metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(ethyl­enedi­ammonium) μ-ethyl­enedi­amine­tetra­acetato-1κ3O,N,O′:2κ3O′′,N′,O′′′-bis­­[tri­oxidomolybdate(VI)] tetra­hydrate

crossmark logo

aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDepartment of Physics-Chemistry, UFR Science and Technology, Iba Der THIAM University of THIES, Senegal, and cUniversité Alioune Diop de Bambey, UFR Sciences Appliquées et Technologies de l'Information et de la Communication (SATIC), Équipe Chimie des Matériaux Inorganiques et Organiques (ECMIO), Senegal
*Correspondence e-mail: lamine.yaffa@ucad.edu.sn

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 14 May 2024; accepted 8 July 2024; online 12 July 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title compound, (C2H10N2)2[(C10H12N2O8)(MoO3)2]·4H2O, which crystallizes in the monoclinic C2/c space group, was obtained by mixing molybdenum oxide, ethyl­enedi­amine and ethyl­enedi­amine­tetra­acetic acid (H4edta) in a 2:4:1 ratio. The complex anion contains two MoO3 units bridged by an edta4− anion. The midpoint of the central C—C bond of the edta4− anion is located on a crystallographic inversion centre. The independent Mo atom is tridentately coordin­ated by a nitro­gen atom and two carboxyl­ate groups of the edta4− ligand, together with the three oxo ligands, producing a distorted octa­hedral coordination environment. In the three-dimensional supra­molecular crystal structure, the dinuclear anions, the organo­ammonium counter-ions and the solvent water mol­ecules are linked by N—H⋯Ow, N—H⋯Oedta and O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The advancement of materials science has meant that many well-established materials, such as metals, ceramics or plastics, cannot meet the demand for new applications (photovoltaic cells, field-effect transistors, etc.). This desire to design new functional materials demands enormous research effort. In order to overcome this challenge, scientists quickly understood that mixtures of materials could have properties superior to those of their pure counterparts, and thus meet this demand. Hybrid framework materials research is one of the fastest growing research fields.

Their unique hybrid nature enables the combination of properties from both inorganic and organic materials (Cheetham & Rao, 2007[Cheetham, A. K. & Rao, C. N. R. (2007). Science, 318, 58-59.]). As organic ligands, polycarboxyl­ates are multidentate chelating agents, widespread in nature and industry, due to their ability to coordinate to various transition metals in different ratios. In this field, the study of molybdenum polycarboxyl­ate complexes has led to thorough investigation over the past three decades. Some well-characterized mono-, bi- and polynuclear molybdenum and tungsten complexes have been reported, for example [(H2TEMED)Mo2O6(H2edta)]·H2O (TMED = tetra­methyl­ethylenedi­amine; Kumar et al., 2012[Kumar, D., Singh, M. & Ramanan, A. (2012). J. Mol. Struct. 1030, 89-94.]), Mo2(O2CCH2OH)4, M2[MoO3(C2O4)] (M = Na, K, Rb, Cs) and Na2[MO2(C6H6O7)2]·3H2O (M = Mo, W; Cotton et al., 2002[Cotton, F. A., Barnard, T. S., Daniels, L. M. & Murillo, C. A. (2002). Inorg. Chem. Commun. 5, 527-532.]; Cindrić et al., 2000[Cindrić, M., Strukan, N., Vrdoljak, V., Devčić, M., Veksli, Z. & Kamenar, B. (2000). Inorg. Chim. Acta, 304, 260-267.]; Zhou et al., 1999[Zhou, Z.-H., Wan, H.-L. & Tsai, K.-R. (1999). J. Chem. Soc. Dalton Trans. pp. 4289-4290.]), Na2K2[Mo2O6(edta)]·10H2O and Na4[W2O6(edta)]·8H2O (Lin et al., 2006[Lin, H. B., Chen, C. Y., Liao, X. L., Lin, T. R. & Zhou, Z. H. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 411-414.]). In our study, the reaction of H4edta (ethyl­enedi­amine­tetra­acetic acid) with molybdenum oxide has been investigated, and a new binuclear 2:1 Mo–edta complex, (C2H10N2)2[(C10H12N2O8)(MoO3)2]·4H2O, including edta4− as ligand has been isolated and structurally characterized.

The single-crystal structure shows that the 2:1 Mo–edta complex anion of the title compound is discrete (Fig. 1[link]). All of the carb­oxy­lic groups of H4edta are deprotonated, coordin­ating the molybdenum oxide groups by nitro­gen and two oxygen atoms. The edta4− ligand itself is a bridge between the two MoO3 units, and the midpoint of the central C—C bond is situated on an inversion centre. In the 2:1 Mo–edta complex, the edta4− ligand thus chelates a pair of MoVI centres, in a tridentate fashion, giving a trans configuration to the complex. Each MoVI ion is chelated by the edta4− ligand, simultaneously forming two glycinato rings occupying contiguous vertices that define one face of the coordination polyhedron. The other three vertices of the opposite face are occupied by three terminal oxo atoms of the MoO3 unit, completing the octa­hedral geometry. In the complex, the Mo—O bond lengths are in the range 1.7195 (16) to 1.7686 (15) Å for Mo=Ot groups (Ot are terminal oxygen atoms: O5, O6 and O7). The resulting bond angles Ot—Mo—Ot are 107.27 (7), 103.83 (7) and 106.75 (7)°, considerably larger than the expected value of 90° for a regular octa­hedron, confirming the distortion from octa­hedral geometry.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by inversion symmetry.

The crystal packing can be rationalized in terms of non-bonding inter­actions between the three tectons: the Mo–edta complex anion, two (C2H10N2)+ cations and four lattice water mol­ecules. These units are linked through hydrogen bonds of the type N—H⋯Owater, N—H⋯Oedta and O—H⋯O (Table 1[link]). This inter­connection leads to the supra­molecular structure, as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O1i 0.91 1.93 2.795 (2) 159
N2—H2D⋯O10 0.91 2.00 2.715 (4) 134
N2—H2D⋯O7ii 0.91 2.21 2.786 (2) 121
N2—H2E⋯O6iii 0.91 1.84 2.748 (2) 172
N3—H3C⋯O9i 0.91 1.88 2.785 (3) 170
N3—H3D⋯O1iv 0.91 1.98 2.838 (2) 156
N3—H3E⋯O5v 0.91 1.84 2.753 (2) 177
O1—H1A⋯O5vi 0.87 1.83 2.694 (2) 173
O1—H1B⋯O2 0.87 1.83 2.694 (2) 173
O10—H10A⋯O8 0.87 1.86 2.692 (4) 160
O10—H10B⋯O8i 0.87 2.13 2.978 (4) 166
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+1, -y, -z+1]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x+1, -y+1, -z+1]; (vi) [x, y-1, z].
[Figure 2]
Figure 2
Supra­molecular arrangement of the title compound with hydrogen bonds shown as dotted lines.

Synthesis and crystallization

Solid molybdenum oxide (4 mmol) and ethyl­enedi­amine (4 mmol) were mixed in 30 ml of distilled water. To this mixture were slowly added 2 mmol of ethyl­enediammine­tetra­acetic acid (H4edta) under vigorous stirring. The solution was then stirred for 2 h at room temperature. The colourless solution thus obtained was left at room temperature for slow evaporation of water. After a few days, colourless crystals (yield 13.6% based on Mo) were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C2H10N2)2[(C10H12N2O8)(MoO3)2]·4H2O
Mr 772.40
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 22.5897 (14), 7.5100 (4), 16.3743 (10)
β (°) 94.716 (2)
V3) 2768.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.17 × 0.17 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24031, 3192, 2946
Rint 0.032
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.060, 1.06
No. of reflections 3192
No. of parameters 189
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −1.06
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/32 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Bis(ethylenediammonium) µ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate top
Crystal data top
(C2H10N2)2[Mo2(C10H12N2O8)O6]·4H2OF(000) = 1576
Mr = 772.40Dx = 1.853 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.5897 (14) ÅCell parameters from 9873 reflections
b = 7.5100 (4) Åθ = 2.9–27.5°
c = 16.3743 (10) ŵ = 1.00 mm1
β = 94.716 (2)°T = 150 K
V = 2768.5 (3) Å3Block, colourless
Z = 40.17 × 0.17 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
2946 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 1.8°
Tmin = 0.691, Tmax = 0.746h = 2929
24031 measured reflectionsk = 99
3192 independent reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0247P)2 + 9.3382P]
where P = (Fo2 + 2Fc2)/3
3192 reflections(Δ/σ)max = 0.001
189 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 1.06 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.34131 (2)0.30046 (2)0.43898 (2)0.01140 (6)
O20.38304 (7)0.07064 (19)0.38526 (10)0.0184 (3)
O30.34930 (6)0.3750 (2)0.31149 (9)0.0153 (3)
O50.32695 (7)0.5278 (2)0.45742 (9)0.0167 (3)
O60.27328 (7)0.1984 (2)0.41260 (10)0.0192 (3)
O70.36649 (7)0.2195 (2)0.53376 (10)0.0199 (3)
O80.46292 (8)0.0988 (2)0.38094 (12)0.0305 (4)
O90.40393 (8)0.4592 (3)0.21238 (10)0.0313 (4)
N10.44444 (7)0.3699 (2)0.42662 (10)0.0110 (3)
N20.68095 (9)0.1480 (2)0.31790 (11)0.0180 (4)
H2C0.6827650.1946610.2668740.022*
H2D0.6444950.1698140.3355920.022*
H2E0.7093620.1992550.3529230.022*
N30.68986 (8)0.3285 (2)0.39152 (11)0.0166 (4)
H3C0.6623700.3742030.3534580.020*
H3D0.7269610.3521360.3764980.020*
H3E0.6853390.3791490.4411150.020*
C10.43883 (10)0.0440 (3)0.39471 (13)0.0165 (4)
C20.46667 (9)0.4795 (3)0.49874 (12)0.0136 (4)
H2A0.4585500.4156620.5495120.016*
H2B0.4444170.5932020.4976250.016*
C30.44903 (9)0.4682 (3)0.34868 (12)0.0158 (4)
H3A0.4867640.4356860.3257380.019*
H3B0.4501050.5976290.3601920.019*
C40.68156 (10)0.1326 (3)0.39721 (13)0.0181 (4)
H4A0.6409340.1062370.4123240.022*
H4B0.7102430.0830770.4402660.022*
C50.39759 (10)0.4287 (3)0.28535 (13)0.0159 (4)
C60.47677 (9)0.1985 (3)0.42775 (15)0.0184 (4)
H6A0.4920920.1715600.4847970.022*
H6B0.5113350.2106750.3947050.022*
C70.69112 (12)0.0470 (3)0.31517 (13)0.0225 (5)
H7A0.6635010.1005570.2719220.027*
H7B0.7322070.0704070.3011800.027*
O10.30869 (7)0.2039 (2)0.34909 (9)0.0180 (3)
H1A0.3174590.2906140.3832100.027*
H1B0.3338660.1201600.3641090.027*
O100.56206 (14)0.0882 (7)0.30040 (19)0.1003 (14)
H10A0.5336750.1156490.3309760.151*
H10B0.5497600.1032610.2490980.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01159 (9)0.01140 (9)0.01128 (9)0.00124 (6)0.00129 (6)0.00028 (6)
O20.0146 (7)0.0131 (7)0.0272 (8)0.0018 (6)0.0006 (6)0.0051 (6)
O30.0139 (7)0.0207 (7)0.0113 (7)0.0022 (6)0.0005 (5)0.0000 (6)
O50.0197 (8)0.0149 (7)0.0157 (7)0.0013 (6)0.0031 (6)0.0022 (6)
O60.0142 (7)0.0206 (8)0.0229 (8)0.0029 (6)0.0024 (6)0.0023 (6)
O70.0201 (8)0.0226 (8)0.0172 (7)0.0033 (6)0.0021 (6)0.0059 (6)
O80.0238 (9)0.0153 (8)0.0507 (12)0.0053 (7)0.0067 (8)0.0107 (8)
O90.0263 (9)0.0548 (12)0.0123 (7)0.0165 (8)0.0016 (7)0.0047 (8)
N10.0129 (8)0.0100 (7)0.0097 (7)0.0009 (6)0.0016 (6)0.0013 (6)
N20.0225 (9)0.0163 (9)0.0152 (8)0.0008 (7)0.0019 (7)0.0001 (7)
N30.0183 (9)0.0176 (9)0.0137 (8)0.0017 (7)0.0007 (7)0.0025 (7)
C10.0174 (10)0.0132 (9)0.0185 (10)0.0003 (8)0.0018 (8)0.0013 (8)
C20.0133 (10)0.0156 (9)0.0115 (9)0.0025 (7)0.0017 (7)0.0027 (7)
C30.0150 (10)0.0198 (10)0.0125 (9)0.0062 (8)0.0001 (7)0.0020 (8)
C40.0234 (11)0.0170 (10)0.0138 (9)0.0003 (8)0.0019 (8)0.0002 (8)
C50.0190 (10)0.0160 (10)0.0125 (9)0.0031 (8)0.0002 (8)0.0000 (8)
C60.0130 (10)0.0141 (10)0.0273 (11)0.0015 (8)0.0038 (8)0.0038 (8)
C70.0376 (13)0.0159 (10)0.0138 (10)0.0012 (9)0.0013 (9)0.0001 (8)
O10.0207 (8)0.0152 (7)0.0175 (7)0.0052 (6)0.0025 (6)0.0023 (6)
O100.0533 (18)0.200 (4)0.0469 (16)0.015 (2)0.0000 (14)0.007 (2)
Geometric parameters (Å, º) top
Mo1—O22.1858 (15)N3—C41.487 (3)
Mo1—O32.1831 (14)C1—C61.516 (3)
Mo1—O51.7686 (15)C2—C2i1.534 (4)
Mo1—O61.7397 (15)C2—H2A0.9900
Mo1—O71.7195 (16)C2—H2B0.9900
Mo1—N12.4121 (17)C3—H3A0.9900
O2—C11.273 (3)C3—H3B0.9900
O3—C51.270 (3)C3—C51.521 (3)
O8—C11.232 (3)C4—H4A0.9900
O9—C51.236 (3)C4—H4B0.9900
N1—C21.492 (2)C4—C71.521 (3)
N1—C31.485 (3)C6—H6A0.9900
N1—C61.479 (3)C6—H6B0.9900
N2—H2C0.9100C7—H7A0.9900
N2—H2D0.9100C7—H7B0.9900
N2—H2E0.9100O1—H1A0.8703
N2—C71.484 (3)O1—H1B0.8697
N3—H3C0.9100O10—H10A0.8701
N3—H3D0.9100O10—H10B0.8702
N3—H3E0.9100
O2—Mo1—N171.68 (6)O8—C1—C6119.11 (19)
O3—Mo1—O275.25 (6)N1—C2—C2i113.4 (2)
O3—Mo1—N173.02 (5)N1—C2—H2A108.9
O5—Mo1—O2157.26 (6)N1—C2—H2B108.9
O5—Mo1—O386.93 (6)C2i—C2—H2A108.9
O5—Mo1—N189.85 (6)C2i—C2—H2B108.9
O6—Mo1—O287.34 (6)H2A—C2—H2B107.7
O6—Mo1—O390.94 (7)N1—C3—H3A109.1
O6—Mo1—O5107.27 (7)N1—C3—H3B109.1
O6—Mo1—N1156.07 (6)N1—C3—C5112.68 (16)
O7—Mo1—O287.85 (7)H3A—C3—H3B107.8
O7—Mo1—O3155.03 (7)C5—C3—H3A109.1
O7—Mo1—O5103.83 (7)C5—C3—H3B109.1
O7—Mo1—O6106.75 (7)N3—C4—H4A109.8
O7—Mo1—N184.38 (7)N3—C4—H4B109.8
C1—O2—Mo1122.03 (13)N3—C4—C7109.60 (17)
C5—O3—Mo1123.00 (13)H4A—C4—H4B108.2
C2—N1—Mo1108.51 (11)C7—C4—H4A109.8
C3—N1—Mo1108.40 (12)C7—C4—H4B109.8
C3—N1—C2111.30 (15)O3—C5—C3117.47 (18)
C6—N1—Mo1106.85 (12)O9—C5—O3123.7 (2)
C6—N1—C2109.66 (16)O9—C5—C3118.68 (19)
C6—N1—C3111.95 (16)N1—C6—C1113.43 (17)
H2C—N2—H2D109.5N1—C6—H6A108.9
H2C—N2—H2E109.5N1—C6—H6B108.9
H2D—N2—H2E109.5C1—C6—H6A108.9
C7—N2—H2C109.5C1—C6—H6B108.9
C7—N2—H2D109.5H6A—C6—H6B107.7
C7—N2—H2E109.5N2—C7—C4110.94 (18)
H3C—N3—H3D109.5N2—C7—H7A109.5
H3C—N3—H3E109.5N2—C7—H7B109.5
H3D—N3—H3E109.5C4—C7—H7A109.5
C4—N3—H3C109.5C4—C7—H7B109.5
C4—N3—H3D109.5H7A—C7—H7B108.0
C4—N3—H3E109.5H1A—O1—H1B104.5
O2—C1—C6116.65 (18)H10A—O10—H10B109.4
O8—C1—O2124.2 (2)
Mo1—O2—C1—O8164.21 (18)N1—C3—C5—O324.0 (3)
Mo1—O2—C1—C613.7 (3)N1—C3—C5—O9159.7 (2)
Mo1—O3—C5—O9174.61 (18)N3—C4—C7—N2177.90 (18)
Mo1—O3—C5—C39.3 (3)C2—N1—C3—C5143.96 (17)
Mo1—N1—C2—C2i175.59 (18)C2—N1—C6—C1145.79 (18)
Mo1—N1—C3—C524.7 (2)C3—N1—C2—C2i65.2 (3)
Mo1—N1—C6—C128.4 (2)C3—N1—C6—C190.2 (2)
O2—C1—C6—N113.0 (3)C6—N1—C2—C2i59.2 (3)
O8—C1—C6—N1169.0 (2)C6—N1—C3—C592.9 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1ii0.911.932.795 (2)159
N2—H2D···O100.912.002.715 (4)134
N2—H2D···O7iii0.912.212.786 (2)121
N2—H2E···O6iv0.911.842.748 (2)172
N3—H3C···O9ii0.911.882.785 (3)170
N3—H3D···O1v0.911.982.838 (2)156
N3—H3E···O5i0.911.842.753 (2)177
O1—H1A···O5vi0.871.832.694 (2)173
O1—H1B···O20.871.832.694 (2)173
O10—H10A···O80.871.862.692 (4)160
O10—H10B···O8ii0.872.132.978 (4)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2; (iii) x+1, y, z+1; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z; (vi) x, y1, z.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) for financial support.

References

First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K. & Rao, C. N. R. (2007). Science, 318, 58–59.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCindrić, M., Strukan, N., Vrdoljak, V., Devčić, M., Veksli, Z. & Kamenar, B. (2000). Inorg. Chim. Acta, 304, 260–267.  Web of Science CSD CrossRef CAS Google Scholar
First citationCotton, F. A., Barnard, T. S., Daniels, L. M. & Murillo, C. A. (2002). Inorg. Chem. Commun. 5, 527–532.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, D., Singh, M. & Ramanan, A. (2012). J. Mol. Struct. 1030, 89–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, H. B., Chen, C. Y., Liao, X. L., Lin, T. R. & Zhou, Z. H. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 411–414.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Z.-H., Wan, H.-L. & Tsai, K.-R. (1999). J. Chem. Soc. Dalton Trans. pp. 4289–4290.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146