ISSN 2414-3146

Received 15 July 2024 Accepted 17 July 2024

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; rhodium; Nheterocyclic carbenes; neutral transition-metal complexes.

CCDC reference: 2371669

Structural data: full structural data are available from iucrdata.iucr.org

data reports

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I)

Timothy G. Lerch,^a Michael Gau,^b Daniel R. Albert^a and Edward Rajaseelan^a*

^aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and ^bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. *Correspondence e-mail: edward.rajaseelan@millersville.edu

A new neutral triazole-based N-heterocyclic carbene rhodium(I) complex $[RhCl(C_8H_{12})(C_8H_{15}N_3)]$, has been synthesized and structurally characterized. The complex crystallizes with two molecules in the asymmetric unit. The central rhodium(I) atom has a distorted square-planar coordination environment, formed by a cycloocta-1,5-diene (COD) ligand, an N-heterocyclic carbene (NHC) ligand, and a chlorido ligand. The bond lengths are unexceptional. A weak intermolecular non-standard hydrogen-bonding interaction exists between the chlorido and NHC ligands.

Structure description

Numerous and ever-increasing applications of N-heterocyclic carbenes (NHCs) as supporting ligands in late transition-metal catalysis have been reported (Diez-González *et al.*, 2009; Cazin, 2013; Rovis & Nolan, 2013; Ruff *et al.*, 2016; Zuo *et al.*, 2014). Their catalytic activity in the transfer hydrogenation of ketones and imines has also been studied and reported (Albrecht *et al.*, 2002; Gnanamgari *et al.*, 2007). The NHC ligands can be tuned sterically and electronically by having different substituents on the nitrogen atoms (Diez-González & Nolan, 2007; Gusev, 2009). Though many imidazole- and triazole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Herrmann *et al.*, 2006; Wang & Lin, 1998; Chianese *et al.*, 2004; Nichol *et al.*, 2009, 2010, 2011, 2012; Idrees *et al.*, 2017*a,b*; Rood *et al.*, 2021; Rushlow *et al.*, 2021; Newman *et al.*, 2021; Castaldi *et al.*, 2021; Maynard *et al.*, 2023; Lerch *et al.*, 2024), new complexes with different substituents ('wing tips') on NHC ligands are being synthesized to study their effects in the catalytic properties of these complexes.

The compound $[RhCl(C_8H_{12})(C_8H_{15}N_3)]$ (3), as illustrated in Fig. 1, crystallizes in the triclinic space group $P\overline{1}$ with two molecules in the asymmetric unit. No solvent molecules were found in the structure. The coordination sphere around the Rh^I ion is formed by the bidentate COD, NHC, and chlorido ligands, resulting in a distorted square-planar shape.

Figure 1

Asymmetric unit of the title compound (3) showing the two molecular units. Displacement ellipsoids are drawn at the 50% probability level.

The carbon atom, C1, deviates from the expected sp^2 hybridization in that the N1–C1–N3 bond angle in the triazolebased carbon is 102.77 (17)° [N1'–C1'–N3' is 102.45 (16)°]. Other selected bond lengths and angles in the structure are: Rh1–C1(NHC) = 2.020 (2) Å, Rh1'–C1'(NHC) = 2.012 (2) Å, Rh1–Cl1 = 2.3846 (5) Å, Rh1'–Cl1' = 2.3887 (5) Å, C1–Rh1–Cl1 is 88.36 (5)°, and C1'–Rh1'–Cl1'is 88.57 (6)°. The two substituent 'wing tips'

Figure 2

View of one molecule of the title compound (3) showing the ethyl and isobutyl wingtips oriented on the same side of the NHC ring and away from the COD ligand.

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C2'-H2'\cdots Cl1^i$	0.95	2.62	3.502 (2)	155
C	. 1 . 1	. 1		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

in the NHC (N1-ethyl and N3-isobutyl) are oriented in a *syn* arrangement with respect to one-another. The ethyl and isobutyl 'wingtips' are both oriented away from the COD ring as illustrated in Fig. 2. The packing, as illustrated in Fig. 3, is consolidated through weak non-standard hydrogen-bonding interaction between the NHC and chlorido ligands of adjacent molecules. The non-standard hydrogen-bonding interactions are summarized in Table 1 and shown as dotted green lines in Fig. 3.

Synthesis and crystallization

1-Ethyl-1,2,4-triazole (1) was purchased from Matrix Scientific. All other compounds used in the syntheses, detailed in Fig. 4, were obtained from Sigma-Aldrich and Strem and used as received; all syntheses were performed under a nitrogen atmosphere. NMR spectra were recorded at room temperature in CDCl₃ on a 400 MHz (operating at 100 MHz for ¹³C and 162 MHz for ³¹P) Varian spectrometer and referenced to the residual solvent peak (δ in p.p.m.). The title compound (3) was crystallized by slow diffusion of pentane into a CH₂Cl₂ solution.

1-Ethyl-4-isobutyl-1,2,4-triazolium bromide (2): 1-Ethyl-1,2,4-triazole (1) (1.020 g, 10.50 mmol) and excess 1-bromo-2-methylpropane (5.436 g, 39.67 mmol) were added to toluene

Figure 3

Crystal packing diagram of the title compound (3) viewed along the *a* axis. $C-H\cdots Cl$ non-standard hydrogen-bonding interactions are shown as dotted green lines.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$[RhCl(C_8H_{12})(C_8H_{15}N_3)]$
$M_{\rm r}$	399.76
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	9.6253 (1), 13.6771 (2), 13.7938 (2)
α, β, γ (°)	76.410 (1), 83.455 (1), 80.345 (1)
$V(Å^3)$	1734.78 (4)
Ζ	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	1.14
Crystal size (mm)	$0.30 \times 0.23 \times 0.15$
Data collection	
Diffractometer	Rigaku XtaLAB Synergy-S
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku
	OD, 2024)
T_{\min}, T_{\max}	0.770, 1.000
No. of measured, independent and	52942, 8619, 7885
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.037
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.025, 0.066, 1.03
No. of reflections	8619
No. of parameters	385
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	1.02, -0.50

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

(15 ml), and the mixture was refluxed in the dark for 48 h. After the mixture was cooled, the white solid was filtered, washed with ether, and dried under vacuum. Yield: 0.625 g (25.4%). ¹H NMR: δ 11.71 (*s*, 1 H, N–C5H–N), 8.62 (*s*, 1 H, N–C3H–N), 4.90 (*q*, 2 H, N–CH₂ of ethyl), 4.38 (*d*, 2 H, N–CH₂ of isobutyl), 2.32 (*m*, 1 H, CH of isobutyl), 1.64 (*t*, 3H, CH₃ of ethyl), 1.03 (*d*, 6 H, CH₃ of isobutyl). ¹³C NMR: δ 143.49 (N–C5–N), 142.66 (N–C3–N), 55.46 (N–CH₂ of isobutyl), 48.50 (N–CH₂ of ethyl), 29.31 (CH of isobutyl), 19.49 (CH₃ of isobutyl), 14.18 (CH₃ of ethyl).

Chlorido[(1,2,5,6- η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I) (3): Triazolium bromide (2) (0.095 g, 0.406 mmol) and Ag₂O (0.047 g, 0.203 mmol) were stirred at room temperature in the dark for 1 h in CH₂Cl₂ (10 ml). The mixture was then filtered through Celite into [Rh(cod)Cl]₂ (0.100 g, 0.203 mmol), and stirred again in the dark for 1.5 h. The resulting solution was filtered through Celite and the solvent was removed under reduced pressure in a rotary evaporator. The yellow solid product (3) was dried under vacuum. Yield: 0.149 g (92%). ¹H NMR: δ 7.82 (*s*, 1 H, N–C3H–N), 4.74 (*q*, 2 H, N–CH₂ of ethyl), 4.66 (*d*, 2 H, N–CH₂ of isobutyl), 4.30 (*m*, 2 H, CH of COD), 4.20

Figure 4

Reaction scheme for the synthesis of the title compound (3).

(*m*, 2H, CH of COD), 3.37, 3.24 (*m*, 4 H, CH₂ of COD), 2.60, 2.46 (*m*, 4 H, CH₂ of COD), 2.32 (*m*, 1 H, CH of isobutyl), 1.59 (*t*, 3 H, CH₃ of ethyl), 1.08 (*d*, 6 H, CH₃ of isobutyl). ¹³C NMR: δ 184.95 (*d*, Rh-C, $J_{C-Rh} = 50.9$ Hz), 142.29 (N-C3H-N), 99.43,99.36, 99.13, 99.06 (CH of COD), 56.21 (N-CH₂ of isobutyl), 48.01 (N-CH₂ of ethyl), 47.91, 33.29,32.45,30.80,29.30 (CH₂ of COD), 29.13 (CH of isobutyl), 20.02 (CH₃ of isobutyl), 15.36 (CH₃ of ethyl).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

TL was supported in this work by the Millersville University Neimeyer–Hodgson Research Grant and Student Research Grant

References

- Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). *Organometallics*, **21**, 3596–3604.
- Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). *IUCrData*, 6, x211142.
- Cazin, C. S. J. (2013). Dalton Trans. 42, 7254.
- Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). *Organometallics*, **23**, 2461–2468.
- Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.
- Díez-González, S. & Nolan, S. P. (2007). *Coord. Chem. Rev.* **251**, 874–883.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.
- Gusev, D. G. (2009). Organometallics, 28, 6458-6461.
- Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.
- Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017*b*). *IUCrData*, **2**, x171081.
- Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017*a*). *IUCrData*, **2**, x171411.
- Lerch, G. L., Gau, M., Albert, D. R. & Rajaseelan, E. (2024). *IUCrData*, **9**, x240060.
- Maynard, A., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). *IUCrData*, **8**, x230903.
- Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). *IUCrData*, **6**, x210836.
- Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). *Eur. J. Inorg. Chem.* pp. 4320–4328.
- Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). *Acta Cryst.* E67, m1860–m1861.
- Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). *Acta Cryst.* E66, m1114.
- Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). *Acta Cryst.* E68, m158–m159.
- Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England
- Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). *IUCrData*, **6**, x210597.
- Rovis, T. & Nolan, S. (2013). Synlett, 24, 1188-1189.

- Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, **35**, 327–335.
- Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). *IUCrData*, 6, x210811.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, **33**, 5791–5801.

full crystallographic data

IUCrData (2024). **9**, x240704 [https://doi.org/10.1107/S2414314624007041]

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-yl-idene)rhodium(I)

Z = 4

F(000) = 824 $D_x = 1.531 \text{ Mg m}^{-3}$

 $\theta = 2.0 - 28.3^{\circ}$

 $\mu = 1.14 \text{ mm}^{-1}$

Block, yellow

 $0.3 \times 0.23 \times 0.15 \text{ mm}$

 $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

8619 independent reflections 7885 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.037$

 $h = -12 \rightarrow 12$

 $k = -18 \rightarrow 18$

 $l = -17 \rightarrow 18$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 36515 reflections

Timothy G. Lerch, Michael Gau, Daniel R. Albert and Edward Rajaseelan

 $Chlorido[(1,2,5,6-\eta)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I)$

Crystal data

[RhCl(C₈H₁₂)(C₈H₁₅N₃)] $M_r = 399.76$ Triclinic, $P\overline{1}$ a = 9.6253 (1) Å b = 13.6771 (2) Å c = 13.7938 (2) Å a = 76.410 (1)° $\beta = 83.455$ (1)° $\gamma = 80.345$ (1)° V = 1734.78 (4) Å³

Data collection

Rigaku XtaLAB Synergy-S diffractometer Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2024) $T_{\min} = 0.770, T_{\max} = 1.000$ 52942 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.025$ H-atom parameters constrained $wR(F^2) = 0.066$ $w = 1/[\sigma^2(F_o^2) + (0.0321P)^2 + 2.0009P]$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.038619 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.02 \ {\rm e} \ {\rm \AA}^{-3}$ 385 parameters $\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Rh1	0.35791 (2)	0.31385 (2)	0.72501 (2)	0.01343 (5)	
Cl1	0.46921 (5)	0.44263 (3)	0.76187 (4)	0.01601 (9)	
N1	0.63831 (18)	0.25377 (13)	0.61135 (13)	0.0179 (3)	
N2	0.76467 (19)	0.18859 (15)	0.61666 (14)	0.0223 (4)	
N3	0.62725 (18)	0.16069 (13)	0.75695 (13)	0.0163 (3)	
C1	0.5521 (2)	0.23940 (15)	0.69543 (15)	0.0154 (4)	
C2	0.7527 (2)	0.13252 (17)	0.70700 (16)	0.0212 (4)	
H2	0.822845	0.078693	0.734610	0.025*	
C3	0.6158 (2)	0.33469 (17)	0.52183 (16)	0.0214 (4)	
H3A	0.514387	0.363675	0.521882	0.026*	
H3B	0.641327	0.305673	0.461753	0.026*	
C4	0.7029 (3)	0.41866 (19)	0.51641 (18)	0.0284 (5)	
H4A	0.681758	0.472773	0.457157	0.043*	
H4B	0.803667	0.391129	0.511948	0.043*	
H4C	0.679746	0.446378	0.576607	0.043*	
C5	0.5869 (2)	0.11712 (16)	0.86246 (15)	0.0184 (4)	
H5A	0.579128	0.044357	0.870410	0.022*	
H5B	0.493144	0.152359	0.882081	0.022*	
C6	0.6947 (2)	0.12717 (16)	0.93138 (15)	0.0183 (4)	
H6	0.789022	0.092337	0.909805	0.022*	
C7	0.7068 (2)	0.23813 (17)	0.92465 (17)	0.0239 (4)	
H7A	0.735865	0.269980	0.855600	0.036*	
H7B	0.777314	0.242137	0.968970	0.036*	
H7C	0.614982	0.273725	0.945043	0.036*	
C8	0.6531 (3)	0.07327 (18)	1.03807 (16)	0.0255 (5)	
H8A	0.559343	0.104992	1.059798	0.038*	
H8B	0.722372	0.078770	1.082634	0.038*	
H8C	0.650800	0.001393	1.040347	0.038*	
C9	0.2598 (2)	0.18390 (16)	0.73460 (17)	0.0211 (4)	
Н9	0.326041	0.118340	0.745835	0.025*	
C10	0.2672 (2)	0.24083 (17)	0.63539 (17)	0.0213 (4)	
H10	0.337283	0.207878	0.589157	0.026*	
C11	0.1444 (2)	0.31046 (19)	0.58410 (18)	0.0268 (5)	
H11A	0.081133	0.268428	0.566191	0.032*	
H11B	0.181354	0.353098	0.521253	0.032*	
C12	0.0577 (2)	0.38023 (18)	0.64893 (18)	0.0249 (5)	
H12A	0.012958	0.442801	0.604755	0.030*	
H12B	-0.018645	0.345144	0.689358	0.030*	
C13	0.1475 (2)	0.40917 (16)	0.71818 (17)	0.0200 (4)	
H13	0.150599	0.483800	0.706192	0.024*	
C14	0.1654 (2)	0.35721 (17)	0.81537 (16)	0.0201 (4)	
H14	0.178421	0.401299	0.861133	0.024*	
C15	0.1063 (2)	0.26155 (18)	0.86783 (18)	0.0268 (5)	
H15A	0.004525	0.279333	0.886938	0.032*	
H15B	0.154345	0.231383	0.930027	0.032*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C16	0.1241 (2)	0.18177 (17)	0.80330 (19)	0.0260(5)
H16A	0.125068	0.113287	0.847610	0.031*
H16B	0.042164	0.194752	0.762303	0.031*
Rh1′	0.07480(2)	0.19144 (2)	0.24861 (2)	0.01290 (5)
Cl1′	0.24607 (5)	0.13510 (4)	0.12636 (3)	0.01603 (9)
N1′	0.32141 (18)	0.18781 (13)	0.36507(13)	0.0163 (3)
N2'	0.42244(19)	0 24024 (14)	0.38413(14)	0.0199(4)
N3′	0.27156(18)	0.33698(13)	0.27928(13)	0.0155(1)
C1′	0.2785(2)	0.24327(15)	0.27920(13) 0.30092(14)	0.0101(9) 0.0146(4)
C2'	0.2203(2) 0.3879(2)	0.21027(15) 0.33103(16)	0.33006 (16)	0.0140(1)
С2 H2'	0.437503	0.386481	0.326262	0.024*
C3'	0.3287(2)	0.07959(16)	0.40976 (16)	0.024
U3'A	0.3287 (2)	0.055764	0.308081	0.0200 (4)
H3/R	0.333658	0.068364	0.320001	0.025*
	0.355058	0.008304	0.462720	0.023
	0.4302 (3)	0.01840 (17)	0.30024 (19)	0.0280 (5)
114 A 114/D	0.449400	-0.053650	0.294282	0.042*
	0.439312	-0.055059	0.398999	0.042*
H4°C	0.342437	0.042190	0.377272	0.042^{+}
	0.2110 (2)	0.42804 (15)	0.20818 (10)	0.0191 (4)
	0.251695	0.48/350	0.216000	0.023*
H5 B	0.107738	0.440969	0.224727	0.023*
C6 ⁷	0.2383 (2)	0.41853 (16)	0.09956 (16)	0.0212 (4)
H6'	0.184237	0.365842	0.089419	0.025*
C7'	0.3940 (3)	0.3873 (2)	0.07214 (18)	0.0317 (5)
H7'A	0.449099	0.435015	0.087651	0.048*
H7′B	0.408573	0.388173	0.000483	0.048*
H7′C	0.424780	0.318609	0.110580	0.048*
C8′	0.1823 (3)	0.52123 (18)	0.03371 (19)	0.0342 (6)
H8'A	0.081581	0.539251	0.052492	0.051*
H8′B	0.195075	0.516551	-0.036648	0.051*
H8′C	0.234411	0.573581	0.043154	0.051*
C9′	-0.0801 (2)	0.28443 (15)	0.32074 (15)	0.0169 (4)
H9′	-0.041860	0.336934	0.345470	0.020*
C10′	-0.0575 (2)	0.18603 (15)	0.38251 (15)	0.0174 (4)
H10′	-0.005804	0.182107	0.442522	0.021*
C11′	-0.1593 (2)	0.10822 (17)	0.39879 (17)	0.0231 (4)
H11C	-0.256713	0.144488	0.390277	0.028*
H11D	-0.156544	0.067389	0.468255	0.028*
C12′	-0.1232 (2)	0.03646 (17)	0.32576 (18)	0.0243 (5)
H12C	-0.055371	-0.022884	0.355491	0.029*
H12D	-0.210286	0.011085	0.316728	0.029*
C13′	-0.0602 (2)	0.08679 (16)	0.22444 (16)	0.0196 (4)
H13′	-0.012685	0.038113	0.182806	0.023*
C14′	-0.1080 (2)	0.18225 (17)	0.16998 (16)	0.0205 (4)
H14′	-0.088014	0.190447	0.095986	0.025*
C15′	-0.2389 (2)	0.25045 (18)	0.20069 (18)	0.0241 (5)
H15C	-0.304485	0.208130	0.245477	0.029*
H15D	-0.287981	0.287450	0.140498	0.029*

data reports

C16′	-0.2006 (2)	0.32711 (16)	0.25459 (16)	0.0216 (4)
H16C	-0.174614	0.386987	0.204044	0.026*
H16D	-0.284902	0.350564	0.295974	0.026*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Rh1	0.01197 (8)	0.01211 (8)	0.01682 (8)	-0.00219 (5)	-0.00155 (5)	-0.00392 (5)
Cl1	0.0141 (2)	0.00959 (19)	0.0263 (2)	-0.00364 (16)	-0.00341 (17)	-0.00568 (17)
N1	0.0145 (8)	0.0195 (8)	0.0194 (8)	-0.0007 (7)	-0.0017 (6)	-0.0050 (7)
N2	0.0173 (9)	0.0253 (9)	0.0232 (9)	0.0030 (7)	-0.0012 (7)	-0.0080 (7)
N3	0.0149 (8)	0.0149 (8)	0.0191 (8)	-0.0008 (6)	-0.0019 (6)	-0.0047 (6)
C1	0.0161 (9)	0.0136 (9)	0.0184 (9)	-0.0043 (7)	-0.0020 (7)	-0.0056 (7)
C2	0.0172 (10)	0.0220 (10)	0.0247 (11)	0.0017 (8)	-0.0021 (8)	-0.0088(8)
C3	0.0209 (10)	0.0252 (11)	0.0169 (10)	-0.0033 (8)	-0.0027 (8)	-0.0016 (8)
C4	0.0312 (12)	0.0287 (12)	0.0240 (11)	-0.0109 (10)	-0.0004 (9)	0.0003 (9)
C5	0.0187 (10)	0.0164 (9)	0.0191 (10)	-0.0048 (8)	-0.0014 (8)	-0.0007 (7)
C6	0.0163 (9)	0.0174 (9)	0.0206 (10)	-0.0024 (7)	-0.0025 (8)	-0.0028 (8)
C7	0.0254 (11)	0.0229 (11)	0.0253 (11)	-0.0077 (9)	-0.0052 (9)	-0.0047 (9)
C8	0.0266 (11)	0.0284 (12)	0.0209 (10)	-0.0092 (9)	-0.0040 (9)	0.0007 (9)
C9	0.0184 (10)	0.0169 (10)	0.0313 (11)	-0.0063 (8)	-0.0030 (8)	-0.0087 (8)
C10	0.0181 (10)	0.0224 (10)	0.0278 (11)	-0.0034 (8)	-0.0040 (8)	-0.0130 (9)
C11	0.0239 (11)	0.0333 (12)	0.0267 (11)	-0.0037 (9)	-0.0092 (9)	-0.0104 (10)
C12	0.0187 (10)	0.0267 (11)	0.0290 (12)	-0.0002 (9)	-0.0076 (9)	-0.0048 (9)
C13	0.0128 (9)	0.0180 (10)	0.0289 (11)	0.0019 (7)	-0.0010 (8)	-0.0076 (8)
C14	0.0157 (9)	0.0223 (10)	0.0229 (10)	-0.0012 (8)	0.0017 (8)	-0.0088 (8)
C15	0.0214 (11)	0.0294 (12)	0.0272 (11)	-0.0070 (9)	0.0043 (9)	-0.0023 (9)
C16	0.0199 (10)	0.0213 (11)	0.0359 (12)	-0.0078 (8)	-0.0003 (9)	-0.0021 (9)
Rh1′	0.01226 (8)	0.01255 (8)	0.01436 (8)	-0.00244 (5)	-0.00160 (5)	-0.00315 (5)
Cl1′	0.0145 (2)	0.0157 (2)	0.0178 (2)	-0.00018 (16)	0.00186 (17)	-0.00625 (17)
N1′	0.0162 (8)	0.0159 (8)	0.0177 (8)	-0.0057 (6)	-0.0035 (6)	-0.0020 (6)
N2′	0.0183 (8)	0.0200 (9)	0.0233 (9)	-0.0077 (7)	-0.0054 (7)	-0.0035 (7)
N3′	0.0165 (8)	0.0149 (8)	0.0170 (8)	-0.0050 (6)	-0.0014 (6)	-0.0021 (6)
C1′	0.0154 (9)	0.0139 (9)	0.0143 (9)	-0.0025 (7)	0.0012 (7)	-0.0039 (7)
C2′	0.0186 (10)	0.0203 (10)	0.0225 (10)	-0.0075 (8)	-0.0027 (8)	-0.0039 (8)
C3′	0.0223 (10)	0.0156 (10)	0.0228 (10)	-0.0061 (8)	-0.0075 (8)	0.0029 (8)
C4′	0.0267 (12)	0.0189 (11)	0.0391 (13)	-0.0010 (9)	-0.0125 (10)	-0.0048 (9)
C5′	0.0201 (10)	0.0132 (9)	0.0229 (10)	-0.0031 (8)	-0.0018 (8)	-0.0013 (8)
C6′	0.0290 (11)	0.0139 (9)	0.0209 (10)	-0.0038 (8)	-0.0056 (8)	-0.0020 (8)
C7′	0.0355 (13)	0.0318 (13)	0.0243 (12)	-0.0035 (10)	0.0067 (10)	-0.0046 (10)
C8′	0.0565 (17)	0.0180 (11)	0.0267 (12)	-0.0020 (11)	-0.0129 (11)	0.0002 (9)
C9′	0.0163 (9)	0.0172 (9)	0.0183 (9)	-0.0035 (7)	0.0022 (7)	-0.0073 (7)
C10′	0.0180 (9)	0.0182 (10)	0.0168 (9)	-0.0057 (8)	0.0018 (7)	-0.0049 (7)
C11′	0.0234 (11)	0.0214 (10)	0.0260 (11)	-0.0105 (9)	0.0043 (9)	-0.0062 (8)
C12′	0.0209 (10)	0.0198 (10)	0.0343 (12)	-0.0083 (8)	0.0044 (9)	-0.0092 (9)
C13′	0.0163 (9)	0.0211 (10)	0.0262 (11)	-0.0052 (8)	-0.0025 (8)	-0.0127 (8)
C14′	0.0165 (10)	0.0259 (11)	0.0227 (10)	-0.0025 (8)	-0.0054 (8)	-0.0111 (8)
C15′	0.0163 (10)	0.0277 (11)	0.0295 (12)	0.0024 (8)	-0.0072 (9)	-0.0098 (9)

C16' 0.0198 (10) 0.0196 (10) 0.0239 (11) 0.0019 (8) -0.0004 (8) -0.0059 (8) Geometric parameters $(\hat{A}, ^{0})$ Rh1—C11 2.3846 (5) Rh1'—C1' 2.3887 (5) Rh1—C1 2.020 (2) Rh1'—C1' 2.012 (2) Rh1—C9 2.120 (2) Rh1'—C10' 2.110 (2) Rh1—C10 2.099 (2) Rh1'—C10' 2.114 (2) Rh1—C13 2.216 (2) Rh1'—C13' 2.190 (2) Rh1—C14 2.189 (2) Rh1'—C14' 2.205 (2) N1—N2 1.380 (2) N1'—N2' 1.382 (2) N1—C1 1.342 (3) N1'—C1' 1.340 (3) N1—C2 1.350 (3) N2'—C2' 1.301 (3) N3—C1 1.361 (3) N3'—C1' 1.369 (2) N3—C5 1.471 (3) N3'—C5' 1.471 (3) N3—C5 1.471 (3) N3'—C5' 1.471 (3) C2—H2 0.9500 C2'—H2' 0.9500 C3—H3A 0.9900 C3'—H3'A 0.9900 C3—H3B <t< th=""><th>rts</th></t<>	rts
Geometric parameters (Å, °) Rh1—Cl1 2.3846 (5) Rh1'—Cl1' 2.3887 (5) Rh1—Cl 2.020 (2) Rh1'—Cl' 2.012 (2) Rh1—C9 2.120 (2) Rh1'—C9' 2.110 (2) Rh1—C9 2.120 (2) Rh1'—C1' 2.012 (2) Rh1—C9 2.120 (2) Rh1'—C1' 2.012 (2) Rh1—C10 2.099 (2) Rh1'—C1' 2.012 (2) Rh1—C11 2.099 (2) Rh1'—C1' 2.012 (2) Rh1—C12 2.099 (2) Rh1'—C1' 2.012 (2) Rh1—C13 2.216 (2) Rh1'—C1' 2.012 (2) Rh1—C14 2.189 (2) Rh1'—C13' 2.190 (2) Rh1—C14 2.189 (2) Rh1'—C14' 2.205 (2) N1—N2 1.380 (2) N1'—N2' 1.382 (2) N1—C1 1.342 (3) N1'—C1' 1.340 (3) N1—C2 1.380 (2) N1'—C1' 1.340 (3) N1—C3 1.461 (3) N1'—C3' 1.457 (3) N2—C2 1.305 (3) N3'—C1' 1.369 (2) N3—C1 1.361 (3) N3'—C5' 1.471 (3)	
Rh1—Cl12.3846 (5)Rh1'—Cl1'2.3887 (5)Rh1—Cl2.020 (2)Rh1'—Cl'2.012 (2)Rh1—Cl2.020 (2)Rh1'—Cl'2.012 (2)Rh1—C92.120 (2)Rh1'—C9'2.110 (2)Rh1—C102.099 (2)Rh1'—C10'2.114 (2)Rh1—C132.216 (2)Rh1'—C13'2.190 (2)Rh1—C142.189 (2)Rh1'—C14'2.205 (2)N1—N21.380 (2)N1'—N2'1.382 (2)N1—C11.342 (3)N1'—C1'1.340 (3)N1—C31.461 (3)N1'—C3'1.457 (3)N2—C21.305 (3)N2'—C2'1.301 (3)N3—C11.361 (3)N3'—C1'1.369 (2)N3—C51.471 (3)N3'—C5'1.471 (3)C2—H20.9500C2'—H2'0.9500C3—H3A0.9900C3'—H3'A0.9900C3—C41.515 (3)C3'—C4'1.514 (3)C4—H4A0.9800C4'—H4'A0.9800	
Rh1—C1 $2.020(2)$ $Rh1'$ —C1' $2.012(2)$ Rh1—C9 $2.120(2)$ $Rh1'$ —C9' $2.110(2)$ Rh1—C10 $2.099(2)$ $Rh1'$ —C10' $2.114(2)$ Rh1—C13 $2.216(2)$ $Rh1'$ —C13' $2.190(2)$ Rh1—C14 $2.189(2)$ $Rh1'$ —C14' $2.205(2)$ N1—N2 $1.380(2)$ $N1'$ —N2' $1.382(2)$ N1—C1 $1.342(3)$ $N1'$ —C1' $1.340(3)$ N1—C2 $1.305(3)$ $N2'$ —C2' $1.301(3)$ N3—C1 $1.361(3)$ $N3'$ —C1' $1.369(2)$ N3—C2 $1.364(3)$ $N3'$ —C2' $1.369(3)$ N3—C5 $1.471(3)$ $N3'$ —C5' $1.471(3)$ C2—H2 0.9500 $C2'$ —H2' 0.9500 C3—H3A 0.9900 $C3'$ —H3'A 0.9900 C3—H3A 0.9900 $C3'$ —H3'A 0.9800	
Rh1—C9 $2.120(2)$ $Rh1'$ —C9' $2.110(2)$ Rh1—C10 $2.099(2)$ $Rh1'$ —C10' $2.114(2)$ Rh1—C13 $2.216(2)$ $Rh1'$ —C13' $2.190(2)$ Rh1—C14 $2.189(2)$ $Rh1'$ —C14' $2.205(2)$ N1—N2 $1.380(2)$ $N1'$ —N2' $1.382(2)$ N1—C1 $1.342(3)$ $N1'$ —C1' $1.340(3)$ N1—C3 $1.461(3)$ $N1'$ —C3' $1.457(3)$ N2—C2 $1.305(3)$ $N2'$ —C2' $1.301(3)$ N3—C1 $1.361(3)$ $N3'$ —C1' $1.369(2)$ N3—C5 $1.471(3)$ $N3'$ —C5' $1.471(3)$ C2—H2 0.9500 $C2'$ —H2' 0.9500 C3—H3A 0.9900 $C3'$ —H3'A 0.9900 C3—C4 $1.515(3)$ $C3'$ —C4' $1.514(3)$	
Rh1—C10 $2.099(2)$ $Rh1'$ —C10' $2.114(2)$ Rh1—C13 $2.216(2)$ $Rh1'$ —C13' $2.190(2)$ Rh1—C14 $2.189(2)$ $Rh1'$ —C14' $2.205(2)$ N1—N2 $1.380(2)$ $N1'$ —N2' $1.382(2)$ N1—C1 $1.342(3)$ $N1'$ —C1' $1.340(3)$ N1—C3 $1.461(3)$ $N1'$ —C3' $1.457(3)$ N2—C2 $1.305(3)$ $N2'$ —C2' $1.301(3)$ N3—C1 $1.361(3)$ $N3'$ —C1' $1.369(2)$ N3—C2 $1.364(3)$ $N3'$ —C2' $1.369(3)$ N3—C5 $1.471(3)$ $N3'$ —C5' $1.471(3)$ C2—H2 0.9500 $C2'$ —H2' 0.9500 C3—H3A 0.9900 $C3'$ —H3'A 0.9900 C3—H3B 0.9900 $C3'$ —H3'B 0.9900 C3—C4 $1.515(3)$ $C3'$ —C4' $1.514(3)$	
Rh1—C132.216 (2)Rh1'—C13'2.190 (2)Rh1—C142.189 (2)Rh1'—C14'2.205 (2)N1—N21.380 (2)N1'—N2'1.382 (2)N1—C11.342 (3)N1'—C1'1.340 (3)N1—C31.461 (3)N1'—C3'1.457 (3)N2—C21.305 (3)N2'—C2'1.301 (3)N3—C11.364 (3)N3'—C1'1.369 (2)N3—C21.364 (3)N3'—C2'1.369 (3)N3—C51.471 (3)N3'—C5'1.471 (3)C2—H20.9500C2'—H2'0.9500C3—H3A0.9900C3'—H3'A0.9900C3—C41.515 (3)C3'—C4'1.514 (3)C4—H4A0.9800C4'—H4'A0.9800	
Rh1—C142.189 (2)Rh1'—C14'2.205 (2)N1—N2 $1.380 (2)$ N1'—N2' $1.382 (2)$ N1—C1 $1.342 (3)$ N1'—C1' $1.340 (3)$ N1—C3 $1.461 (3)$ N1'—C3' $1.457 (3)$ N2—C2 $1.305 (3)$ N2'—C2' $1.301 (3)$ N3—C1 $1.361 (3)$ N3'—C1' $1.369 (2)$ N3—C2 $1.364 (3)$ N3'—C2' $1.369 (3)$ N3—C5 $1.471 (3)$ N3'—C5' $1.471 (3)$ C2—H2 0.9500 C2'—H2' 0.9500 C3—H3A 0.9900 C3'—H3'A 0.9900 C3—H3B 0.9900 C3'—H3'B 0.9900 C3—C4 $1.515 (3)$ C3'—C4' $1.514 (3)$ C4—H4A 0.9800 $C4'$ —H4'A 0.9800	
N1-N2 $1.380(2)$ $N1'-N2'$ $1.382(2)$ N1-C1 $1.342(3)$ $N1'-C1'$ $1.340(3)$ N1-C3 $1.461(3)$ $N1'-C3'$ $1.457(3)$ N2-C2 $1.305(3)$ $N2'-C2'$ $1.301(3)$ N3-C1 $1.361(3)$ $N3'-C1'$ $1.369(2)$ N3-C2 $1.364(3)$ $N3'-C2'$ $1.369(3)$ N3-C5 $1.471(3)$ $N3'-C5'$ $1.471(3)$ C2-H2 0.9500 $C2'-H2'$ 0.9500 C3-H3A 0.9900 $C3'-H3'A$ 0.9900 C3-H3B 0.9900 $C3'-H3'B$ 0.9900 C3-C4 $1.515(3)$ $C3'-C4'$ $1.514(3)$ C4-H4A 0.9800 $C4'-H4'A$ 0.9800	
N1C1 1.342 (3) $N1'C1'$ 1.340 (3)N1C3 1.461 (3) $N1'C3'$ 1.457 (3)N2C2 1.305 (3) $N2'C2'$ 1.301 (3)N3C1 1.361 (3) $N3'C1'$ 1.369 (2)N3C2 1.364 (3) $N3'C2'$ 1.369 (3)N3C5 1.471 (3) $N3'C5'$ 1.471 (3)C2H2 0.9500 $C2'-H2'$ 0.9500 C3H3A 0.9900 $C3'-H3'A$ 0.9900 C3H3B 0.9900 $C3'-H3'B$ 0.9900 C3C4 1.515 (3) $C3'-C4'$ 1.514 (3)C4H4A 0.9800 $C4'-H4'A$ 0.9800	
N1-C3 $1.461 (3)$ $N1'-C3'$ $1.457 (3)$ N2-C2 $1.305 (3)$ $N2'-C2'$ $1.301 (3)$ N3-C1 $1.361 (3)$ $N3'-C1'$ $1.369 (2)$ N3-C2 $1.364 (3)$ $N3'-C2'$ $1.369 (3)$ N3-C5 $1.471 (3)$ $N3'-C5'$ $1.471 (3)$ C2-H2 0.9500 $C2'-H2'$ 0.9500 C3-H3A 0.9900 $C3'-H3'A$ 0.9900 C3-H3B 0.9900 $C3'-H3'B$ 0.9900 C3-C4 $1.515 (3)$ $C3'-C4'$ $1.514 (3)$	
N2-C2 $1.305(3)$ N2'-C2' $1.301(3)$ N3-C1 $1.361(3)$ N3'-C1' $1.369(2)$ N3-C2 $1.364(3)$ N3'-C2' $1.369(3)$ N3-C5 $1.471(3)$ N3'-C5' $1.471(3)$ C2-H2 0.9500 C2'-H2' 0.9500 C3-H3A 0.9900 C3'-H3'A 0.9900 C3-H3B 0.9900 C3'-H3'B 0.9900 C3-C4 $1.515(3)$ C3'-C4' $1.514(3)$ C4-H4A 0.9800 C4'-H4'A 0.9800	
N3-C1 $1.361 (3)$ N3'-C1' $1.369 (2)$ N3-C2 $1.364 (3)$ N3'-C2' $1.369 (3)$ N3-C5 $1.471 (3)$ N3'-C5' $1.471 (3)$ C2-H2 0.9500 C2'-H2' 0.9500 C3-H3A 0.9900 C3'-H3'A 0.9900 C3-H3B 0.9900 C3'-H3'B 0.9900 C3-C4 $1.515 (3)$ C3'-C4' $1.514 (3)$ C4-H4A 0.9800 C4'-H4'A 0.9800	
N3—C2 1.364 (3)N3'—C2' 1.369 (3)N3—C5 1.471 (3)N3'—C5' 1.471 (3)C2—H2 0.9500 $C2'$ —H2' 0.9500 C3—H3A 0.9900 $C3'$ —H3'A 0.9900 C3—H3B 0.9900 $C3'$ —H3'B 0.9900 C3—C4 1.515 (3) $C3'$ —C4' 1.514 (3)C4—H4A 0.9800 $C4'$ —H4'A 0.9800	
N3—C5 1.471 (3) N3'—C5' 1.471 (3) C2—H2 0.9500 C2'—H2' 0.9500 C3—H3A 0.9900 C3'—H3'A 0.9900 C3—H3B 0.9900 C3'—H3'B 0.9900 C3—C4 1.515 (3) C3'—C4' 1.514 (3) C4—H4A 0.9800 C4'—H4'A 0.9800	
C2—H2 0.9500 C2'—H2' 0.9500 C3—H3A 0.9900 C3'—H3'A 0.9900 C3—H3B 0.9900 C3'—H3'B 0.9900 C3—C4 1.515 (3) C3'—C4' 1.514 (3) C4—H4A 0.9800 C4'—H4'A 0.9800	
C3—H3A 0.9900 C3'—H3'A 0.9900 C3—H3B 0.9900 C3'—H3'B 0.9900 C3—C4 1.515 (3) C3'—C4' 1.514 (3) C4—H4A 0.9800 C4'—H4'A 0.9800	
C3—H3B 0.9900 C3'—H3'B 0.9900 C3—C4 1.515 (3) C3'—C4' 1.514 (3) C4—H4A 0.9800 C4'—H4'A 0.9800	
C3—C4 1.515 (3) C3'—C4' 1.514 (3) C4—H4A 0.9800 $C4'$ —H4'A 0.9800	
C4-H4A 0.9800 $C4'-H4'A$ 0.9800	
U,2000 UT U,2000 UT U,2000	
C4—H4B 0.9800 C4′—H4′B 0.9800	
C4—H4C 0.9800 C4′—H4′C 0.9800	
C5—H5A 0.9900 C5′—H5′A 0.9900	
C5—H5B 0.9900 C5′—H5′B 0.9900	
C5—C6 1.527 (3) C5′—C6′ 1.524 (3)	
C6—H6 1.0000 C6'—H6' 1.0000	
C6–C7 $1.522(3)$ C6'–C7' $1.517(3)$	
C6-C8 1.525 (3) $C6'-C8'$ 1.532 (3)	
C7—H7A 0.9800 C7′—H7′A 0.9800	
C7—H7B 0.9800 C7′—H7′B 0.9800	
C7—H7C 0.9800 C7'—H7'C 0.9800	
C8—H8A 0.9800 C8′—H8′A 0.9800	
C8—H8B 0.9800 C8′—H8′B 0.9800	
C8—H8C 0.9800 C8'—H8'C 0.9800	
С9—Н9 1.0000 С9′—Н9′ 1.0000	
C9—C10 1.407 (3) C9′—C10′ 1.411 (3)	
C9—C16 $1.524(3)$ C9'—C16' $1.511(3)$	
C10—H10 1.0000 C10′—H10′ 1.0000	
C10—C11 1.517 (3) C10′—C11′ 1.527 (3)	
C11—H11A 0.9900 C11′—H11C 0.9900	
C11—H11B 0.9900 C11′—H11D 0.9900	
C11—C12 1.540 (3) C11′—C12′ 1.539 (3)	
C12—H12A 0.9900 C12′—H12C 0.9900	
C12—H12B 0.9900 C12′—H12D 0.9900	
C12—C13 1.516 (3) C12′—C13′ 1.513 (3)	
C13—H13 1.0000 C13'—H13' 1.0000	

C13—C14	1.377 (3)	C13'—C14'	1.377 (3)
C14—H14	1.0000	C14'—H14'	1.0000
C14—C15	1.507 (3)	C14′—C15′	1.519 (3)
C15—H15A	0.9900	C15′—H15C	0.9900
C15—H15B	0.9900	C15'—H15D	0.9900
C15—C16	1.540 (3)	C15'—C16'	1.532 (3)
С16—Н16А	0.9900	C16'—H16C	0.9900
С16—Н16В	0.9900	C16'—H16D	0.9900
C1—Rh1—Cl1	88.36 (5)	C1'—Rh1'—C11'	88.57 (6)
C1—Rh1—C9	92.59 (8)	C1'—Rh1'—C9'	90.29 (8)
C1—Rh1—C10	91.43 (8)	C1'—Rh1'—C10'	93.67 (8)
C1— $Rh1$ — $C13$	166 29 (8)	C1' - Rh1' - C13'	160 34 (8)
C1—Rh1—C14	157 23 (8)	C1' - Rh1' - C14'	163.12(8)
C9—Rh1—Cl1	164 45 (6)	C9'—Rb1'—C11'	161.60 (6)
C9—Rh1—C13	89 51 (8)	C9' - Rh1' - C10'	39.02 (8)
C9—Rb1—C14	81 88 (8)	C9' = Rh1' = C13'	98 19 (8)
C_{10} Rb1 C_{11}	156 57 (6)	C_{0}^{\prime} Rh1' C_{14}^{\prime}	90.19 (0) 81.70 (8)
C10 Rh1 $C0$	150.57(0)	$C_{10'}$ Ph1' $C_{11'}$	150 36 (6)
C10 Rh1 C12	33.30(3)	C10' = Rh1' = C12'	139.30(0)
C10 Rh1 C13	01.72(0) 07.75(0)	C10' = Rh1' = C13'	82.22 (8)
C10— $K11$ — $C14$	97.75 (8)	C10 - K11 - C14	89.42 (8)
C13— $Kn1$ — $C11$	93.23 (6)	$C13 - K\Pi - C\Pi$	88.80 (6)
CI4—RhI—CII	91.27 (6)	$C13^{\circ}$ $-Kn1^{\circ}$ $-C14^{\circ}$	36.52 (8)
C14—Rh1—C13	36.43 (8)	C14' - Rh1' - C11'	94.37(6)
N2—N1—C3	119.00 (17)	N2'—N1'—C3'	119.18 (16)
C1—N1—N2	114.16 (17)	C1'—N1'—N2'	114.54 (16)
C1—N1—C3	126.62 (18)	C1'—N1'—C3'	126.18 (17)
C2—N2—N1	102.62 (17)	C2'—N2'—N1'	102.61 (16)
C1—N3—C2	108.75 (17)	C1'—N3'—C5'	126.56 (17)
C1—N3—C5	126.42 (17)	C2'—N3'—C1'	108.60 (17)
C2—N3—C5	124.68 (18)	C2'—N3'—C5'	124.71 (17)
N1—C1—Rh1	129.32 (15)	N1'—C1'—Rh1'	125.97 (14)
N1—C1—N3	102.77 (17)	N1'—C1'—N3'	102.45 (16)
N3—C1—Rh1	127.91 (14)	N3'—C1'—Rh1'	131.50 (15)
N2-C2-N3	111.69 (19)	N2'—C2'—N3'	111.78 (18)
N2—C2—H2	124.2	N2'—C2'—H2'	124.1
N3—C2—H2	124.2	N3'—C2'—H2'	124.1
N1—C3—H3A	109.2	N1'—C3'—H3'A	109.3
N1—C3—H3B	109.2	N1′—C3′—H3′B	109.3
N1—C3—C4	111.92 (18)	N1'—C3'—C4'	111.53 (18)
НЗА—СЗ—НЗВ	107.9	H3'A—C3'—H3'B	108.0
С4—С3—НЗА	109.2	C4'—C3'—H3'A	109.3
С4—С3—Н3В	109.2	C4'—C3'—H3'B	109.3
C3—C4—H4A	109.5	C3'—C4'—H4'A	109.5
C3—C4—H4B	109.5	C3'—C4'—H4'B	109.5
C3—C4—H4C	109.5	C3'—C4'—H4'C	109.5
H4A—C4—H4B	109.5	H4'A—C4'—H4'B	109.5
Н4А—С4—Н4С	109.5	H4'A—C4'—H4'C	109.5

H4B—C4—H4C	109.5	H4′B—C4′—H4′C	109.5
N3—C5—H5A	109.3	N3'—C5'—H5'A	108.9
N3—C5—H5B	109.3	N3′—C5′—H5′B	108.9
N3—C5—C6	111.69 (16)	N3′—C5′—C6′	113.21 (17)
H5A—C5—H5B	107.9	Н5'А—С5'—Н5'В	107.7
С6—С5—Н5А	109.3	С6'—С5'—Н5'А	108.9
С6—С5—Н5В	109.3	C6'—C5'—H5'B	108.9
С5—С6—Н6	108.3	С5'—С6'—Н6'	108.7
C7—C6—C5	111.33 (17)	C5'—C6'—C8'	107.67 (18)
С7—С6—Н6	108.3	C7'—C6'—C5'	111.82 (19)
C7—C6—C8	111.59 (18)	С7'—С6'—Н6'	108.7
C8—C6—C5	109.01 (17)	C7'—C6'—C8'	111.1 (2)
С8—С6—Н6	108.3	C8'—C6'—H6'	108.7
С6—С7—Н7А	109.5	С6'—С7'—Н7'А	109.5
С6—С7—Н7В	109.5	С6'—С7'—Н7'В	109.5
С6—С7—Н7С	109.5	С6'—С7'—Н7'С	109.5
H7A—C7—H7B	109.5	H7'A—C7'—H7'B	109.5
H7A—C7—H7C	109.5	H7'A—C7'—H7'C	109.5
H7B—C7—H7C	109.5	Н7′В—С7′—Н7′С	109.5
C6—C8—H8A	109.5	C6'—C8'—H8'A	109.5
C6—C8—H8B	109.5	C6'—C8'—H8'B	109.5
C6—C8—H8C	109.5	C6'—C8'—H8'C	109.5
H8A—C8—H8B	109.5	H8'A—C8'—H8'B	109.5
H8A—C8—H8C	109.5	H8'A—C8'—H8'C	109.5
H8B—C8—H8C	109.5	H8′B—C8′—H8′C	109.5
Rh1—C9—H9	114.1	Rh1'—C9'—H9'	113.9
C10—C9—Rh1	69.75 (12)	C10'—C9'—Rh1'	70.67 (12)
С10—С9—Н9	114.1	С10'—С9'—Н9'	113.9
C10—C9—C16	123.7 (2)	C10′—C9′—C16′	126.31 (19)
C16—C9—Rh1	113.47 (15)	C16'—C9'—Rh1'	109.39 (14)
С16—С9—Н9	114.1	С16'—С9'—Н9'	113.9
Rh1—C10—H10	113.9	Rh1'—C10'—H10'	113.7
C9—C10—Rh1	71.29 (12)	C9'—C10'—Rh1'	70.32 (11)
С9—С10—Н10	113.9	C9'—C10'—H10'	113.7
C9—C10—C11	125.0 (2)	C9'—C10'—C11'	124.48 (19)
C11—C10—Rh1	110.99 (15)	C11'—C10'—Rh1'	113.29 (14)
C11—C10—H10	113.9	C11'—C10'—H10'	113.7
C10—C11—H11A	108.9	C10′—C11′—H11C	109.1
C10—C11—H11B	108.9	C10′—C11′—H11D	109.1
C10—C11—C12	113.42 (18)	C10′—C11′—C12′	112.48 (17)
H11A—C11—H11B	107.7	H11C—C11′—H11D	107.8
C12—C11—H11A	108.9	C12'—C11'—H11C	109.1
C12—C11—H11B	108.9	C12'—C11'—H11D	109.1
C11—C12—H12A	109.1	C11'—C12'—H12C	108.9
C11—C12—H12B	109.1	C11'-C12'-H12D	108.9
H12A—C12—H12B	107.9	H12C—C12′—H12D	107.7
C13—C12—C11	112.38 (18)	C13'-C12'-C11'	113.21 (18)
C13—C12—H12A	109.1	C13'—C12'—H12C	108.9

C13—C12—H12B	109.1	C13'—C12'—H12D	108.9
Rh1—C13—H13	114.2	Rh1'-C13'-H13'	114.2
C12—C13—Rh1	111.23 (14)	C12'—C13'—Rh1'	107.61 (14)
C12—C13—H13	114.2	C12'—C13'—H13'	114.2
C14—C13—Rh1	70.71 (12)	C14'—C13'—Rh1'	72.31 (12)
C14—C13—C12	124.2 (2)	C14′—C13′—C12′	125.9 (2)
C14—C13—H13	114.2	C14'—C13'—H13'	114.2
Rh1—C14—H14	113.9	Rh1'—C14'—H14'	114.1
C13—C14—Rh1	72.87 (12)	C13'—C14'—Rh1'	71.16(12)
C13—C14—H14	113.9	C13'—C14'—H14'	114.1
C13—C14—C15	126.2 (2)	C13'—C14'—C15'	124.4 (2)
C15—C14—Rh1	107.91 (14)	C15'-C14'-Rh1'	111.23 (14)
C15 - C14 - H14	113.9	C15' - C14' - H14'	114.1
C14— $C15$ — $H15A$	108.9	C14'-C15'-H15C	109.4
C14— $C15$ — $H15B$	108.9	C14'-C15'-H15D	109.1
C_{14} C_{15} C_{16}	113 18 (19)	C14'-C15'-C16'	111 22 (17)
H_{15A} C_{15} H_{15B}	107.8	$H_{15} - C_{15} - H_{15}$	108.0
C16 C15 H15A	108.0	$C_{16'} = C_{15'} = H_{15C}$	100.0
C16 C15 H15B	108.9	$C_{10} = C_{15} = H_{15}C_{15}$	109.4
$C_{10} = C_{15} = 115B$	112.07 (18)	$C_{10}^{0} - C_{15}^{0} - C_{15}^{0}$	109.4
$C_{9} = C_{10} = C_{15}$	112.07 (18)	$C_{9} = C_{10} = C_{15}$	108.0
C_{0} C_{16} H_{16} H_{16}	109.2	$C_{3} = C_{10} = 116C$	108.9
C15 C16 H16A	109.2	$C_{3} = C_{10} = 110D$	108.9
C15 C16 H16P	109.2	$C_{15} = C_{16} = H_{16} C_{15}$	108.9
	109.2	$H_{16} = C_{16} = H_{16} = H_{16}$	108.9
П10А—С10—П10В	107.9	нос—сто—нтор	107.7
Rh1	-1030(2)	Rh1'	-1053(2)
Rh1-C9-C16-C15	-126(2)	Rh1'-C9'-C16'-C15'	39.8 (2)
Rh1-C10-C11-C12	-35.7(2)	Rh1'-C10'-C11'-C12'	11.5(2)
Rh1-C13-C14-C15	-1000(2)	Rh1' - C13' - C14' - C15'	-103.3(2)
Rh1-C14-C15-C16	-37.0(2)	Rh1'-C14'-C15'-C16'	105.5(2)
N1 N2 C2 N3	-0.6(2)	N1' N2' C2' N3'	13.3(2)
$N_1 - N_2 - C_2 - N_3$ N2 N1 C1 Ph1	-170.85(14)	N2' N1' C1' Pb1'	175 02 (14)
$N_2 = N_1 = C_1 = K_{111}$ N2 N1 C1 N3	-0.4(2)	N2' = N1' = C1' = R11'	-1.1(2)
$N_2 = N_1 = C_1 = N_3$ $N_2 = N_1 = C_3 = C_4$	-725(2)	N2' = N1' = C1' = N3'	-67.9(2)
$N_2 = N_1 = C_3 = C_4$ $N_3 = C_5 = C_6 = C_7$	(2.5(2))	$N_{2} - N_{1} - C_{3} - C_{4}$	-525(2)
$N_{3} = C_{5} = C_{6} = C_{7}$	-17551(17)	N3'-C5'-C6'-C8'	-174.82(19)
$C_1 = N_1 = N_2 = C_2$	1/5.51(17)	$N_{3} = C_{3} = C_{0} = C_{3}$	174.02(17)
C1 = N1 = C2	101.8(2)	C1 - N1 - N2 - C2 C1' - N1' - C3' - C4'	108.2(2)
C1 N3 C2 N2	0.5(3)	C1' = N1' = C3' = C4'	-0.8(3)
C1 N3 C5 C6	-1188(2)	C1' = N3' = C2' = N2'	$-68 \pm (3)$
$C_{1} = N_{3} = C_{3} = C_{0}$	110.0(2) 170 AA (1A)	$C_{1}^{2} = N_{3}^{2} = C_{3}^{2} = C_{3}^{2}$	-175.68(16)
$C_2 = N_3 = C_1 = N_1$	-0.1(2)	$C_2 = N_3 = C_1 = N_1 $	175.00(10)
$C_2 = N_3 = C_1 = N_1$	56.2(3)	$C_2 - N_3 - C_1 - N_1$	1.1(2) 107.3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175 61 (10)	$C_2 = 1N_3 = C_3 = C_0$	107.3(2) 177.21(10)
$C_{3} = 1 \times 1 = 1 \times 2 = 0.2$	5 6 (3)	$C_3 = 1N1 = 1N2 = C_2$ $C_3' = N1' = C_1' = D_1 1'$	-0.4(3)
$C_{3} = 1 \times 1 = C_{1} = 1 \times 1 \times 1$	-174.88(10)	$C_{2} = \frac{1}{1} = C_{1} = \frac{1}{1} $	-177.27(10)
C_{3} IN I - C_{1} - IN 3	1/4.00 (19)	$C_3 - M_1 - C_1 - M_3$	1//.3/(19)
C5 N2 C1 D11	-4.0(2)	C5' = N2' = C1' = DL1'	0.2(2)

175.64 (18)	C5'—N3'—C1'—N1'	177.04 (18)
-175.31 (18)	C5'—N3'—C2'—N2'	-176.84 (18)
45.6 (3)	C9'—C10'—C11'—C12'	92.9 (3)
-93.2 (3)	C10'—C9'—C16'—C15'	-40.0 (3)
31.7 (3)	C10'—C11'—C12'—C13'	-32.6 (3)
-12.7 (2)	C11'-C12'-C13'-Rh1'	36.5 (2)
-93.2 (3)	C11'-C12'-C13'-C14'	-44.0 (3)
103.1 (2)	C12'—C13'—C14'—Rh1'	99.3 (2)
3.1 (3)	C12'—C13'—C14'—C15'	-4.0 (3)
44.6 (3)	C13'—C14'—C15'—C16'	96.4 (2)
33.5 (3)	C14'—C15'—C16'—C9'	-36.4 (3)
105.3 (2)	C16'—C9'—C10'—Rh1'	100.3 (2)
2.4 (3)	C16'—C9'—C10'—C11'	-5.0 (3)
	175.64 (18) -175.31 (18) 45.6 (3) -93.2 (3) 31.7 (3) -12.7 (2) -93.2 (3) 103.1 (2) 3.1 (3) 44.6 (3) 33.5 (3) 105.3 (2) 2.4 (3)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C2'—H2'····Cl1 ⁱ	0.95	2.62	3.502 (2)	155

Symmetry code: (i) -x+1, -y+1, -z+1.