metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene](1-ethyl-4-iso­butyl-1,2,4-triazol-5-yl­­idene)rhodium(I)

crossmark logo

aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 15 July 2024; accepted 17 July 2024; online 23 July 2024)

A new neutral triazole-based N-heterocyclic carbene rhodium(I) complex [RhCl(C8H12)(C8H15N3)], has been synthesized and structurally characterized. The complex crystallizes with two mol­ecules in the asymmetric unit. The central rhodium(I) atom has a distorted square-planar coordination environment, formed by a cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene (NHC) ligand, and a chlorido ligand. The bond lengths are unexceptional. A weak inter­molecular non-standard hydrogen-bonding inter­action exists between the chlorido and NHC ligands.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Numerous and ever-increasing applications of N-heterocyclic carbenes (NHCs) as supporting ligands in late transition-metal catalysis have been reported (Diez-González et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]; Cazin, 2013[Cazin, C. S. J. (2013). Dalton Trans. 42, 7254.]; Rovis & Nolan, 2013[Rovis, T. & Nolan, S. (2013). Synlett, 24, 1188-1189.]; Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). Their catalytic activity in the transfer hydrogenation of ketones and imines has also been studied and reported (Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]). The NHC ligands can be tuned sterically and electronically by having different substituents on the nitro­gen atoms (Diez-González & Nolan, 2007[Díez-González, S. & Nolan, S. P. (2007). Coord. Chem. Rev. 251, 874-883.]; Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Though many imidazole- and tri­azole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin, 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]; Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.],b[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.]; Rood et al., 2021[Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.]; Rushlow et al., 2021[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.]; Newman et al., 2021[Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.]; Castaldi et al., 2021[Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.]; Maynard et al., 2023[Maynard, A., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230903.]; Lerch et al., 2024[Lerch, G. L., Gau, M., Albert, D. R. & Rajaseelan, E. (2024). IUCrData, 9, x240060.]), new complexes with different substituents (‘wing tips’) on NHC ligands are being synthesized to study their effects in the catalytic properties of these complexes.

The compound [RhCl(C8H12)(C8H15N3)] (3), as illustrated in Fig. 1[link], crystallizes in the triclinic space group P[\overline{1}] with two mol­ecules in the asymmetric unit. No solvent mol­ecules were found in the structure. The coordination sphere around the RhI ion is formed by the bidentate COD, NHC, and chlorido ligands, resulting in a distorted square-planar shape. The carbene atom, C1, deviates from the expected sp2 hybridization in that the N1—C1—N3 bond angle in the triazole-based carbene is 102.77 (17)° [N1′—C1′—N3′ is 102.45 (16)°]. Other selected bond lengths and angles in the structure are: Rh1—C1(NHC) = 2.020 (2) Å, Rh1′—C1′(NHC) = 2.012 (2) Å, Rh1—Cl1 = 2.3846 (5) Å, Rh1′—Cl1′ = 2.3887 (5) Å, C1—Rh1—Cl1 is 88.36 (5)°, and C1′—Rh1′—Cl1′is 88.57 (6)°. The two substit­uent ‘wing tips’ in the NHC (N1-ethyl and N3-isobut­yl) are oriented in a syn arrangement with respect to one-another. The ethyl and isobutyl `wingtips' are both oriented away from the COD ring as illustrated in Fig. 2[link]. The packing, as illus­trated in Fig. 3[link], is consolidated through weak non-standard hydrogen-bonding inter­action between the NHC and chlorido ligands of adjacent mol­ecules. The non-standard hydrogen-bonding inter­actions are summarized in Table 1[link] and shown as dotted green lines in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2′—H2′⋯Cl1i 0.95 2.62 3.502 (2) 155
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
Asymmetric unit of the title compound (3) showing the two mol­ecular units. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View of one mol­ecule of the title compound (3) showing the ethyl and isobutyl wingtips oriented on the same side of the NHC ring and away from the COD ligand.
[Figure 3]
Figure 3
Crystal packing diagram of the title compound (3) viewed along the a axis. C—H⋯Cl non-standard hydrogen-bonding inter­actions are shown as dotted green lines.

Synthesis and crystallization

1-Ethyl-1,2,4-triazole (1) was purchased from Matrix Scientific. All other compounds used in the syntheses, detailed in Fig. 4[link], were obtained from Sigma-Aldrich and Strem and used as received; all syntheses were performed under a nitro­gen atmosphere. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz (operating at 100 MHz for 13C and 162 MHz for 31P) Varian spectrometer and referenced to the residual solvent peak (δ in p.p.m.). The title compound (3) was crystallized by slow diffusion of pentane into a CH2Cl­2 solution.

[Figure 4]
Figure 4
Reaction scheme for the synthesis of the title compound (3).

1-Ethyl-4-isobutyl-1,2,4-triazolium bromide (2): 1-Ethyl-1,2,4-triazole (1) (1.020 g, 10.50 mmol) and excess 1-bromo-2-methyl­propane (5.436 g, 39.67 mmol) were added to toluene (15 ml), and the mixture was refluxed in the dark for 48 h. After the mixture was cooled, the white solid was filtered, washed with ether, and dried under vacuum. Yield: 0.625 g (25.4%). 1H NMR: δ 11.71 (s, 1 H, N—C5H—N), 8.62 (s, 1 H, N—C3H—N), 4.90 (q, 2 H, N—CH2 of eth­yl), 4.38 (d, 2 H, N—CH­2 of isobut­yl), 2.32 (m, 1 H, CH of isobut­yl), 1.64 (t, 3H, CH3 of eth­yl), 1.03 (d, 6 H, CH3 of isobut­yl). 13C NMR: δ 143.49 (N—C5—N), 142.66 (N—C3—N), 55.46 (N—CH2 of isobut­yl), 48.50 (N—CH2 of eth­yl), 29.31 (CH of isobut­yl), 19.49 (CH­3 of isobut­yl), 14.18 (CH3 of eth­yl).

Chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene](1-ethyl-4-iso­butyl-1,2,4-triazol-5-yl­idene)rhodium(I) (3): Triazolium bromide (2) (0.095 g, 0.406 mmol) and Ag2O (0.047 g, 0.203 mmol) were stirred at room temperature in the dark for 1 h in CH2Cl2 (10 ml). The mixture was then filtered through Celite into [Rh(cod)Cl]2 (0.100 g, 0.203 mmol), and stirred again in the dark for 1.5 h. The resulting solution was filtered through Celite and the solvent was removed under reduced pressure in a rotary evaporator. The yellow solid product (3) was dried under vacuum. Yield: 0.149 g (92%). 1H NMR: δ 7.82 (s, 1 H, N—C3H—N), 4.74 (q, 2 H, N—CH2 of eth­yl), 4.66 (d, 2 H, N—CH2 of isobut­yl), 4.30 (m, 2 H, CH of COD), 4.20 (m, 2H, CH of COD), 3.37, 3.24 (m, 4 H, CH2 of COD), 2.60, 2.46 (m, 4 H, CH2 of COD), 2.32 (m, 1 H, CH of isobut­yl), 1.59 (t, 3 H, CH3 of eth­yl), 1.08 (d, 6 H, CH3 of isobut­yl). 13C NMR: δ 184.95 (d, Rh—C, JC—Rh = 50.9 Hz), 142.29 (N—C3H—N), 99.43,99.36, 99.13, 99.06 (CH of COD), 56.21 (N—CH2 of isobut­yl), 48.01 (N—CH2 of eth­yl), 47.91, 33.29,32.45,30.80,29.30 (CH2 of COD), 29.13 (CH of isobut­yl), 20.02 (CH­3 of isobut­yl), 15.36 (CH3 of eth­yl).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [RhCl(C8H12)(C8H15N3)]
Mr 399.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.6253 (1), 13.6771 (2), 13.7938 (2)
α, β, γ (°) 76.410 (1), 83.455 (1), 80.345 (1)
V3) 1734.78 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.14
Crystal size (mm) 0.30 × 0.23 × 0.15
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England])
Tmin, Tmax 0.770, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 52942, 8619, 7885
Rint 0.037
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.03
No. of reflections 8619
No. of parameters 385
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −0.50
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I) top
Crystal data top
[RhCl(C8H12)(C8H15N3)]Z = 4
Mr = 399.76F(000) = 824
Triclinic, P1Dx = 1.531 Mg m3
a = 9.6253 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6771 (2) ÅCell parameters from 36515 reflections
c = 13.7938 (2) Åθ = 2.0–28.3°
α = 76.410 (1)°µ = 1.14 mm1
β = 83.455 (1)°T = 100 K
γ = 80.345 (1)°Block, yellow
V = 1734.78 (4) Å30.3 × 0.23 × 0.15 mm
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
7885 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.037
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2024)
h = 1212
Tmin = 0.770, Tmax = 1.000k = 1818
52942 measured reflectionsl = 1718
8619 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0321P)2 + 2.0009P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8619 reflectionsΔρmax = 1.02 e Å3
385 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.35791 (2)0.31385 (2)0.72501 (2)0.01343 (5)
Cl10.46921 (5)0.44263 (3)0.76187 (4)0.01601 (9)
N10.63831 (18)0.25377 (13)0.61135 (13)0.0179 (3)
N20.76467 (19)0.18859 (15)0.61666 (14)0.0223 (4)
N30.62725 (18)0.16069 (13)0.75695 (13)0.0163 (3)
C10.5521 (2)0.23940 (15)0.69543 (15)0.0154 (4)
C20.7527 (2)0.13252 (17)0.70700 (16)0.0212 (4)
H20.8228450.0786930.7346100.025*
C30.6158 (2)0.33469 (17)0.52183 (16)0.0214 (4)
H3A0.5143870.3636750.5218820.026*
H3B0.6413270.3056730.4617530.026*
C40.7029 (3)0.41866 (19)0.51641 (18)0.0284 (5)
H4A0.6817580.4727730.4571570.043*
H4B0.8036670.3911290.5119480.043*
H4C0.6797460.4463780.5766070.043*
C50.5869 (2)0.11712 (16)0.86246 (15)0.0184 (4)
H5A0.5791280.0443570.8704100.022*
H5B0.4931440.1523590.8820810.022*
C60.6947 (2)0.12717 (16)0.93138 (15)0.0183 (4)
H60.7890220.0923370.9098050.022*
C70.7068 (2)0.23813 (17)0.92465 (17)0.0239 (4)
H7A0.7358650.2699800.8556000.036*
H7B0.7773140.2421370.9689700.036*
H7C0.6149820.2737250.9450430.036*
C80.6531 (3)0.07327 (18)1.03807 (16)0.0255 (5)
H8A0.5593430.1049921.0597980.038*
H8B0.7223720.0787701.0826340.038*
H8C0.6508000.0013931.0403470.038*
C90.2598 (2)0.18390 (16)0.73460 (17)0.0211 (4)
H90.3260410.1183400.7458350.025*
C100.2672 (2)0.24083 (17)0.63539 (17)0.0213 (4)
H100.3372830.2078780.5891570.026*
C110.1444 (2)0.31046 (19)0.58410 (18)0.0268 (5)
H11A0.0811330.2684280.5661910.032*
H11B0.1813540.3530980.5212530.032*
C120.0577 (2)0.38023 (18)0.64893 (18)0.0249 (5)
H12A0.0129580.4428010.6047550.030*
H12B0.0186450.3451440.6893580.030*
C130.1475 (2)0.40917 (16)0.71818 (17)0.0200 (4)
H130.1505990.4838000.7061920.024*
C140.1654 (2)0.35721 (17)0.81537 (16)0.0201 (4)
H140.1784210.4012990.8611330.024*
C150.1063 (2)0.26155 (18)0.86783 (18)0.0268 (5)
H15A0.0045250.2793330.8869380.032*
H15B0.1543450.2313830.9300270.032*
C160.1241 (2)0.18177 (17)0.80330 (19)0.0260 (5)
H16A0.1250680.1132870.8476100.031*
H16B0.0421640.1947520.7623030.031*
Rh1'0.07480 (2)0.19144 (2)0.24861 (2)0.01290 (5)
Cl1'0.24607 (5)0.13510 (4)0.12636 (3)0.01603 (9)
N1'0.32141 (18)0.18781 (13)0.36507 (13)0.0163 (3)
N2'0.42244 (19)0.24024 (14)0.38413 (14)0.0199 (4)
N3'0.27156 (18)0.33698 (13)0.27928 (13)0.0161 (3)
C1'0.2285 (2)0.24327 (15)0.30092 (14)0.0146 (4)
C2'0.3879 (2)0.33103 (16)0.33006 (16)0.0199 (4)
H2'0.4375030.3864810.3262620.024*
C3'0.3287 (2)0.07959 (16)0.40976 (16)0.0206 (4)
H3'A0.2416910.0557640.3980810.025*
H3'B0.3336580.0683640.4829200.025*
C4'0.4562 (3)0.01840 (17)0.36624 (19)0.0280 (5)
H4'A0.4494600.0270660.2942820.042*
H4'B0.4593120.0536590.3989990.042*
H4'C0.5424370.0421900.3772720.042*
C5'0.2110 (2)0.42804 (15)0.20818 (16)0.0191 (4)
H5'A0.2516950.4873500.2160000.023*
H5'B0.1077380.4409690.2247270.023*
C6'0.2383 (2)0.41853 (16)0.09956 (16)0.0212 (4)
H6'0.1842370.3658420.0894190.025*
C7'0.3940 (3)0.3873 (2)0.07214 (18)0.0317 (5)
H7'A0.4490990.4350150.0876510.048*
H7'B0.4085730.3881730.0004830.048*
H7'C0.4247800.3186090.1105800.048*
C8'0.1823 (3)0.52123 (18)0.03371 (19)0.0342 (6)
H8'A0.0815810.5392510.0524920.051*
H8'B0.1950750.5165510.0366480.051*
H8'C0.2344110.5735810.0431540.051*
C9'0.0801 (2)0.28443 (15)0.32074 (15)0.0169 (4)
H9'0.0418600.3369340.3454700.020*
C10'0.0575 (2)0.18603 (15)0.38251 (15)0.0174 (4)
H10'0.0058040.1821070.4425220.021*
C11'0.1593 (2)0.10822 (17)0.39879 (17)0.0231 (4)
H11C0.2567130.1444880.3902770.028*
H11D0.1565440.0673890.4682550.028*
C12'0.1232 (2)0.03646 (17)0.32576 (18)0.0243 (5)
H12C0.0553710.0228840.3554910.029*
H12D0.2102860.0110850.3167280.029*
C13'0.0602 (2)0.08679 (16)0.22444 (16)0.0196 (4)
H13'0.0126850.0381130.1828060.023*
C14'0.1080 (2)0.18225 (17)0.16998 (16)0.0205 (4)
H14'0.0880140.1904470.0959860.025*
C15'0.2389 (2)0.25045 (18)0.20069 (18)0.0241 (5)
H15C0.3044850.2081300.2454770.029*
H15D0.2879810.2874500.1404980.029*
C16'0.2006 (2)0.32711 (16)0.25459 (16)0.0216 (4)
H16C0.1746140.3869870.2040440.026*
H16D0.2849020.3505640.2959740.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01197 (8)0.01211 (8)0.01682 (8)0.00219 (5)0.00155 (5)0.00392 (5)
Cl10.0141 (2)0.00959 (19)0.0263 (2)0.00364 (16)0.00341 (17)0.00568 (17)
N10.0145 (8)0.0195 (8)0.0194 (8)0.0007 (7)0.0017 (6)0.0050 (7)
N20.0173 (9)0.0253 (9)0.0232 (9)0.0030 (7)0.0012 (7)0.0080 (7)
N30.0149 (8)0.0149 (8)0.0191 (8)0.0008 (6)0.0019 (6)0.0047 (6)
C10.0161 (9)0.0136 (9)0.0184 (9)0.0043 (7)0.0020 (7)0.0056 (7)
C20.0172 (10)0.0220 (10)0.0247 (11)0.0017 (8)0.0021 (8)0.0088 (8)
C30.0209 (10)0.0252 (11)0.0169 (10)0.0033 (8)0.0027 (8)0.0016 (8)
C40.0312 (12)0.0287 (12)0.0240 (11)0.0109 (10)0.0004 (9)0.0003 (9)
C50.0187 (10)0.0164 (9)0.0191 (10)0.0048 (8)0.0014 (8)0.0007 (7)
C60.0163 (9)0.0174 (9)0.0206 (10)0.0024 (7)0.0025 (8)0.0028 (8)
C70.0254 (11)0.0229 (11)0.0253 (11)0.0077 (9)0.0052 (9)0.0047 (9)
C80.0266 (11)0.0284 (12)0.0209 (10)0.0092 (9)0.0040 (9)0.0007 (9)
C90.0184 (10)0.0169 (10)0.0313 (11)0.0063 (8)0.0030 (8)0.0087 (8)
C100.0181 (10)0.0224 (10)0.0278 (11)0.0034 (8)0.0040 (8)0.0130 (9)
C110.0239 (11)0.0333 (12)0.0267 (11)0.0037 (9)0.0092 (9)0.0104 (10)
C120.0187 (10)0.0267 (11)0.0290 (12)0.0002 (9)0.0076 (9)0.0048 (9)
C130.0128 (9)0.0180 (10)0.0289 (11)0.0019 (7)0.0010 (8)0.0076 (8)
C140.0157 (9)0.0223 (10)0.0229 (10)0.0012 (8)0.0017 (8)0.0088 (8)
C150.0214 (11)0.0294 (12)0.0272 (11)0.0070 (9)0.0043 (9)0.0023 (9)
C160.0199 (10)0.0213 (11)0.0359 (12)0.0078 (8)0.0003 (9)0.0021 (9)
Rh1'0.01226 (8)0.01255 (8)0.01436 (8)0.00244 (5)0.00160 (5)0.00315 (5)
Cl1'0.0145 (2)0.0157 (2)0.0178 (2)0.00018 (16)0.00186 (17)0.00625 (17)
N1'0.0162 (8)0.0159 (8)0.0177 (8)0.0057 (6)0.0035 (6)0.0020 (6)
N2'0.0183 (8)0.0200 (9)0.0233 (9)0.0077 (7)0.0054 (7)0.0035 (7)
N3'0.0165 (8)0.0149 (8)0.0170 (8)0.0050 (6)0.0014 (6)0.0021 (6)
C1'0.0154 (9)0.0139 (9)0.0143 (9)0.0025 (7)0.0012 (7)0.0039 (7)
C2'0.0186 (10)0.0203 (10)0.0225 (10)0.0075 (8)0.0027 (8)0.0039 (8)
C3'0.0223 (10)0.0156 (10)0.0228 (10)0.0061 (8)0.0075 (8)0.0029 (8)
C4'0.0267 (12)0.0189 (11)0.0391 (13)0.0010 (9)0.0125 (10)0.0048 (9)
C5'0.0201 (10)0.0132 (9)0.0229 (10)0.0031 (8)0.0018 (8)0.0013 (8)
C6'0.0290 (11)0.0139 (9)0.0209 (10)0.0038 (8)0.0056 (8)0.0020 (8)
C7'0.0355 (13)0.0318 (13)0.0243 (12)0.0035 (10)0.0067 (10)0.0046 (10)
C8'0.0565 (17)0.0180 (11)0.0267 (12)0.0020 (11)0.0129 (11)0.0002 (9)
C9'0.0163 (9)0.0172 (9)0.0183 (9)0.0035 (7)0.0022 (7)0.0073 (7)
C10'0.0180 (9)0.0182 (10)0.0168 (9)0.0057 (8)0.0018 (7)0.0049 (7)
C11'0.0234 (11)0.0214 (10)0.0260 (11)0.0105 (9)0.0043 (9)0.0062 (8)
C12'0.0209 (10)0.0198 (10)0.0343 (12)0.0083 (8)0.0044 (9)0.0092 (9)
C13'0.0163 (9)0.0211 (10)0.0262 (11)0.0052 (8)0.0025 (8)0.0127 (8)
C14'0.0165 (10)0.0259 (11)0.0227 (10)0.0025 (8)0.0054 (8)0.0111 (8)
C15'0.0163 (10)0.0277 (11)0.0295 (12)0.0024 (8)0.0072 (9)0.0098 (9)
C16'0.0198 (10)0.0196 (10)0.0239 (11)0.0019 (8)0.0004 (8)0.0059 (8)
Geometric parameters (Å, º) top
Rh1—Cl12.3846 (5)Rh1'—Cl1'2.3887 (5)
Rh1—C12.020 (2)Rh1'—C1'2.012 (2)
Rh1—C92.120 (2)Rh1'—C9'2.110 (2)
Rh1—C102.099 (2)Rh1'—C10'2.114 (2)
Rh1—C132.216 (2)Rh1'—C13'2.190 (2)
Rh1—C142.189 (2)Rh1'—C14'2.205 (2)
N1—N21.380 (2)N1'—N2'1.382 (2)
N1—C11.342 (3)N1'—C1'1.340 (3)
N1—C31.461 (3)N1'—C3'1.457 (3)
N2—C21.305 (3)N2'—C2'1.301 (3)
N3—C11.361 (3)N3'—C1'1.369 (2)
N3—C21.364 (3)N3'—C2'1.369 (3)
N3—C51.471 (3)N3'—C5'1.471 (3)
C2—H20.9500C2'—H2'0.9500
C3—H3A0.9900C3'—H3'A0.9900
C3—H3B0.9900C3'—H3'B0.9900
C3—C41.515 (3)C3'—C4'1.514 (3)
C4—H4A0.9800C4'—H4'A0.9800
C4—H4B0.9800C4'—H4'B0.9800
C4—H4C0.9800C4'—H4'C0.9800
C5—H5A0.9900C5'—H5'A0.9900
C5—H5B0.9900C5'—H5'B0.9900
C5—C61.527 (3)C5'—C6'1.524 (3)
C6—H61.0000C6'—H6'1.0000
C6—C71.522 (3)C6'—C7'1.517 (3)
C6—C81.525 (3)C6'—C8'1.532 (3)
C7—H7A0.9800C7'—H7'A0.9800
C7—H7B0.9800C7'—H7'B0.9800
C7—H7C0.9800C7'—H7'C0.9800
C8—H8A0.9800C8'—H8'A0.9800
C8—H8B0.9800C8'—H8'B0.9800
C8—H8C0.9800C8'—H8'C0.9800
C9—H91.0000C9'—H9'1.0000
C9—C101.407 (3)C9'—C10'1.411 (3)
C9—C161.524 (3)C9'—C16'1.511 (3)
C10—H101.0000C10'—H10'1.0000
C10—C111.517 (3)C10'—C11'1.527 (3)
C11—H11A0.9900C11'—H11C0.9900
C11—H11B0.9900C11'—H11D0.9900
C11—C121.540 (3)C11'—C12'1.539 (3)
C12—H12A0.9900C12'—H12C0.9900
C12—H12B0.9900C12'—H12D0.9900
C12—C131.516 (3)C12'—C13'1.513 (3)
C13—H131.0000C13'—H13'1.0000
C13—C141.377 (3)C13'—C14'1.377 (3)
C14—H141.0000C14'—H14'1.0000
C14—C151.507 (3)C14'—C15'1.519 (3)
C15—H15A0.9900C15'—H15C0.9900
C15—H15B0.9900C15'—H15D0.9900
C15—C161.540 (3)C15'—C16'1.532 (3)
C16—H16A0.9900C16'—H16C0.9900
C16—H16B0.9900C16'—H16D0.9900
C1—Rh1—Cl188.36 (5)C1'—Rh1'—Cl1'88.57 (6)
C1—Rh1—C992.59 (8)C1'—Rh1'—C9'90.29 (8)
C1—Rh1—C1091.43 (8)C1'—Rh1'—C10'93.67 (8)
C1—Rh1—C13166.29 (8)C1'—Rh1'—C13'160.34 (8)
C1—Rh1—C14157.23 (8)C1'—Rh1'—C14'163.12 (8)
C9—Rh1—Cl1164.45 (6)C9'—Rh1'—Cl1'161.60 (6)
C9—Rh1—C1389.51 (8)C9'—Rh1'—C10'39.02 (8)
C9—Rh1—C1481.88 (8)C9'—Rh1'—C13'98.19 (8)
C10—Rh1—Cl1156.57 (6)C9'—Rh1'—C14'81.70 (8)
C10—Rh1—C938.96 (9)C10'—Rh1'—Cl1'159.36 (6)
C10—Rh1—C1381.72 (8)C10'—Rh1'—C13'82.22 (8)
C10—Rh1—C1497.75 (8)C10'—Rh1'—C14'89.42 (8)
C13—Rh1—Cl193.23 (6)C13'—Rh1'—Cl1'88.80 (6)
C14—Rh1—Cl191.27 (6)C13'—Rh1'—C14'36.52 (8)
C14—Rh1—C1336.43 (8)C14'—Rh1'—Cl1'94.37 (6)
N2—N1—C3119.00 (17)N2'—N1'—C3'119.18 (16)
C1—N1—N2114.16 (17)C1'—N1'—N2'114.54 (16)
C1—N1—C3126.62 (18)C1'—N1'—C3'126.18 (17)
C2—N2—N1102.62 (17)C2'—N2'—N1'102.61 (16)
C1—N3—C2108.75 (17)C1'—N3'—C5'126.56 (17)
C1—N3—C5126.42 (17)C2'—N3'—C1'108.60 (17)
C2—N3—C5124.68 (18)C2'—N3'—C5'124.71 (17)
N1—C1—Rh1129.32 (15)N1'—C1'—Rh1'125.97 (14)
N1—C1—N3102.77 (17)N1'—C1'—N3'102.45 (16)
N3—C1—Rh1127.91 (14)N3'—C1'—Rh1'131.50 (15)
N2—C2—N3111.69 (19)N2'—C2'—N3'111.78 (18)
N2—C2—H2124.2N2'—C2'—H2'124.1
N3—C2—H2124.2N3'—C2'—H2'124.1
N1—C3—H3A109.2N1'—C3'—H3'A109.3
N1—C3—H3B109.2N1'—C3'—H3'B109.3
N1—C3—C4111.92 (18)N1'—C3'—C4'111.53 (18)
H3A—C3—H3B107.9H3'A—C3'—H3'B108.0
C4—C3—H3A109.2C4'—C3'—H3'A109.3
C4—C3—H3B109.2C4'—C3'—H3'B109.3
C3—C4—H4A109.5C3'—C4'—H4'A109.5
C3—C4—H4B109.5C3'—C4'—H4'B109.5
C3—C4—H4C109.5C3'—C4'—H4'C109.5
H4A—C4—H4B109.5H4'A—C4'—H4'B109.5
H4A—C4—H4C109.5H4'A—C4'—H4'C109.5
H4B—C4—H4C109.5H4'B—C4'—H4'C109.5
N3—C5—H5A109.3N3'—C5'—H5'A108.9
N3—C5—H5B109.3N3'—C5'—H5'B108.9
N3—C5—C6111.69 (16)N3'—C5'—C6'113.21 (17)
H5A—C5—H5B107.9H5'A—C5'—H5'B107.7
C6—C5—H5A109.3C6'—C5'—H5'A108.9
C6—C5—H5B109.3C6'—C5'—H5'B108.9
C5—C6—H6108.3C5'—C6'—H6'108.7
C7—C6—C5111.33 (17)C5'—C6'—C8'107.67 (18)
C7—C6—H6108.3C7'—C6'—C5'111.82 (19)
C7—C6—C8111.59 (18)C7'—C6'—H6'108.7
C8—C6—C5109.01 (17)C7'—C6'—C8'111.1 (2)
C8—C6—H6108.3C8'—C6'—H6'108.7
C6—C7—H7A109.5C6'—C7'—H7'A109.5
C6—C7—H7B109.5C6'—C7'—H7'B109.5
C6—C7—H7C109.5C6'—C7'—H7'C109.5
H7A—C7—H7B109.5H7'A—C7'—H7'B109.5
H7A—C7—H7C109.5H7'A—C7'—H7'C109.5
H7B—C7—H7C109.5H7'B—C7'—H7'C109.5
C6—C8—H8A109.5C6'—C8'—H8'A109.5
C6—C8—H8B109.5C6'—C8'—H8'B109.5
C6—C8—H8C109.5C6'—C8'—H8'C109.5
H8A—C8—H8B109.5H8'A—C8'—H8'B109.5
H8A—C8—H8C109.5H8'A—C8'—H8'C109.5
H8B—C8—H8C109.5H8'B—C8'—H8'C109.5
Rh1—C9—H9114.1Rh1'—C9'—H9'113.9
C10—C9—Rh169.75 (12)C10'—C9'—Rh1'70.67 (12)
C10—C9—H9114.1C10'—C9'—H9'113.9
C10—C9—C16123.7 (2)C10'—C9'—C16'126.31 (19)
C16—C9—Rh1113.47 (15)C16'—C9'—Rh1'109.39 (14)
C16—C9—H9114.1C16'—C9'—H9'113.9
Rh1—C10—H10113.9Rh1'—C10'—H10'113.7
C9—C10—Rh171.29 (12)C9'—C10'—Rh1'70.32 (11)
C9—C10—H10113.9C9'—C10'—H10'113.7
C9—C10—C11125.0 (2)C9'—C10'—C11'124.48 (19)
C11—C10—Rh1110.99 (15)C11'—C10'—Rh1'113.29 (14)
C11—C10—H10113.9C11'—C10'—H10'113.7
C10—C11—H11A108.9C10'—C11'—H11C109.1
C10—C11—H11B108.9C10'—C11'—H11D109.1
C10—C11—C12113.42 (18)C10'—C11'—C12'112.48 (17)
H11A—C11—H11B107.7H11C—C11'—H11D107.8
C12—C11—H11A108.9C12'—C11'—H11C109.1
C12—C11—H11B108.9C12'—C11'—H11D109.1
C11—C12—H12A109.1C11'—C12'—H12C108.9
C11—C12—H12B109.1C11'—C12'—H12D108.9
H12A—C12—H12B107.9H12C—C12'—H12D107.7
C13—C12—C11112.38 (18)C13'—C12'—C11'113.21 (18)
C13—C12—H12A109.1C13'—C12'—H12C108.9
C13—C12—H12B109.1C13'—C12'—H12D108.9
Rh1—C13—H13114.2Rh1'—C13'—H13'114.2
C12—C13—Rh1111.23 (14)C12'—C13'—Rh1'107.61 (14)
C12—C13—H13114.2C12'—C13'—H13'114.2
C14—C13—Rh170.71 (12)C14'—C13'—Rh1'72.31 (12)
C14—C13—C12124.2 (2)C14'—C13'—C12'125.9 (2)
C14—C13—H13114.2C14'—C13'—H13'114.2
Rh1—C14—H14113.9Rh1'—C14'—H14'114.1
C13—C14—Rh172.87 (12)C13'—C14'—Rh1'71.16 (12)
C13—C14—H14113.9C13'—C14'—H14'114.1
C13—C14—C15126.2 (2)C13'—C14'—C15'124.4 (2)
C15—C14—Rh1107.91 (14)C15'—C14'—Rh1'111.23 (14)
C15—C14—H14113.9C15'—C14'—H14'114.1
C14—C15—H15A108.9C14'—C15'—H15C109.4
C14—C15—H15B108.9C14'—C15'—H15D109.4
C14—C15—C16113.18 (19)C14'—C15'—C16'111.22 (17)
H15A—C15—H15B107.8H15C—C15'—H15D108.0
C16—C15—H15A108.9C16'—C15'—H15C109.4
C16—C15—H15B108.9C16'—C15'—H15D109.4
C9—C16—C15112.07 (18)C9'—C16'—C15'113.46 (18)
C9—C16—H16A109.2C9'—C16'—H16C108.9
C9—C16—H16B109.2C9'—C16'—H16D108.9
C15—C16—H16A109.2C15'—C16'—H16C108.9
C15—C16—H16B109.2C15'—C16'—H16D108.9
H16A—C16—H16B107.9H16C—C16'—H16D107.7
Rh1—C9—C10—C11103.0 (2)Rh1'—C9'—C10'—C11'105.3 (2)
Rh1—C9—C16—C1512.6 (2)Rh1'—C9'—C16'—C15'39.8 (2)
Rh1—C10—C11—C1235.7 (2)Rh1'—C10'—C11'—C12'11.5 (2)
Rh1—C13—C14—C15100.0 (2)Rh1'—C13'—C14'—C15'103.3 (2)
Rh1—C14—C15—C1637.0 (2)Rh1'—C14'—C15'—C16'15.3 (2)
N1—N2—C2—N30.6 (2)N1'—N2'—C2'—N3'0.1 (2)
N2—N1—C1—Rh1179.85 (14)N2'—N1'—C1'—Rh1'175.92 (14)
N2—N1—C1—N30.4 (2)N2'—N1'—C1'—N3'1.1 (2)
N2—N1—C3—C472.5 (2)N2'—N1'—C3'—C4'67.9 (2)
N3—C5—C6—C761.0 (2)N3'—C5'—C6'—C7'52.5 (2)
N3—C5—C6—C8175.51 (17)N3'—C5'—C6'—C8'174.82 (19)
C1—N1—N2—C20.6 (2)C1'—N1'—N2'—C2'0.6 (2)
C1—N1—C3—C4101.8 (2)C1'—N1'—C3'—C4'108.2 (2)
C1—N3—C2—N20.5 (3)C1'—N3'—C2'—N2'0.8 (3)
C1—N3—C5—C6118.8 (2)C1'—N3'—C5'—C6'68.1 (3)
C2—N3—C1—Rh1179.44 (14)C2'—N3'—C1'—Rh1'175.68 (16)
C2—N3—C1—N10.1 (2)C2'—N3'—C1'—N1'1.1 (2)
C2—N3—C5—C656.2 (3)C2'—N3'—C5'—C6'107.3 (2)
C3—N1—N2—C2175.61 (19)C3'—N1'—N2'—C2'177.21 (19)
C3—N1—C1—Rh15.6 (3)C3'—N1'—C1'—Rh1'0.4 (3)
C3—N1—C1—N3174.88 (19)C3'—N1'—C1'—N3'177.37 (19)
C5—N3—C1—Rh14.9 (3)C5'—N3'—C1'—Rh1'0.3 (3)
C5—N3—C1—N1175.64 (18)C5'—N3'—C1'—N1'177.04 (18)
C5—N3—C2—N2175.31 (18)C5'—N3'—C2'—N2'176.84 (18)
C9—C10—C11—C1245.6 (3)C9'—C10'—C11'—C12'92.9 (3)
C10—C9—C16—C1593.2 (3)C10'—C9'—C16'—C15'40.0 (3)
C10—C11—C12—C1331.7 (3)C10'—C11'—C12'—C13'32.6 (3)
C11—C12—C13—Rh112.7 (2)C11'—C12'—C13'—Rh1'36.5 (2)
C11—C12—C13—C1493.2 (3)C11'—C12'—C13'—C14'44.0 (3)
C12—C13—C14—Rh1103.1 (2)C12'—C13'—C14'—Rh1'99.3 (2)
C12—C13—C14—C153.1 (3)C12'—C13'—C14'—C15'4.0 (3)
C13—C14—C15—C1644.6 (3)C13'—C14'—C15'—C16'96.4 (2)
C14—C15—C16—C933.5 (3)C14'—C15'—C16'—C9'36.4 (3)
C16—C9—C10—Rh1105.3 (2)C16'—C9'—C10'—Rh1'100.3 (2)
C16—C9—C10—C112.4 (3)C16'—C9'—C10'—C11'5.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.952.623.502 (2)155
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

TL was supported in this work by the Millersville University Neimeyer–Hodgson Research Grant and Student Research Grant

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationCastaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.  Google Scholar
First citationCazin, C. S. J. (2013). Dalton Trans. 42, 7254.  Web of Science CrossRef Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDíez-González, S. & Nolan, S. P. (2007). Coord. Chem. Rev. 251, 874–883.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.  Google Scholar
First citationLerch, G. L., Gau, M., Albert, D. R. & Rajaseelan, E. (2024). IUCrData, 9, x240060.  Google Scholar
First citationMaynard, A., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230903.  Google Scholar
First citationNewman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England  Google Scholar
First citationRood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.  Google Scholar
First citationRovis, T. & Nolan, S. (2013). Synlett, 24, 1188–1189.  Web of Science CrossRef CAS Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146