving the stereochemistry of the metal complex preserved (Gong et al., 2013). Thus, the use of the compound is extremely helpful in the synthesis of enantiomerically pure transition-metal complexes with metal-centred (Gong et al., 2009, 2010). The title compound (Fig. 1) features an optically pure bidentate salicyloxazoline and a chloride ligand within a pseudo-octahedral confinement of the three-legged stool while an arene ring occupying the seat of the stool completes the coordination sphere of the ruthenium(II) complex. The bite angle, 86.88 (19)°, of the bidentate ligand is comparable to those of its cymene analogues, 86.68° (Brunner et al., 1998), 88.29° (Davenport et al., 2004) and mesitylene analogue, 86.91° (Davenport et al., 2004) reported in the literature. The Ru forms bond lengths of 2.4176 (19), 2.063 (5) and 2.083 (6) Å to Cl1, O1 and N1, respectively. The crystal packing features weak C—H⋯X hydrogen bonding (X = O or Cl) in a manner in which each molecular unit is skewed like a satellite dish. Selected torsion angles are given in Table 1 and details of the hydrogen-bonding geometry in Table 2.
|
Synthesis and crystallization
[η6-C6H6)2RuCl2]2 (200 mg, 0.40 mmol, 1 eq), (S)-isopropyl-2-(2-hydroxyphenyl)oxazoline (174 mg, 0.84 mmol, 2 eq) and K2CO3 (122 mg, 0.88 mmol, 2 eq) were dissolved in acetonitrile and refluxed for 3 h with continuous stirring. The reaction mixture was cooled to room temperature and then concentrated in vacuo under reduced pressure to obtain a single of the expected compound. The crude product was purified using with silica gel to obtain an orange crystalline compound. Yield, 165 mg (46%, 0.4 mmol). 1H NMR (DMSO-d6) δ 7.24 (d, J = 7.5 Hz, 1H), 7.05 (t, J = 7.0 and 7.5 Hz, 1H), 6.62 (d, J = 8.5 Hz, 1H), 6.28 (t, J = 7.5 Hz, 1H), 5.71 (s, 6H), 4.84 (d, J = 9.0 Hz, 1H), 4.59 (dd, J = 3.0 and 8.0 Hz, 1H), 4.41 (t, J = 9.0 Hz, 1H), 2.56 (m, J = 6.0 and 7.5 Hz, 1H), 1.0 (d, J = 7.0 Hz, 3H), 0.68 (d, J = 6.5 Hz, 3H); 13C NMR (DMSO-d6) δ 164.50, 133.10, 128.57, 128.26, 122.00, 112.40, 108.80, 83.33, 74.71, 67.07, 29.23, 19.12, 14.82; FTIR (neat, cm−1) 3067, 1540, 1522, 1489, 1446, 1349, 1255, 1183, 1140, 1069, 826, 763; Elemental analysis calculated for C18H20ClNO2Ru: C, 51.61; H, 4.81; N, 3.34. Found: C, 50.73; H, 4.95; N, 3.64.
Refinement
Details of the crystal data collection, solution and .
are provided in Table 3Structural data
CCDC reference: 2372332
https://doi.org/10.1107/S241431462400720X/zl4075sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462400720X/zl4075Isup4.hkl
[Ru(C12H14NO2)Cl(C6H6)] | Dx = 1.632 Mg m−3 |
Mr = 418.87 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1424 reflections |
a = 6.5669 (18) Å | θ = 2.6–22.4° |
b = 9.414 (3) Å | µ = 1.09 mm−1 |
c = 27.570 (9) Å | T = 293 K |
V = 1704.5 (9) Å3 | Plate, orange |
Z = 4 | 0.47 × 0.18 × 0.15 mm |
F(000) = 848 |
Bruker APEXII CCD diffractometer | 2937 reflections with I > 2σ(I) |
Detector resolution: φ and ω scans pixels mm-1 | Rint = 0.053 |
Bruker APEXII CCD scans | θmax = 28.3°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→6 |
Tmin = 0.662, Tmax = 0.746 | k = −12→12 |
9005 measured reflections | l = −36→26 |
4074 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0264P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max = 0.002 |
4074 reflections | Δρmax = 0.66 e Å−3 |
210 parameters | Δρmin = −0.41 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 934 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: −0.05 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure solution and refinement were implemented using WinGX software program (Farrugia, 2012). The highest peak and deepest hole are 0.66 and -0.41 e Å-3, respectively, which are 1.13 and 0.83 Å away from the ruthenium center. The refinement of the hydrogen atoms was performed isotropically in their idealized geometry while sitting and riding on their anisotropically refined parent atoms with Uiso = 1.2Ueq for the aromatic and methine protons, and Uiso = 1.5Ueq for the methyl protons. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2589 (12) | 1.2854 (9) | 0.8188 (3) | 0.047 (2) | |
H1A | 0.379457 | 1.320678 | 0.835165 | 0.057* | |
H1B | 0.267789 | 1.309492 | 0.784613 | 0.057* | |
C2 | 0.2375 (11) | 1.1261 (8) | 0.8256 (2) | 0.0362 (17) | |
H2 | 0.364617 | 1.086811 | 0.838471 | 0.043* | |
C3 | 0.1761 (10) | 1.0454 (9) | 0.7791 (2) | 0.0409 (19) | |
H3 | 0.137753 | 0.948622 | 0.788452 | 0.049* | |
C4 | −0.0048 (18) | 1.1122 (8) | 0.7531 (2) | 0.0508 (17) | |
H4A | 0.030043 | 1.206761 | 0.743036 | 0.076* | |
H4B | −0.119213 | 1.115928 | 0.774774 | 0.076* | |
H4C | −0.039225 | 1.056171 | 0.725238 | 0.076* | |
C5 | 0.3629 (12) | 1.0355 (12) | 0.7454 (3) | 0.070 (3) | |
H5A | 0.333602 | 0.971968 | 0.719131 | 0.105* | |
H5B | 0.477509 | 1.000471 | 0.763443 | 0.105* | |
H5C | 0.393965 | 1.128034 | 0.732786 | 0.105* | |
C6 | −0.0089 (13) | 1.2403 (6) | 0.86639 (19) | 0.0312 (13) | |
C7 | −0.1874 (9) | 1.2786 (7) | 0.8950 (2) | 0.0316 (16) | |
C8 | −0.2721 (11) | 1.4153 (8) | 0.8885 (2) | 0.0394 (17) | |
H8 | −0.212165 | 1.477639 | 0.866531 | 0.047* | |
C9 | −0.4400 (11) | 1.4573 (9) | 0.9137 (3) | 0.053 (2) | |
H9 | −0.498466 | 1.545825 | 0.908180 | 0.064* | |
C10 | −0.5219 (15) | 1.3655 (9) | 0.9478 (3) | 0.056 (2) | |
H10 | −0.632514 | 1.395362 | 0.966250 | 0.067* | |
C11 | −0.4456 (10) | 1.2333 (9) | 0.9552 (3) | 0.047 (2) | |
H11 | −0.506447 | 1.174317 | 0.978042 | 0.057* | |
C12 | −0.2755 (10) | 1.1833 (8) | 0.9288 (2) | 0.0319 (16) | |
C13 | 0.2044 (11) | 0.9128 (8) | 0.9641 (2) | 0.0424 (19) | |
H13 | 0.238607 | 0.979015 | 0.987744 | 0.051* | |
C14 | 0.0350 (12) | 0.8234 (7) | 0.9705 (2) | 0.042 (2) | |
H14 | −0.041486 | 0.830265 | 0.998837 | 0.050* | |
C15 | −0.0200 (14) | 0.7245 (7) | 0.9352 (2) | 0.0456 (18) | |
H15 | −0.130235 | 0.664262 | 0.940233 | 0.055* | |
C16 | 0.0933 (11) | 0.7167 (8) | 0.8916 (3) | 0.047 (2) | |
H16 | 0.052812 | 0.654450 | 0.867215 | 0.057* | |
C17 | 0.2667 (11) | 0.8025 (8) | 0.8847 (3) | 0.0443 (19) | |
H17 | 0.343741 | 0.794385 | 0.856557 | 0.053* | |
C18 | 0.3229 (10) | 0.9013 (8) | 0.9212 (3) | 0.043 (2) | |
H18 | 0.437009 | 0.958522 | 0.916953 | 0.052* | |
N1 | 0.0747 (7) | 1.1175 (6) | 0.86312 (18) | 0.0311 (14) | |
O1 | −0.2134 (7) | 1.0558 (5) | 0.93758 (15) | 0.0381 (11) | |
O2 | 0.0756 (7) | 1.3444 (5) | 0.84022 (17) | 0.0456 (14) | |
Cl1 | −0.2594 (3) | 0.8953 (2) | 0.84198 (6) | 0.0507 (5) | |
Ru1 | 0.00224 (9) | 0.93480 (5) | 0.90217 (2) | 0.02858 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.044 (5) | 0.057 (5) | 0.040 (4) | −0.015 (4) | 0.012 (4) | 0.001 (4) |
C2 | 0.027 (4) | 0.054 (5) | 0.027 (3) | 0.001 (4) | 0.008 (3) | 0.000 (3) |
C3 | 0.040 (4) | 0.047 (5) | 0.036 (4) | 0.006 (4) | 0.010 (3) | −0.003 (4) |
C4 | 0.052 (4) | 0.061 (5) | 0.039 (3) | −0.005 (8) | −0.013 (4) | −0.001 (3) |
C5 | 0.061 (6) | 0.106 (9) | 0.044 (5) | 0.030 (6) | 0.012 (4) | −0.004 (5) |
C6 | 0.041 (4) | 0.028 (3) | 0.025 (3) | −0.010 (5) | −0.001 (4) | −0.001 (2) |
C7 | 0.027 (4) | 0.037 (4) | 0.030 (4) | 0.000 (3) | 0.000 (3) | −0.012 (3) |
C8 | 0.045 (4) | 0.038 (4) | 0.036 (4) | 0.003 (4) | −0.008 (3) | −0.004 (3) |
C9 | 0.054 (6) | 0.048 (5) | 0.058 (5) | 0.017 (4) | −0.015 (4) | −0.021 (4) |
C10 | 0.045 (5) | 0.066 (5) | 0.055 (4) | 0.011 (6) | 0.008 (5) | −0.026 (4) |
C11 | 0.043 (6) | 0.049 (5) | 0.051 (4) | 0.002 (4) | 0.014 (3) | −0.017 (4) |
C12 | 0.029 (4) | 0.038 (4) | 0.029 (3) | −0.001 (3) | 0.003 (3) | −0.013 (3) |
C13 | 0.040 (4) | 0.047 (5) | 0.040 (4) | −0.002 (4) | −0.014 (3) | 0.008 (4) |
C14 | 0.050 (6) | 0.041 (4) | 0.035 (3) | −0.003 (4) | 0.007 (4) | 0.012 (3) |
C15 | 0.046 (5) | 0.035 (4) | 0.056 (4) | −0.010 (5) | 0.008 (5) | 0.013 (3) |
C16 | 0.052 (5) | 0.035 (4) | 0.056 (5) | 0.001 (4) | 0.001 (4) | −0.003 (4) |
C17 | 0.029 (4) | 0.045 (5) | 0.059 (5) | 0.008 (4) | 0.009 (4) | 0.001 (4) |
C18 | 0.027 (4) | 0.044 (5) | 0.059 (5) | 0.001 (3) | −0.004 (3) | 0.010 (4) |
N1 | 0.019 (3) | 0.047 (4) | 0.028 (3) | −0.008 (3) | 0.005 (2) | 0.001 (3) |
O1 | 0.039 (3) | 0.037 (3) | 0.039 (2) | 0.001 (3) | 0.017 (2) | −0.002 (2) |
O2 | 0.049 (3) | 0.043 (3) | 0.046 (3) | −0.007 (2) | 0.012 (2) | 0.008 (2) |
Cl1 | 0.0276 (10) | 0.0772 (16) | 0.0475 (10) | −0.0096 (10) | −0.0033 (8) | −0.0106 (10) |
Ru1 | 0.0237 (2) | 0.0325 (2) | 0.0295 (2) | −0.0020 (4) | 0.0034 (3) | −0.0008 (2) |
C1—O2 | 1.452 (8) | C9—C10 | 1.386 (11) |
C1—C2 | 1.519 (10) | C9—H9 | 0.9300 |
C1—H1A | 0.9700 | C10—C11 | 1.357 (11) |
C1—H1B | 0.9700 | C10—H10 | 0.9300 |
C2—N1 | 1.490 (7) | C11—C12 | 1.414 (9) |
C2—C3 | 1.542 (9) | C11—H11 | 0.9300 |
C2—H2 | 0.9800 | C12—O1 | 1.291 (8) |
C3—C4 | 1.523 (12) | C13—C14 | 1.406 (9) |
C3—C5 | 1.541 (9) | C13—C18 | 1.420 (9) |
C3—H3 | 0.9800 | C13—H13 | 0.9300 |
C4—H4A | 0.9600 | C14—C15 | 1.396 (9) |
C4—H4B | 0.9600 | C14—H14 | 0.9300 |
C4—H4C | 0.9600 | C15—C16 | 1.416 (10) |
C5—H5A | 0.9600 | C15—H15 | 0.9300 |
C5—H5B | 0.9600 | C16—C17 | 1.409 (10) |
C5—H5C | 0.9600 | C16—H16 | 0.9300 |
C6—N1 | 1.282 (8) | C17—C18 | 1.418 (10) |
C6—O2 | 1.338 (7) | C17—H17 | 0.9300 |
C6—C7 | 1.458 (10) | C18—H18 | 0.9300 |
C7—C8 | 1.413 (9) | N1—Ru1 | 2.084 (6) |
C7—C12 | 1.418 (9) | O1—Ru1 | 2.063 (5) |
C8—C9 | 1.363 (9) | Cl1—Ru1 | 2.4176 (19) |
C8—H8 | 0.9300 | ||
O2—C1—C2 | 104.5 (6) | C8—C9—C10 | 118.6 (8) |
O2—C1—H1A | 110.9 | C8—C9—H9 | 120.7 |
C2—C1—H1A | 110.9 | C10—C9—H9 | 120.7 |
O2—C1—H1B | 110.9 | C11—C10—C9 | 122.0 (8) |
C2—C1—H1B | 110.9 | C11—C10—H10 | 119.0 |
H1A—C1—H1B | 108.9 | C9—C10—H10 | 119.0 |
N1—C2—C1 | 101.9 (6) | C10—C11—C12 | 121.4 (8) |
N1—C2—C3 | 111.3 (5) | C10—C11—H11 | 119.3 |
C1—C2—C3 | 114.1 (6) | C12—C11—H11 | 119.3 |
N1—C2—H2 | 109.8 | O1—C12—C11 | 117.5 (7) |
C1—C2—H2 | 109.8 | O1—C12—C7 | 125.7 (6) |
C3—C2—H2 | 109.8 | C11—C12—C7 | 116.7 (7) |
C4—C3—C5 | 111.3 (6) | C14—C13—C18 | 119.6 (7) |
C4—C3—C2 | 113.0 (6) | C14—C13—H13 | 120.2 |
C5—C3—C2 | 108.8 (6) | C18—C13—H13 | 120.2 |
C4—C3—H3 | 107.9 | C15—C14—C13 | 121.0 (7) |
C5—C3—H3 | 107.9 | C15—C14—H14 | 119.5 |
C2—C3—H3 | 107.9 | C13—C14—H14 | 119.5 |
C3—C4—H4A | 109.5 | C14—C15—C16 | 119.5 (7) |
C3—C4—H4B | 109.5 | C14—C15—H15 | 120.3 |
H4A—C4—H4B | 109.5 | C16—C15—H15 | 120.3 |
C3—C4—H4C | 109.5 | C17—C16—C15 | 120.6 (7) |
H4A—C4—H4C | 109.5 | C17—C16—H16 | 119.7 |
H4B—C4—H4C | 109.5 | C15—C16—H16 | 119.7 |
C3—C5—H5A | 109.5 | C16—C17—C18 | 119.5 (7) |
C3—C5—H5B | 109.5 | C16—C17—H17 | 120.3 |
H5A—C5—H5B | 109.5 | C18—C17—H17 | 120.3 |
C3—C5—H5C | 109.5 | C17—C18—C13 | 119.8 (7) |
H5A—C5—H5C | 109.5 | C17—C18—H18 | 120.1 |
H5B—C5—H5C | 109.5 | C13—C18—H18 | 120.1 |
N1—C6—O2 | 116.4 (7) | C6—N1—C2 | 107.9 (6) |
N1—C6—C7 | 127.3 (6) | C6—N1—Ru1 | 127.6 (4) |
O2—C6—C7 | 116.3 (6) | C2—N1—Ru1 | 124.5 (5) |
C8—C7—C12 | 120.0 (6) | C12—O1—Ru1 | 129.9 (4) |
C8—C7—C6 | 118.3 (6) | C6—O2—C1 | 106.5 (6) |
C12—C7—C6 | 121.8 (6) | O1—Ru1—N1 | 86.9 (2) |
C9—C8—C7 | 121.2 (7) | O1—Ru1—Cl1 | 85.52 (14) |
C9—C8—H8 | 119.4 | N1—Ru1—Cl1 | 86.26 (15) |
C7—C8—H8 | 119.4 | ||
O2—C1—C2—N1 | −16.4 (7) | C6—C7—C12—C11 | 178.7 (6) |
O2—C1—C2—C3 | 103.6 (6) | C18—C13—C14—C15 | −0.7 (11) |
N1—C2—C3—C4 | 65.7 (8) | C13—C14—C15—C16 | −1.7 (11) |
C1—C2—C3—C4 | −48.8 (9) | C14—C15—C16—C17 | 3.3 (11) |
N1—C2—C3—C5 | −170.2 (6) | C15—C16—C17—C18 | −2.5 (11) |
C1—C2—C3—C5 | 75.2 (8) | C16—C17—C18—C13 | 0.1 (11) |
N1—C6—C7—C8 | −171.5 (7) | C14—C13—C18—C17 | 1.5 (11) |
O2—C6—C7—C8 | 7.7 (9) | O2—C6—N1—C2 | −5.5 (8) |
N1—C6—C7—C12 | 8.9 (11) | C7—C6—N1—C2 | 173.7 (6) |
O2—C6—C7—C12 | −172.0 (6) | O2—C6—N1—Ru1 | 174.7 (4) |
C12—C7—C8—C9 | −0.9 (10) | C7—C6—N1—Ru1 | −6.2 (10) |
C6—C7—C8—C9 | 179.4 (6) | C1—C2—N1—C6 | 13.7 (7) |
C7—C8—C9—C10 | 2.9 (11) | C3—C2—N1—C6 | −108.3 (7) |
C8—C9—C10—C11 | −3.0 (13) | C1—C2—N1—Ru1 | −166.5 (4) |
C9—C10—C11—C12 | 1.1 (13) | C3—C2—N1—Ru1 | 71.5 (7) |
C10—C11—C12—O1 | −179.3 (7) | C11—C12—O1—Ru1 | 171.7 (4) |
C10—C11—C12—C7 | 0.9 (10) | C7—C12—O1—Ru1 | −8.6 (10) |
C8—C7—C12—O1 | 179.3 (6) | N1—C6—O2—C1 | −5.9 (8) |
C6—C7—C12—O1 | −1.1 (10) | C7—C6—O2—C1 | 174.8 (6) |
C8—C7—C12—C11 | −1.0 (9) | C2—C1—O2—C6 | 14.2 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2 | 0.93 | 2.38 | 2.725 (9) | 102 |
C17—H17···Cl1i | 0.93 | 2.80 | 3.440 (8) | 127 |
C18—H18···O1i | 0.93 | 2.54 | 3.405 (8) | 156 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
We appreciate Dr B. Vatsha at the Department of Chemical Sciences, University of Johannesburg, for the collection of data.
Funding information
Funding for this research was provided by: National Research Foundation (grant No. 120842).
References
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Brunner, H., Nuber, B. & Prommesberger, M. (1998). Tetrahedron Asymmetry, 9, 3223–3229. CrossRef CAS Google Scholar
Chan, H., Ghrayche, J. B., Wei, J. & Renfrew, A. K. (2017). Eur. J. Inorg. Chem. pp. 1679–1686. CrossRef Google Scholar
Chavarot, M., Ménage, S., Hamelin, O., Charnay, F., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem. 42, 4810–4816. Web of Science CSD CrossRef PubMed CAS Google Scholar
Davenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). Dalton Trans. pp. 1481–1492. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). Inorg. Chem. 49, 7692–7699. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gong, L., Mulcahy, S. P., Harms, K. & Meggers, E. (2009). J. Am. Chem. Soc. 131, 9602–9603. CrossRef PubMed CAS Google Scholar
Gong, L., Wenzel, M. & Meggers, E. (2013). Acc. Chem. Res. 46, 2635–2644. CrossRef CAS PubMed Google Scholar
Hamelin, O., Rimboud, M., Pécaut, J. & Fontecave, M. (2007). Inorg. Chem. 46, 5354–5360. CrossRef PubMed CAS Google Scholar
Huisman, M., White, J. K., Lewalski, V. G., Podgorski, I., Turro, C. & Kodanko, J. J. (2016). Chem. Commun. 52, 12590–12593. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ryabov, A. D., Le Lagadec, R., Estevez, H., Toscano, R. A., Hernandez, S., Alexandrova, L., Kurova, V. S., Fischer, A., Sirlin, C. & Pfeffer, M. (2005). Inorg. Chem. 44, 1626–1634. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.