

ISSN 2414-3146

Received 14 May 2024 Accepted 8 July 2024

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

Keywords: crystal structure; edta complex; molybdenum oxide; ethylenediaminetetraacetic acid.

CCDC reference: 2368916

Structural data: full structural data are available from iucrdata.iucr.org

Bis(ethylenediammonium) μ -ethylenediaminetetraacetato-1 $\kappa^{3}O$, N, O': $2\kappa^{3}O''$, N', O'''-bis[trioxidomolybdate(VI)] tetrahydrate

Lamine Yaffa,^a* Dame Seye,^b Antoine Blaise Kama,^c Assane Toure^a and Cheikh Abdoul Khadir Diop^a

^aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, ^bDepartment of Physics-Chemistry, UFR Science and Technology, Iba Der THIAM University of THIES, Senegal, and ^cUniversité Alioune Diop de Bambey, UFR Sciences Appliquées et Technologies de l'Information et de la Communication (SATIC), Équipe Chimie des Matériaux Inorganiques et Organiques (ECMIO), Senegal. *Correspondence e-mail: lamine.yaffa@ucad.edu.sn

The title compound, $(C_2H_{10}N_2)_2[(C_{10}H_{12}N_2O_8)(MoO_3)_2]\cdot 4H_2O$, which crystallizes in the monoclinic C2/c space group, was obtained by mixing molybdenum oxide, ethylenediamine and ethylenediaminetetraacetic acid (H₄edta) in a 2:4:1 ratio. The complex anion contains two MoO₃ units bridged by an edta⁴⁻ anion. The midpoint of the central C-C bond of the edta⁴⁻ anion is located on a crystallographic inversion centre. The independent Mo atom is tridentately coordinated by a nitrogen atom and two carboxylate groups of the edta⁴⁻ ligand, together with the three oxo ligands, producing a distorted octahedral coordination environment. In the three-dimensional supramolecular crystal structure, the dinuclear anions, the organoammonium counter-ions and the solvent water molecules are linked by N-H···O_w, N-H···O_{edta} and O-H···O hydrogen bonds.

Structure description

The advancement of materials science has meant that many well-established materials, such as metals, ceramics or plastics, cannot meet the demand for new applications (photovoltaic cells, field-effect transistors, *etc.*). This desire to design new functional materials demands enormous research effort. In order to overcome this challenge, scientists quickly understood that mixtures of materials could have properties superior to those of their pure counterparts, and thus meet this demand. Hybrid framework materials research is one of the fastest growing research fields.

Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by inversion symmetry.

Their unique hybrid nature enables the combination of properties from both inorganic and organic materials (Cheetham & Rao, 2007). As organic ligands, polycarboxylates are multidentate chelating agents, widespread in nature and industry, due to their ability to coordinate to various transition metals in different ratios. In this field, the study of molybdenum polycarboxylate complexes has led to thorough investigation over the past three decades. Some well-characterized mono-, bi- and polynuclear molybdenum and tungsten complexes have been reported, for example $[(H_2TEMED)Mo_2O_6(H_2edta)] \cdot H_2O$ (TMED = tetramethylethylenediamine; Kumar *et al.*, 2012), $Mo_2(O_2CCH_2OH)_4$,

Figure 2

Supramolecular arrangement of the title compound with hydrogen bonds shown as dotted lines.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$N2-H2C\cdotsO1^{i}$	0.91	1.93	2.795 (2)	159		
$N2-H2D\cdots O10$	0.91	2.00	2.715 (4)	134		
$N2-H2D\cdots O7^{ii}$	0.91	2.21	2.786 (2)	121		
$N2-H2E\cdots O6^{iii}$	0.91	1.84	2.748 (2)	172		
$N3-H3C\cdots O9^{i}$	0.91	1.88	2.785 (3)	170		
$N3-H3D\cdotsO1^{iv}$	0.91	1.98	2.838 (2)	156		
$N3-H3E\cdots O5^{v}$	0.91	1.84	2.753 (2)	177		
$O1-H1A\cdots O5^{vi}$	0.87	1.83	2.694 (2)	173		
$O1-H1B\cdots O2$	0.87	1.83	2.694 (2)	173		
O10−H10A…O8	0.87	1.86	2.692 (4)	160		
$O10-H10B\cdots O8^{i}$	0.87	2.13	2.978 (4)	166		

Symmetry codes: (i) $-x + 1, y, -z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1; (iii) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iv) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (v) -x + 1, -y + 1, -z + 1; (vi) x, y - 1, z.

 M_2 [MoO₃(C₂O₄)] (M = Na, K, Rb, Cs) and Na₂ [MO_2 (C₆H₆O₇)₂]·3H₂O (M = Mo, W; Cotton *et al.*, 2002; Cindrić *et al.*, 2000; Zhou *et al.*, 1999), Na₂K₂[Mo₂O₆(edta)]·10H₂O and Na₄[W₂O₆(edta)]·8H₂O (Lin *et al.*, 2006). In our study, the reaction of H₄edta (ethylenediaminetetraacetic acid) with molybdenum oxide has been investigated, and a new binuclear 2:1 Mo–edta complex, (C₂H₁₀N₂)₂-[(C₁₀H₁₂N₂O₈)(MoO₃)₂]·4H₂O, including edta^{4–} as ligand has been isolated and structurally characterized.

The single-crystal structure shows that the 2:1 Mo-edta complex anion of the title compound is discrete (Fig. 1). All of the carboxylic groups of H₄edta are deprotonated, coordinating the molybdenum oxide groups by nitrogen and two oxygen atoms. The edta⁴⁻ ligand itself is a bridge between the two MoO_3 units, and the midpoint of the central C-C bond is situated on an inversion centre. In the 2:1 Mo-edta complex, the edta⁴⁻ ligand thus chelates a pair of Mo^{VI} centres, in a tridentate fashion, giving a *trans* configuration to the complex. Each Mo^{VI} ion is chelated by the edta⁴⁻ ligand, simultaneously forming two glycinato rings occupying contiguous vertices that define one face of the coordination polyhedron. The other three vertices of the opposite face are occupied by three terminal oxo atoms of the MoO₃ unit, completing the octahedral geometry. In the complex, the Mo-O bond lengths are in the range 1.7195 (16) to 1.7686 (15) Å for Mo= O_t groups (O_t are terminal oxygen atoms: O5, O6 and O7). The resulting bond angles $O_t - Mo - O_t$ are 107.27 (7), 103.83 (7) and 106.75 $(7)^{\circ}$, considerably larger than the expected value of 90° for a regular octahedron, confirming the distortion from octahedral geometry.

The crystal packing can be rationalized in terms of nonbonding interactions between the three tectons: the Mo–edta complex anion, two $(C_2H_{10}N_2)^+$ cations and four lattice water molecules. These units are linked through hydrogen bonds of the type $N-H\cdots O_{water}$, $N-H\cdots O_{edta}$ and $O-H\cdots O$ (Table 1). This interconnection leads to the supramolecular structure, as shown in Fig. 2.

Synthesis and crystallization

Solid molybdenum oxide (4 mmol) and ethylenediamine (4 mmol) were mixed in 30 ml of distilled water. To this

mixture were slowly added 2 mmol of ethylenediamminetetraacetic acid (H₄edta) under vigorous stirring. The solution was then stirred for 2 h at room temperature. The colourless solution thus obtained was left at room temperature for slow evaporation of water. After a few days, colourless crystals (vield 13.6% based on Mo) were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) for financial support.

References

- Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheetham, A. K. & Rao, C. N. R. (2007). Science, 318, 58-59.
- Cindrić, M., Strukan, N., Vrdoljak, V., Devčić, M., Veksli, Z. & Kamenar, B. (2000). Inorg. Chim. Acta, 304, 260-267.
- Cotton, F. A., Barnard, T. S., Daniels, L. M. & Murillo, C. A. (2002). Inorg. Chem. Commun. 5, 527-532.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
- Kumar, D., Singh, M. & Ramanan, A. (2012). J. Mol. Struct. 1030, 89-94
- Lin, H. B., Chen, C. Y., Liao, X. L., Lin, T. R. & Zhou, Z. H. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 411-414.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Table 2

Experimental details.

Crystal data	
Chemical formula	$(C_2H_{10}N_2)_2[(C_{10}H_{12}N_2O_8)-$
	$(MoO_3)_2]$ ·4H ₂ O
$M_{ m r}$	772.40
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	150
a, b, c (Å)	22.5897 (14), 7.5100 (4), 16.3743 (10)
β (°)	94.716 (2)
$V(Å^3)$	2768.5 (3)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.00
Crystal size (mm)	$0.17 \times 0.17 \times 0.13$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.691, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	24031, 3192, 2946
R _{int}	0.032
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.060, 1.06
No. of reflections	3192
No. of parameters	189
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.67, -1.06

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/32 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Zhou, Z.-H., Wan, H.-L. & Tsai, K.-R. (1999). J. Chem. Soc. Dalton Trans. pp. 4289-4290.

full crystallographic data

IUCrData (2024). **9**, x240667 [https://doi.org/10.1107/S2414314624006679]

Bis(ethylenediammonium) μ -ethylenediaminetetra-

acetato- $1\kappa^3 O, N, O': 2\kappa^3 O'', N', O'''$ -bis[trioxidomolybdate(VI)] tetrahydrate

Lamine Yaffa, Dame Seye, Antoine Blaise Kama, Assane Toure and Cheikh Abdoul Khadir Diop

Bis(ethylenediammonium) μ -ethylenediaminetetraacetato-1 κ^3 O,N,O':2 κ^3 O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate

Crystal data

 $(C_{2}H_{10}N_{2})_{2}[Mo_{2}(C_{10}H_{12}N_{2}O_{8})O_{6}]\cdot 4H_{2}O$ $M_{r} = 772.40$ Monoclinic, C2/c a = 22.5897 (14) Å b = 7.5100 (4) Å c = 16.3743 (10) Å $\beta = 94.716$ (2)° V = 2768.5 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.691, T_{\max} = 0.746$ 24031 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.060$ S = 1.063192 reflections 189 parameters 0 restraints Primary atom site location: dual F(000) = 1576 $D_x = 1.853 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9873 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 1.00 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.17 \times 0.17 \times 0.13 \text{ mm}$

3192 independent reflections 2946 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -29 \rightarrow 29$ $k = -9 \rightarrow 9$ $l = -20 \rightarrow 21$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0247P)^2 + 9.3382P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.67$ e Å⁻³ $\Delta\rho_{min} = -1.06$ e Å⁻³

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mo1	0.34131 (2)	0.30046 (2)	0.43898 (2)	0.01140 (6)
O2	0.38304 (7)	0.07064 (19)	0.38526 (10)	0.0184 (3)
03	0.34930 (6)	0.3750 (2)	0.31149 (9)	0.0153 (3)
05	0.32695 (7)	0.5278 (2)	0.45742 (9)	0.0167 (3)
O6	0.27328 (7)	0.1984 (2)	0.41260 (10)	0.0192 (3)
07	0.36649 (7)	0.2195 (2)	0.53376 (10)	0.0199 (3)
08	0.46292 (8)	-0.0988 (2)	0.38094 (12)	0.0305 (4)
09	0.40393 (8)	0.4592 (3)	0.21238 (10)	0.0313 (4)
N1	0.44444 (7)	0.3699 (2)	0.42662 (10)	0.0110 (3)
N2	0.68095 (9)	-0.1480 (2)	0.31790 (11)	0.0180 (4)
H2C	0.682765	-0.194661	0.266874	0.022*
H2D	0.644495	-0.169814	0.335592	0.022*
H2E	0.709362	-0.199255	0.352923	0.022*
N3	0.68986 (8)	0.3285 (2)	0.39152 (11)	0.0166 (4)
H3C	0.662370	0.374203	0.353458	0.020*
H3D	0.726961	0.352136	0.376498	0.020*
H3E	0.685339	0.379149	0.441115	0.020*
C1	0.43883 (10)	0.0440 (3)	0.39471 (13)	0.0165 (4)
C2	0.46667 (9)	0.4795 (3)	0.49874 (12)	0.0136 (4)
H2A	0.458550	0.415662	0.549512	0.016*
H2B	0.444417	0.593202	0.497625	0.016*
C3	0.44903 (9)	0.4682 (3)	0.34868 (12)	0.0158 (4)
H3A	0.486764	0.435686	0.325738	0.019*
H3B	0.450105	0.597629	0.360192	0.019*
C4	0.68156 (10)	0.1326 (3)	0.39721 (13)	0.0181 (4)
H4A	0.640934	0.106237	0.412324	0.022*
H4B	0.710243	0.083077	0.440266	0.022*
C5	0.39759 (10)	0.4287 (3)	0.28535 (13)	0.0159 (4)
C6	0.47677 (9)	0.1985 (3)	0.42775 (15)	0.0184 (4)
H6A	0.492092	0.171560	0.484797	0.022*
H6B	0.511335	0.210675	0.394705	0.022*
C7	0.69112 (12)	0.0470 (3)	0.31517 (13)	0.0225 (5)
H7A	0.663501	0.100557	0.271922	0.027*
H7B	0.732207	0.070407	0.301180	0.027*
01	0.30869 (7)	-0.2039 (2)	0.34909 (9)	0.0180 (3)
H1A	0.317459	-0.290614	0.383210	0.027*
H1B	0.333866	-0.120160	0.364109	0.027*
O10	0.56206 (14)	-0.0882 (7)	0.30040 (19)	0.1003 (14)
H10A	0.533675	-0.115649	0.330976	0.151*
H10B	0.549760	-0.103261	0.249098	0.151*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.01159 (9)	0.01140 (9)	0.01128 (9)	-0.00124 (6)	0.00129 (6)	-0.00028 (6)

O2	0.0146 (7)	0.0131 (7)	0.0272 (8)	-0.0018 (6)	-0.0006 (6)	-0.0051 (6)
O3	0.0139 (7)	0.0207 (7)	0.0113 (7)	-0.0022 (6)	-0.0005 (5)	0.0000 (6)
05	0.0197 (8)	0.0149 (7)	0.0157 (7)	0.0013 (6)	0.0031 (6)	-0.0022 (6)
06	0.0142 (7)	0.0206 (8)	0.0229 (8)	-0.0029 (6)	0.0024 (6)	-0.0023 (6)
O7	0.0201 (8)	0.0226 (8)	0.0172 (7)	-0.0033 (6)	0.0021 (6)	0.0059 (6)
08	0.0238 (9)	0.0153 (8)	0.0507 (12)	0.0053 (7)	-0.0067 (8)	-0.0107 (8)
09	0.0263 (9)	0.0548 (12)	0.0123 (7)	-0.0165 (8)	-0.0016 (7)	0.0047 (8)
N1	0.0129 (8)	0.0100 (7)	0.0097 (7)	-0.0009 (6)	-0.0016 (6)	-0.0013 (6)
N2	0.0225 (9)	0.0163 (9)	0.0152 (8)	0.0008 (7)	0.0019 (7)	0.0001 (7)
N3	0.0183 (9)	0.0176 (9)	0.0137 (8)	0.0017 (7)	-0.0007 (7)	-0.0025 (7)
C1	0.0174 (10)	0.0132 (9)	0.0185 (10)	0.0003 (8)	-0.0018 (8)	-0.0013 (8)
C2	0.0133 (10)	0.0156 (9)	0.0115 (9)	-0.0025 (7)	-0.0017 (7)	-0.0027 (7)
C3	0.0150 (10)	0.0198 (10)	0.0125 (9)	-0.0062 (8)	0.0001 (7)	0.0020 (8)
C4	0.0234 (11)	0.0170 (10)	0.0138 (9)	0.0003 (8)	0.0019 (8)	-0.0002 (8)
C5	0.0190 (10)	0.0160 (10)	0.0125 (9)	-0.0031 (8)	-0.0002 (8)	0.0000 (8)
C6	0.0130 (10)	0.0141 (10)	0.0273 (11)	0.0015 (8)	-0.0038 (8)	-0.0038 (8)
C7	0.0376 (13)	0.0159 (10)	0.0138 (10)	-0.0012 (9)	0.0013 (9)	-0.0001 (8)
01	0.0207 (8)	0.0152 (7)	0.0175 (7)	-0.0052 (6)	-0.0025 (6)	0.0023 (6)
O10	0.0533 (18)	0.200 (4)	0.0469 (16)	0.015 (2)	0.0000 (14)	0.007 (2)

Geometric parameters (Å, °)

Mo1—O2	2.1858 (15)	N3—C4	1.487 (3)
Mo1—O3	2.1831 (14)	C1—C6	1.516 (3)
Mo1-O5	1.7686 (15)	$C2-C2^i$	1.534 (4)
Mo1-06	1.7397 (15)	C2—H2A	0.9900
Mo1-07	1.7195 (16)	C2—H2B	0.9900
Mo1—N1	2.4121 (17)	С3—НЗА	0.9900
O2—C1	1.273 (3)	С3—Н3В	0.9900
O3—C5	1.270 (3)	C3—C5	1.521 (3)
O8—C1	1.232 (3)	C4—H4A	0.9900
O9—C5	1.236 (3)	C4—H4B	0.9900
N1—C2	1.492 (2)	C4—C7	1.521 (3)
N1—C3	1.485 (3)	С6—Н6А	0.9900
N1—C6	1.479 (3)	C6—H6B	0.9900
N2—H2C	0.9100	С7—Н7А	0.9900
N2—H2D	0.9100	С7—Н7В	0.9900
N2—H2E	0.9100	O1—H1A	0.8703
N2—C7	1.484 (3)	O1—H1B	0.8697
N3—H3C	0.9100	O10—H10A	0.8701
N3—H3D	0.9100	O10—H10B	0.8702
N3—H3E	0.9100		
O2—Mo1—N1	71.68 (6)	O8—C1—C6	119.11 (19)
O3—Mo1—O2	75.25 (6)	$N1$ — $C2$ — $C2^i$	113.4 (2)
O3—Mo1—N1	73.02 (5)	N1—C2—H2A	108.9
O5—Mo1—O2	157.26 (6)	N1—C2—H2B	108.9
O5—Mo1—O3	86.93 (6)	C2 ⁱ —C2—H2A	108.9

O5—Mo1—N1	89.85 (6)	C2 ⁱ —C2—H2B	108.9
O6—Mo1—O2	87.34 (6)	H2A—C2—H2B	107.7
O6—Mo1—O3	90.94 (7)	N1—C3—H3A	109.1
O6—Mo1—O5	107.27 (7)	N1—C3—H3B	109.1
O6—Mo1—N1	156.07 (6)	N1—C3—C5	112.68 (16)
O7—Mo1—O2	87.85 (7)	НЗА—СЗ—НЗВ	107.8
O7—Mo1—O3	155.03 (7)	С5—С3—НЗА	109.1
O7—Mo1—O5	103.83 (7)	С5—С3—Н3В	109.1
O7—Mo1—O6	106.75 (7)	N3—C4—H4A	109.8
O7—Mo1—N1	84.38 (7)	N3—C4—H4B	109.8
C1-O2-Mo1	122.03 (13)	N3—C4—C7	109.60 (17)
C5-O3-Mo1	123.00 (13)	H4A—C4—H4B	108.2
C2—N1—Mo1	108.51 (11)	C7—C4—H4A	109.8
C3—N1—Mo1	108.40 (12)	C7—C4—H4B	109.8
C3—N1—C2	111.30 (15)	O3—C5—C3	117.47 (18)
C6—N1—Mo1	106.85 (12)	O9—C5—O3	123.7 (2)
C6—N1—C2	109.66 (16)	O9—C5—C3	118.68 (19)
C6—N1—C3	111.95 (16)	N1—C6—C1	113.43 (17)
H2C—N2—H2D	109.5	N1—C6—H6A	108.9
H2C—N2—H2E	109.5	N1—C6—H6B	108.9
H2D—N2—H2E	109.5	C1—C6—H6A	108.9
C7—N2—H2C	109.5	C1—C6—H6B	108.9
C7—N2—H2D	109.5	H6A—C6—H6B	107.7
C7—N2—H2E	109.5	N2—C7—C4	110.94 (18)
H3C—N3—H3D	109.5	N2—C7—H7A	109.5
H3C—N3—H3E	109.5	N2—C7—H7B	109.5
H3D—N3—H3E	109.5	С4—С7—Н7А	109.5
C4—N3—H3C	109.5	С4—С7—Н7В	109.5
C4—N3—H3D	109.5	H7A—C7—H7B	108.0
C4—N3—H3E	109.5	H1A—O1—H1B	104.5
O2—C1—C6	116.65 (18)	H10A—O10—H10B	109.4
O8—C1—O2	124.2 (2)		
Mo1-02-C1-08	164.21 (18)	N1—C3—C5—O3	24.0 (3)
Mo1-O2-C1-C6	-13.7 (3)	N1-C3-C5-09	-159.7 (2)
Mo1-03-C5-09	174.61 (18)	N3—C4—C7—N2	-177.90 (18)
Mo1-O3-C5-C3	-9.3 (3)	C2—N1—C3—C5	-143.96 (17)
Mo1—N1—C2—C2 ⁱ	175.59 (18)	C2—N1—C6—C1	145.79 (18)
Mo1—N1—C3—C5	-24.7 (2)	$C3-N1-C2-C2^{i}$	-65.2 (3)
Mo1—N1—C6—C1	28.4 (2)	C3—N1—C6—C1	-90.2 (2)
O2-C1-C6-N1	-13.0 (3)	$C6-N1-C2-C2^{i}$	59.2 (3)
O8—C1—C6—N1	169.0 (2)	C6—N1—C3—C5	92.9 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N2—H2C···O1 ⁱⁱ	0.91	1.93	2.795 (2)	159

IUCrData (2024). 9, x240667

N2—H2D…O10	0.91	2.00	2.715 (4)	134	
N2—H2D…O7 ⁱⁱⁱ	0.91	2.21	2.786 (2)	121	
N2—H2 E ···O6 ^{iv}	0.91	1.84	2.748 (2)	172	
N3—H3 <i>C</i> ···O9 ⁱⁱ	0.91	1.88	2.785 (3)	170	
N3—H3 <i>D</i> ···O1 ^v	0.91	1.98	2.838 (2)	156	
N3—H3 <i>E</i> ···O5 ⁱ	0.91	1.84	2.753 (2)	177	
O1—H1A····O5 ^{vi}	0.87	1.83	2.694 (2)	173	
O1—H1 <i>B</i> ···O2	0.87	1.83	2.694 (2)	173	
O10—H10A…O8	0.87	1.86	2.692 (4)	160	
O10—H10 <i>B</i> ···O8 ⁱⁱ	0.87	2.13	2.978 (4)	166	

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, -z+1/2; (iii) -x+1, -y, -z+1; (iv) x+1/2, y-1/2, z; (v) x+1/2, y+1/2, z; (vi) x, y-1, z.