

IUCrData

ISSN 2414-3146

Received 15 July 2024 Accepted 21 July 2024

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; orthorhombic; ruthenium.

CCDC reference: 2372332

Structural data: full structural data are available from iucrdata.iucr.org

(η⁶-Benzene)chlorido[(S)-2-(4-isopropyl-4,5dihydrooxazol-2-yl)phenolato]ruthenium(II)

Monsuru T. Kelani,* Alfred Muller and Koop Lammertsma

Department of Chemical Sciences, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa. *Correspondence e-mail: mansieurkelani@gmail.com

The title compound, $[Ru(C_{12}H_{14}NO_2)Cl(\eta^6-C_6H_6)]$, exhibits a half-sandwich tripod stand structure and crystallizes in the orthorhombic space group $P2_12_12_1$. The arene group is $\eta^6 \pi$ -coordinated to the Ru atom with a centroid-to-metal distance of 1.6590 (5) Å, with the (*S*)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)-phenolate chelate ligand forming a bite angle of 86.88 (19)° through its N and phenolate O atoms. The pseudo-octahedral geometry assumed by the complex is completed by a chloride ligand. The coordination of the optically pure bidentate ligand induces metal centered chirality onto the complex with a Flack parameter of -0.056.

Structure description

Ruthenium complexes have profound applications in various studies relating to chemotherapeutics (Chan et al., 2017), catalysis (Chavarot et al., 2003; Hamelin et al., 2007), electrochemistry (Ryabov et al., 2005), and photochemistry (Huisman et al., 2016). The optically pure salicyloxazoline coordinating ligand of the complex is often employed as an auxiliary ligand towards the enantioselective synthesis of chiral-at-metal complexes. The approach relies on the leaving propensity of the benzene and the halo ligands for replacement in the octahedral geometry with another achiral ligand system as a strategy in most cases. The choice of the salicyloxazoline ligand is due to its reversible coordination upon acid protonation of its phenolate leaving the stereochemistry of the metal complex preserved (Gong et al., 2013). Thus, the use of the compound is extremely helpful in the synthesis of enantiomerically pure transition-metal complexes with metalcentred chirality (Gong et al., 2009, 2010). The title compound (Fig. 1) features an optically pure bidentate salicyloxazoline and a chloride ligand within a pseudo-octahedral confinement of the three-legged stool while an arene ring occupying the seat of the stool completes the coordination sphere of the ruthenium(II) complex. The bite angle, $86.88 (19)^{\circ}$, of the bidentate ligand is comparable to those of its cymene analogues, 86.68°

Table 1	
Selected torsion angl	es (°).

O2-C1-C2-N1	-16.4(7)	C8-C7-C12-O1	179.3 (6)
O2-C1-C2-C3	103.6 (6)	O2-C6-N1-Ru1	174.7 (4)
C6-C7-C8-C9	179.4 (6)	C3-C2-N1-Ru1	71.5 (7)
C10-C11-C12-O1	-179.3(7)	C7-C6-O2-C1	174.8 (6)

Table	2	

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C8-H8···O2	0.93	2.38	2.725 (9)	102
$C17-H17\cdots Cl1^{i}$	0.93	2.80	3.440 (8)	127
$C18-H18\cdots O1^{i}$	0.93	2.54	3.405 (8)	156

Symmetry code: (i) x + 1, y, z.

(Brunner *et al.*, 1998), 88.29° (Davenport *et al.*, 2004) and mesitylene analogue, 86.91° (Davenport *et al.*, 2004) reported in the literature. The Ru forms bond lengths of 2.4176 (19), 2.063 (5) and 2.083 (6) Å to Cl1, O1 and N1, respectively. The crystal packing features weak $C-H\cdots X$ hydrogen bonding (X = O or Cl) in a manner in which each molecular unit is skewed like a satellite dish. Selected torsion angles are given in Table 1 and details of the hydrogen-bonding geometry in Table 2.

Synthesis and crystallization

 $[\eta^6$ -C₆H₆)₂RuCl₂]₂ (200 mg, 0.40 mmol, 1 eq), (*S*)-isopropyl-2-(2-hydroxyphenyl)oxazoline (174 mg, 0.84 mmol, 2 eq) and K₂CO₃ (122 mg, 0.88 mmol, 2 eq) were dissolved in acetonitrile and refluxed for 3 h with continuous stirring. The reaction mixture was cooled to room temperature and then

Figure 1

ORTEP drawing of the title compound with 50% probability displacement ellipsoids.

Crystal data	
Chemical formula	$[Ru(C_{12}H_{14}NO_2)Cl(C_6H_6)]$
$M_{ m r}$	418.87
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	293
a, b, c (Å)	6.5669 (18), 9.414 (3), 27.570 (9)
$V(A^3)$	1704.5 (9)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	1.09
Crystal size (mm)	$0.47 \times 0.18 \times 0.15$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.662, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9005, 4074, 2937
R _{int}	0.053
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.089, 0.98
No. of reflections	4074
No. of parameters	210
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.66, -0.41
Absolute structure	Flack x determined using 934 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.05 (6)

Computer programs: *APEX2* and *SAINT* (Bruker, 2010), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *Mercury* (Macrae *et al.*, 2020), *publCIF* (Westrip, 2010) and *WinGX* (Farrugia, 2012).

concentrated *in vacuo* under reduced pressure to obtain a single enantiomer of the expected compound. The crude product was purified using column chromatography with silica gel to obtain an orange crystalline compound. Yield, 165 mg (46%, 0.4 mmol). ¹H NMR (DMSO- d_6) δ 7.24 (d, J = 7.5 Hz, 1H), 7.05 (t, J = 7.0 and 7.5 Hz, 1H), 6.62 (d, J = 8.5 Hz, 1H), 6.28 (t, J = 7.5 Hz, 1H), 5.71 (s, 6H), 4.84 (d, J = 9.0 Hz, 1H), 4.59 (dd, J = 3.0 and 8.0 Hz, 1H), 4.41 (t, J = 9.0 Hz, 1H), 2.56 (m, J = 6.0 and 7.5 Hz, 1H), 1.0 (d, J = 7.0 Hz, 3H), 0.68 (d, J = 6.5 Hz, 3H); ¹³C NMR (DMSO- d_6) δ 164.50, 133.10, 128.57, 128.26, 122.00, 112.40, 108.80, 83.33, 74.71, 67.07, 29.23, 19.12, 14.82; FTIR (neat, cm⁻¹) 3067, 1540, 1522, 1489, 1446, 1349, 1255, 1183, 1140, 1069, 826, 763; Elemental analysis calculated for C₁₈H₂₀CINO₂Ru: C, 51.61; H, 4.81; N, 3.34. Found: C, 50.73; H, 4.95; N, 3.64.

Refinement

Details of the crystal data collection, solution and refinement are provided in Table 3.

Acknowledgements

We appreciate Dr B. Vatsha at the Department of Chemical Sciences, University of Johannesburg, for the collection of data.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 120842).

References

- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Brunner, H., Nuber, B. & Prommesberger, M. (1998). Tetrahedron Asymmetry, 9, 3223–3229.
- Chan, H., Ghrayche, J. B., Wei, J. & Renfrew, A. K. (2017). *Eur. J. Inorg. Chem.* pp. 1679–1686.
- Chavarot, M., Ménage, S., Hamelin, O., Charnay, F., Pécaut, J. & Fontecave, M. (2003). *Inorg. Chem.* **42**, 4810–4816.
- Davenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). *Dalton Trans.* pp. 1481–1492.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). *Inorg. Chem.* 49, 7692–7699.

- Gong, L., Mulcahy, S. P., Harms, K. & Meggers, E. (2009). J. Am. Chem. Soc. 131, 9602–9603.
- Gong, L., Wenzel, M. & Meggers, E. (2013). Acc. Chem. Res. 46, 2635–2644.
- Hamelin, O., Rimboud, M., Pécaut, J. & Fontecave, M. (2007). *Inorg. Chem.* 46, 5354–5360.
- Huisman, M., White, J. K., Lewalski, V. G., Podgorski, I., Turro, C. & Kodanko, J. J. (2016). *Chem. Commun.* 52, 12590–12593.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Ryabov, A. D., Le Lagadec, R., Estevez, H., Toscano, R. A., Hernandez, S., Alexandrova, L., Kurova, V. S., Fischer, A., Sirlin, C. & Pfeffer, M. (2005). *Inorg. Chem.* **44**, 1626–1634.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2024). 9, x240720 [https://doi.org/10.1107/S241431462400720X]

(η⁶-Benzene)chlorido[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2yl)phenolato]ruthenium(II)

Monsuru T. Kelani, Alfred Muller and Koop Lammertsma

 $(\eta^{6}$ -Benzene)chlorido[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato]ruthenium(II)

Crystal data

 $[\operatorname{Ru}(\operatorname{C}_{12}\operatorname{H}_{14}\operatorname{NO}_2)\operatorname{Cl}(\operatorname{C}_6\operatorname{H}_6)]$ $M_r = 418.87$ Orthorhombic, $P2_12_12_1$ a = 6.5669 (18) Å b = 9.414 (3) Å c = 27.570 (9) Å V = 1704.5 (9) Å³ Z = 4F(000) = 848

Data collection

Bruker APEXII CCD diffractometer Detector resolution: φ and ω scans pixels mm⁻¹ Bruker APEXII CCD scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.662, T_{\max} = 0.746$ 9005 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.089$ S = 0.984074 reflections 210 parameters 0 restraints Primary atom site location: dual Secondary atom site location: difference Fourier map $D_x = 1.632 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1424 reflections $\theta = 2.6-22.4^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 293 KPlate, orange $0.47 \times 0.18 \times 0.15 \text{ mm}$

4074 independent reflections 2937 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 6$ $k = -12 \rightarrow 12$ $l = -36 \rightarrow 26$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0264P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.66 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.41 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 934 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.05 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure solution and refinement were implemented using WinGX software program (Farrugia, 2012). The highest peak and deepest hole are 0.66 and -0.41 e Å⁻³, respectively, which are 1.13 and 0.83 Å away from the ruthenium center. The refinement of the hydrogen atoms was performed isotropically in their idealized geometry while sitting and riding on their anisotropically refined parent atoms with $U_{iso} = 1.2U_{eq}$ for the aromatic and methine protons, and $U_{iso} = 1.5U_{eq}$ for the methyl protons.

 $U_{\rm iso}*/U_{\rm eq}$ х v ZC1 0.2589 (12) 1.2854 (9) 0.8188(3)0.047(2)H1A 0.379457 1.320678 0.835165 0.057* H1B 0.267789 1.309492 0.784613 0.057* C2 0.2375 (11) 1.1261 (8) 0.8256(2)0.0362(17)H2 0.364617 1.086811 0.838471 0.043* C3 0.1761 (10) 1.0454 (9) 0.7791 (2) 0.0409(19)H3 0.137753 0.049* 0.948622 0.788452 C4 -0.0048(18)1.1122 (8) 0.7531(2)0.0508 (17) H4A 0.030043 1.206761 0.743036 0.076* H4B -0.1192131.115928 0.774774 0.076* H4C -0.0392250.076* 1.056171 0.725238 C5 0.3629(12) 0.7454(3)0.070(3)1.0355(12) H5A 0.333602 0.971968 0.719131 0.105* H5B 0.477509 1.000471 0.763443 0.105* H5C 0.393965 1.128034 0.732786 0.105* C6 -0.0089(13)1.2403 (6) 0.86639 (19) 0.0312 (13) C7 -0.1874(9)1.2786(7) 0.8950(2)0.0316 (16) C8 -0.2721(11)1.4153 (8) 0.8885(2)0.0394(17)H8 -0.2121651.477639 0.866531 0.047* C9 -0.4400(11)1.4573 (9) 0.9137 (3) 0.053(2)Н9 -0.4984660.064* 1.545825 0.908180 C10 -0.5219(15)1.3655 (9) 0.9478(3)0.056(2)H10 -0.6325141.395362 0.966250 0.067* C11 -0.4456(10)1.2333 (9) 0.9552(3)0.047(2)H11 -0.5064471.174317 0.978042 0.057* C12 -0.2755(10)0.9288(2)0.0319 (16) 1.1833 (8) C13 0.2044 (11) 0.9128 (8) 0.9641(2)0.0424 (19) H13 0.979015 0.987744 0.051* 0.238607 0.0350 (12) C14 0.8234(7)0.9705(2)0.042(2)0.998837 0.050* H14 -0.0414860.830265 C15 -0.0200(14)0.7245(7)0.9352(2)0.0456 (18) H15 -0.1302350.664262 0.940233 0.055* C16 0.0933(11)0.7167 (8) 0.8916(3)0.047(2)H16 0.654450 0.057* 0.052812 0.867215

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C17	0.2667 (11)	0.8025 (8)	0.8847 (3)	0.0443 (19)	
H17	0.343741	0.794385	0.856557	0.053*	
C18	0.3229 (10)	0.9013 (8)	0.9212 (3)	0.043 (2)	
H18	0.437009	0.958522	0.916953	0.052*	
N1	0.0747 (7)	1.1175 (6)	0.86312 (18)	0.0311 (14)	
01	-0.2134 (7)	1.0558 (5)	0.93758 (15)	0.0381 (11)	
O2	0.0756 (7)	1.3444 (5)	0.84022 (17)	0.0456 (14)	
Cl1	-0.2594 (3)	0.8953 (2)	0.84198 (6)	0.0507 (5)	
Ru1	0.00224 (9)	0.93480 (5)	0.90217 (2)	0.02858 (14)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.044 (5)	0.057 (5)	0.040 (4)	-0.015 (4)	0.012 (4)	0.001 (4)
C2	0.027 (4)	0.054 (5)	0.027 (3)	0.001 (4)	0.008 (3)	0.000 (3)
C3	0.040 (4)	0.047 (5)	0.036 (4)	0.006 (4)	0.010 (3)	-0.003 (4)
C4	0.052 (4)	0.061 (5)	0.039 (3)	-0.005 (8)	-0.013 (4)	-0.001 (3)
C5	0.061 (6)	0.106 (9)	0.044 (5)	0.030 (6)	0.012 (4)	-0.004(5)
C6	0.041 (4)	0.028 (3)	0.025 (3)	-0.010 (5)	-0.001 (4)	-0.001 (2)
C7	0.027 (4)	0.037 (4)	0.030 (4)	0.000 (3)	0.000 (3)	-0.012 (3)
C8	0.045 (4)	0.038 (4)	0.036 (4)	0.003 (4)	-0.008 (3)	-0.004 (3)
С9	0.054 (6)	0.048 (5)	0.058 (5)	0.017 (4)	-0.015 (4)	-0.021 (4)
C10	0.045 (5)	0.066 (5)	0.055 (4)	0.011 (6)	0.008 (5)	-0.026 (4)
C11	0.043 (6)	0.049 (5)	0.051 (4)	0.002 (4)	0.014 (3)	-0.017 (4)
C12	0.029 (4)	0.038 (4)	0.029 (3)	-0.001 (3)	0.003 (3)	-0.013 (3)
C13	0.040 (4)	0.047 (5)	0.040 (4)	-0.002 (4)	-0.014 (3)	0.008 (4)
C14	0.050 (6)	0.041 (4)	0.035 (3)	-0.003 (4)	0.007 (4)	0.012 (3)
C15	0.046 (5)	0.035 (4)	0.056 (4)	-0.010 (5)	0.008 (5)	0.013 (3)
C16	0.052 (5)	0.035 (4)	0.056 (5)	0.001 (4)	0.001 (4)	-0.003 (4)
C17	0.029 (4)	0.045 (5)	0.059 (5)	0.008 (4)	0.009 (4)	0.001 (4)
C18	0.027 (4)	0.044 (5)	0.059 (5)	0.001 (3)	-0.004 (3)	0.010 (4)
N1	0.019 (3)	0.047 (4)	0.028 (3)	-0.008(3)	0.005 (2)	0.001 (3)
01	0.039 (3)	0.037 (3)	0.039 (2)	0.001 (3)	0.017 (2)	-0.002(2)
02	0.049 (3)	0.043 (3)	0.046 (3)	-0.007(2)	0.012 (2)	0.008 (2)
Cl1	0.0276 (10)	0.0772 (16)	0.0475 (10)	-0.0096 (10)	-0.0033 (8)	-0.0106 (10)
Ru1	0.0237 (2)	0.0325 (2)	0.0295 (2)	-0.0020(4)	0.0034 (3)	-0.0008(2)

Geometric parameters (Å, °)

C1—O2	1.452 (8)	C9—C10	1.386 (11)
C1—C2	1.519 (10)	С9—Н9	0.9300
C1—H1A	0.9700	C10—C11	1.357 (11)
C1—H1B	0.9700	C10—H10	0.9300
C2—N1	1.490 (7)	C11—C12	1.414 (9)
С2—С3	1.542 (9)	C11—H11	0.9300
С2—Н2	0.9800	C12—O1	1.291 (8)
C3—C4	1.523 (12)	C13—C14	1.406 (9)
C3—C5	1.541 (9)	C13—C18	1.420 (9)

С3—Н3	0.9800	C13—H13	0.9300
C4—H4A	0.9600	C14—C15	1.396 (9)
C4—H4B	0.9600	C14—H14	0.9300
C4—H4C	0.9600	C15—C16	1.416 (10)
С5—Н5А	0.9600	C15—H15	0.9300
C5—H5B	0.9600	C16—C17	1,409 (10)
С5—Н5С	0.9600	C16—H16	0.9300
C6—N1	1.282 (8)	C17—C18	1.418 (10)
C602	1.338 (7)	C17—H17	0.9300
C6-C7	1.658(1) 1 458(10)	C18—H18	0.9300
C7 - C8	1 413 (9)	N1—Ru1	2 084 (6)
C7—C12	1.113(9) 1 418(9)	O1—Ru1	2.063(5)
C8 - C9	1 363 (9)	Cl1—Ru1	2.005(0) 2 4176(19)
C8—H8	0.9300	en kui	2.4170 (17)
	0.9500		
$0^{2}-C^{1}-C^{2}$	104 5 (6)	C8—C9—C10	118 6 (8)
$\Omega^2 - C1 - H1A$	110.9	C8—C9—H9	120.7
$C_2 = C_1 = H_1 A$	110.9	C10-C9-H9	120.7
$O^2 - C^1 - H^1B$	110.9	$C_{11} - C_{10} - C_{9}$	120.7 122.0(8)
$C_2 = C_1 = H_1B$	110.9	$C_{11} - C_{10} - H_{10}$	119.0
H_{1A} $-C_{1}$ H_{1B}	108.9	C9-C10-H10	119.0
N1 - C2 - C1	101.9 (6)	C_{10} C_{11} C_{12}	121 4 (8)
N1 - C2 - C3	101.9(0) 111.3(5)	C10-C11-H11	119.3
C1 - C2 - C3	114.1 (6)	C12—C11—H11	119.3
N1_C2_H2	109.8	01-012 -011	117.5 117.5(7)
C1 - C2 - H2	109.8	01 - C12 - C7	117.5(7) 125.7(6)
C_{3} C_{2} H_{2}	109.8	$C_{11} - C_{12} - C_{7}$	125.7(0) 116.7(7)
$C_{4} - C_{3} - C_{5}$	111.3 (6)	C14 - C13 - C18	110.7(7)
C4 - C3 - C2	113.0 (6)	$C_{14} = C_{13} = C_{10}$	120.2
$C_{1}^{-} C_{2}^{-} C_{2}^{-} C_{2}^{-}$	108.8 (6)	C18 - C13 - H13	120.2
C_{4} C_{3} H_{3}	107.9	C_{15} C_{14} C_{13}	120.2 121.0(7)
C_{5} C_{3} H_{3}	107.9	C15 - C14 - H14	119.5
C_{2} C_{3} H_{3}	107.9	C13 - C14 - H14	119.5
$C_3 - C_4 - H_4 A$	109.5	C14 - C15 - C16	119.5 (7)
$C_3 - C_4 - H_4B$	109.5	C14 - C15 - H15	120.3
H4A - C4 - H4B	109.5	C16-C15-H15	120.3
$C_3 - C_4 - H_4C$	109.5	C17 - C16 - C15	120.5 120.6(7)
H4A - C4 - H4C	109.5	C17 - C16 - H16	119.7
H4B-C4-H4C	109.5	C15-C16-H16	119.7
C3-C5-H5A	109.5	C16-C17-C18	119.5 (7)
C3-C5-H5B	109.5	C16-C17-H17	120.3
H5A—C5—H5B	109.5	C18—C17—H17	120.3
C3-C5-H5C	109.5	C17 - C18 - C13	119.8 (7)
H5A—C5—H5C	109.5	C17—C18—H18	120.1
H5B—C5—H5C	109.5	C13—C18—H18	120.1
N1-C6-O2	116.4 (7)	C6—N1—C2	107.9 (6)
N1—C6—C7	127.3 (6)	C6—N1—Ru1	127.6 (4)
O2—C6—C7	116.3 (6)	C2—N1—Ru1	124.5 (5)
	、 /		- \- /

·)))
L) ()
-) -)
5)
')
Ð
, +

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A
С8—Н8…О2	0.93	2.38	2.725 (9)	102
C17—H17···Cl1 ⁱ	0.93	2.80	3.440 (8)	127
C18—H18…O1 ⁱ	0.93	2.54	3.405 (8)	156

Symmetry code: (i) x+1, y, z.