metal-organic compounds
Chlorido(2-{(2-hydroxyethyl)[tris(hydroxymethyl)methyl]amino}ethanolato-κ5N,O,O′,O′′,O′′′)copper(II)
aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com
The title complex, [Cu(C8H18NO5)Cl] or [Cu(H4bis-tris)Cl], was obtained starting from the previously reported [Cu(H5bis-tris)Cl]Cl compound. The deprotonation of the aminopolyol ligand H5bis-tris {[bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane, C8H19NO5} promotes the formation of a very strong O—H⋯O intermolecular hydrogen bond, characterized by an H⋯O separation of 1.553 (19) Å and an O—H⋯O angle of 178 (4)°. The remaining hydroxy groups are also engaged in hydrogen bonds, forming R22(8), R44(16), R44(20) and R44(22) ring motifs, which stabilize the triperiodic supramolecular network.
Keywords: crystal structure; coordination compound; bis-tris; supramolecular structure; very strong hydrogen bonds.
CCDC reference: 2355145
Structure description
Aminopolyol [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane, generally abbreviated H5bis-tris, is able to coordinate first-row late transition metals and lanthanides (Nicholson et al., 2001). This molecule behaves systematically as a chelating pentadentate ligand, through the tertiary N atom and four of the five alcohol arms. The metal coordination sphere is then completed with an ancillary ligand, frequently an aqua or a chlorido ligand. Furthermore, depending on the reaction conditions, H5bis-tris can be deprotonated, affording chelating anions. While anions (H5–nbis-tris)n− with n = 2 to 4 have been determined by X-ray structure analysis in several compounds (e.g. Stamatatos et al., 2009), it seems that to date the anionic ligand with n = 1, (H4bis-tris)−, has been observed only once: Kirillova et al. (2017) reported a comprising [Cu(H5bis-tris)(inic)]+ and [Cu(H4bis-tris)(inic)] entities, where inic stands for the isonicotinate anion. We now report the structure of the second complex where (H4bis-tris)− acts as a ligand, namely [Cu(H4bis-tris)Cl], which was obtained serendipitously from [Cu(H5bis-tris)Cl]+Cl (Inomata et al., 2004).
The new CuII molecular complex displays the expected distorted octahedral shape (Fig. 1). Since all H atoms could be located from electron-difference maps, the deprotonated alcohol group was clearly identified as being O5. Moreover, the anion formula for (H4bis-tris)− is consistent with the charge balance in the complex. The tetragonal distortion resulting from the Jahn–Teller effect for CuII increases bond lengths Cu1—O3 and Cu1—O4 [2.361 (3) and 2.436 (2) Å] in comparison with bond lengths in the equatorial plane N1/O2/O5/Cl1 [1.943 (2) to 2.2812 (10) Å]. The shape of the neutral molecule [Cu(H4bis-tris)Cl] is actually close to that observed for the cation [Cu(H5bis-tris)Cl]+: a molecular overlay gives a root-mean-square (r.m.s.) deviation of 0.28 Å and a maximum deviation of 0.91 Å (Fig. 1, inset).
The 5bis-tris. In the new complex, all hydroxy groups are donors for hydrogen bonding, and the deprotonated hydroxy group, O5, is an acceptor (Table 1). The latter is engaged in the strongest interaction, O2—H2⋯O5, with a very short H2⋯O5 distance of 1.553 (19) Å and with an angle O2—H2⋯O5 = 178 (4)°. Indeed, only few shorter intermolecular H⋯O separations can be retrieved from the Cambridge Structural Database (CSD v. 5.45, updated March 2024; Groom et al., 2016) for CH2—CH2—O⋯H—O fragments (see, for example: Yilmaz et al., 2002). Together with contact O3—H3⋯O4, (8) ring motifs are formed in the Combined with another hydrogen bond involving the non-coordinating alcohol group, O1—H1⋯Cl1, a diperiodic framework is formed parallel to (101), based on (8) and (22) supramolecular motifs (Fig. 2). The last hydrogen bond, O4—H4⋯O1, expands the supramolecular network through the formation of centrosymmetric (16) and (20) rings (Fig. 3), affording a stable triperiodic crystal structure.
and the network of hydrogen bonds are however modified upon deprotonation of HSynthesis and crystallization
Single crystals of the title complex were unexpectedly obtained in an attempt to substitute the chlorido ligand in [Cu(H5bis-tris)Cl]+ by a heterocyclic compound. Complex [Cu(H5bis-tris)Cl]+Cl− (1 mmol, 0.343 g) and fluconazole (1 mmol, 0.307 g) were dissolved in ethanol (70% v/v solution, 15 ml). The mixture was heated to 323 K under stirring for 20 min, and filtered to eliminate a blue precipitate. The resulting solution was evaporated over 3 days, affording a blue product. The crude product was recrystallized in methanol, giving sky-blue crystals used for the diffraction study (see Fig. 2, inset).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2355145
https://doi.org/10.1107/S2414314624004395/wm4213sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624004395/wm4213Isup2.hkl
[Cu(C8H18NO5)Cl] | Dx = 1.844 Mg m−3 |
Mr = 307.22 | Melting point: 435 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2605 (9) Å | Cell parameters from 1395 reflections |
b = 10.4221 (14) Å | θ = 3.4–29.6° |
c = 14.668 (2) Å | µ = 2.22 mm−1 |
β = 94.366 (12)° | T = 109 K |
V = 1106.7 (3) Å3 | Prism, blue |
Z = 4 | 0.17 × 0.06 × 0.04 mm |
F(000) = 636 |
Xcalibur, Atlas, Gemini diffractometer | 2582 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2002 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 10.4685 pixels mm-1 | θmax = 29.6°, θmin = 3.4° |
ω scans | h = −9→10 |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2022) | k = −14→13 |
Tmin = 0.848, Tmax = 0.917 | l = −18→18 |
5523 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: mixed |
wR(F2) = 0.130 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0646P)2] where P = (Fo2 + 2Fc2)/3 |
2582 reflections | (Δ/σ)max = 0.001 |
157 parameters | Δρmax = 1.18 e Å−3 |
4 restraints | Δρmin = −1.17 e Å−3 |
0 constraints |
Refinement. Methylene H atoms were refined using a riding model (C—H: 0.99 Å); hydroxy H atoms (H1, H2, H3, H4) were located from electron-difference maps and were refined freely, with the O—H bond lengths restrained to 0.85 (2) Å. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.22842 (5) | 0.75373 (4) | 0.75931 (3) | 0.00775 (16) | |
Cl1 | 0.31899 (12) | 0.76196 (8) | 0.61387 (6) | 0.0145 (2) | |
O1 | 0.2269 (3) | 0.8024 (2) | 1.09572 (16) | 0.0130 (5) | |
H1 | 0.116 (3) | 0.790 (4) | 1.103 (3) | 0.019* | |
O2 | 0.3908 (3) | 0.6168 (2) | 0.80600 (16) | 0.0096 (5) | |
H2 | 0.407 (5) | 0.539 (2) | 0.790 (3) | 0.014* | |
O3 | 0.4592 (3) | 0.8730 (2) | 0.84389 (17) | 0.0143 (5) | |
H3 | 0.462 (5) | 0.9507 (19) | 0.836 (3) | 0.022* | |
O4 | −0.0338 (3) | 0.6104 (2) | 0.72784 (16) | 0.0104 (5) | |
H4 | −0.113 (4) | 0.641 (4) | 0.692 (2) | 0.016* | |
O5 | 0.0620 (3) | 0.8995 (2) | 0.74310 (16) | 0.0111 (5) | |
N1 | 0.1319 (4) | 0.7390 (2) | 0.8869 (2) | 0.0075 (6) | |
C1 | 0.3128 (5) | 0.7294 (3) | 0.9443 (2) | 0.0080 (7) | |
C2 | 0.2964 (5) | 0.6976 (3) | 1.0446 (2) | 0.0121 (7) | |
H2A | 0.213089 | 0.622927 | 1.048817 | 0.015* | |
H2B | 0.419525 | 0.672641 | 1.072706 | 0.015* | |
C3 | 0.4235 (4) | 0.6194 (3) | 0.9021 (2) | 0.0109 (7) | |
H3A | 0.557130 | 0.631837 | 0.918562 | 0.013* | |
H3B | 0.386836 | 0.536144 | 0.927768 | 0.013* | |
C4 | 0.4244 (4) | 0.8542 (3) | 0.9372 (2) | 0.0104 (7) | |
H4A | 0.353726 | 0.927666 | 0.959330 | 0.012* | |
H4B | 0.542532 | 0.847779 | 0.975361 | 0.012* | |
C5 | 0.0232 (4) | 0.6181 (3) | 0.8917 (2) | 0.0096 (7) | |
H5A | −0.039617 | 0.617991 | 0.949336 | 0.012* | |
H5B | 0.109414 | 0.544400 | 0.893907 | 0.012* | |
C6 | −0.1206 (4) | 0.5993 (3) | 0.8123 (2) | 0.0118 (7) | |
H6A | −0.178021 | 0.513531 | 0.816363 | 0.014* | |
H6B | −0.218735 | 0.664857 | 0.814672 | 0.014* | |
C7 | 0.0172 (4) | 0.8544 (3) | 0.9019 (2) | 0.0094 (7) | |
H7A | 0.095096 | 0.922177 | 0.932473 | 0.011* | |
H7B | −0.081487 | 0.832157 | 0.942142 | 0.011* | |
C8 | −0.0692 (4) | 0.9044 (3) | 0.8101 (2) | 0.0114 (7) | |
H8A | −0.177933 | 0.851406 | 0.789966 | 0.014* | |
H8B | −0.111298 | 0.993927 | 0.817219 | 0.014* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0099 (3) | 0.0069 (2) | 0.0065 (2) | 0.00093 (15) | 0.00096 (17) | 0.00036 (15) |
Cl1 | 0.0135 (4) | 0.0219 (5) | 0.0084 (4) | 0.0024 (3) | 0.0025 (3) | 0.0011 (3) |
O1 | 0.0108 (11) | 0.0173 (13) | 0.0108 (13) | −0.0005 (11) | 0.0007 (9) | −0.0040 (11) |
O2 | 0.0163 (11) | 0.0046 (11) | 0.0080 (12) | 0.0047 (10) | 0.0018 (9) | −0.0025 (10) |
O3 | 0.0218 (12) | 0.0108 (11) | 0.0110 (13) | −0.0061 (11) | 0.0049 (10) | 0.0006 (11) |
O4 | 0.0128 (11) | 0.0111 (12) | 0.0073 (12) | −0.0009 (10) | −0.0007 (9) | 0.0000 (10) |
O5 | 0.0154 (11) | 0.0085 (11) | 0.0100 (12) | 0.0031 (10) | 0.0037 (9) | 0.0011 (10) |
N1 | 0.0095 (13) | 0.0039 (13) | 0.0088 (14) | 0.0006 (10) | −0.0011 (11) | −0.0011 (11) |
C1 | 0.0085 (15) | 0.0082 (15) | 0.0070 (16) | −0.0009 (13) | −0.0022 (12) | −0.0015 (13) |
C2 | 0.0128 (16) | 0.0119 (16) | 0.0114 (18) | 0.0007 (14) | −0.0012 (13) | −0.0009 (15) |
C3 | 0.0114 (15) | 0.0090 (16) | 0.0121 (18) | 0.0007 (14) | −0.0011 (12) | 0.0020 (14) |
C4 | 0.0120 (15) | 0.0078 (16) | 0.0112 (18) | −0.0019 (14) | 0.0001 (12) | −0.0028 (13) |
C5 | 0.0119 (15) | 0.0090 (15) | 0.0075 (16) | −0.0004 (14) | −0.0013 (12) | 0.0018 (14) |
C6 | 0.0137 (15) | 0.0113 (16) | 0.0101 (17) | −0.0055 (14) | −0.0015 (12) | 0.0021 (14) |
C7 | 0.0102 (15) | 0.0105 (16) | 0.0076 (17) | 0.0038 (13) | 0.0010 (12) | 0.0011 (13) |
C8 | 0.0124 (15) | 0.0115 (16) | 0.0102 (17) | 0.0004 (14) | 0.0012 (12) | 0.0014 (14) |
Cu1—O2 | 1.943 (2) | C1—C4 | 1.540 (4) |
Cu1—O5 | 1.944 (2) | C1—C3 | 1.556 (5) |
Cu1—N1 | 2.054 (3) | C2—H2A | 0.9900 |
Cu1—Cl1 | 2.2812 (10) | C2—H2B | 0.9900 |
Cu1—O3 | 2.361 (3) | C3—H3A | 0.9900 |
Cu1—O4 | 2.436 (2) | C3—H3B | 0.9900 |
O1—C2 | 1.438 (4) | C4—H4A | 0.9900 |
O1—H1 | 0.833 (19) | C4—H4B | 0.9900 |
O2—C3 | 1.412 (4) | C5—C6 | 1.516 (4) |
O2—H2 | 0.856 (19) | C5—H5A | 0.9900 |
O3—C4 | 1.425 (4) | C5—H5B | 0.9900 |
O3—H3 | 0.818 (19) | C6—H6A | 0.9900 |
O4—C6 | 1.437 (4) | C6—H6B | 0.9900 |
O4—H4 | 0.819 (18) | C7—C8 | 1.534 (5) |
O5—C8 | 1.420 (4) | C7—H7A | 0.9900 |
N1—C7 | 1.489 (4) | C7—H7B | 0.9900 |
N1—C5 | 1.491 (4) | C8—H8A | 0.9900 |
N1—C1 | 1.509 (4) | C8—H8B | 0.9900 |
C1—C2 | 1.522 (5) | ||
O2—Cu1—O5 | 166.42 (10) | C1—C2—H2A | 108.9 |
O2—Cu1—N1 | 82.17 (10) | O1—C2—H2B | 108.9 |
O5—Cu1—N1 | 85.29 (10) | C1—C2—H2B | 108.9 |
O2—Cu1—Cl1 | 98.45 (7) | H2A—C2—H2B | 107.7 |
O5—Cu1—Cl1 | 94.41 (7) | O2—C3—C1 | 111.0 (3) |
N1—Cu1—Cl1 | 176.13 (8) | O2—C3—H3A | 109.4 |
O2—Cu1—O3 | 79.29 (9) | C1—C3—H3A | 109.4 |
O5—Cu1—O3 | 93.57 (9) | O2—C3—H3B | 109.4 |
N1—Cu1—O3 | 80.70 (10) | C1—C3—H3B | 109.4 |
Cl1—Cu1—O3 | 103.18 (7) | H3A—C3—H3B | 108.0 |
O2—Cu1—O4 | 93.48 (9) | O3—C4—C1 | 108.3 (3) |
O5—Cu1—O4 | 89.25 (9) | O3—C4—H4A | 110.0 |
N1—Cu1—O4 | 79.10 (10) | C1—C4—H4A | 110.0 |
Cl1—Cu1—O4 | 97.04 (6) | O3—C4—H4B | 110.0 |
O3—Cu1—O4 | 159.29 (9) | C1—C4—H4B | 110.0 |
C2—O1—H1 | 110 (3) | H4A—C4—H4B | 108.4 |
C3—O2—Cu1 | 112.91 (19) | N1—C5—C6 | 114.1 (3) |
C3—O2—H2 | 106 (3) | N1—C5—H5A | 108.7 |
Cu1—O2—H2 | 134 (3) | C6—C5—H5A | 108.7 |
C4—O3—Cu1 | 105.16 (18) | N1—C5—H5B | 108.7 |
C4—O3—H3 | 106 (3) | C6—C5—H5B | 108.7 |
Cu1—O3—H3 | 118 (3) | H5A—C5—H5B | 107.6 |
C6—O4—Cu1 | 105.88 (18) | O4—C6—C5 | 109.3 (3) |
C6—O4—H4 | 105 (3) | O4—C6—H6A | 109.8 |
Cu1—O4—H4 | 113 (3) | C5—C6—H6A | 109.8 |
C8—O5—Cu1 | 112.74 (19) | O4—C6—H6B | 109.8 |
C7—N1—C5 | 111.8 (3) | C5—C6—H6B | 109.8 |
C7—N1—C1 | 116.3 (3) | H6A—C6—H6B | 108.3 |
C5—N1—C1 | 111.1 (2) | N1—C7—C8 | 109.9 (3) |
C7—N1—Cu1 | 107.9 (2) | N1—C7—H7A | 109.7 |
C5—N1—Cu1 | 109.0 (2) | C8—C7—H7A | 109.7 |
C1—N1—Cu1 | 99.8 (2) | N1—C7—H7B | 109.7 |
N1—C1—C2 | 115.2 (3) | C8—C7—H7B | 109.7 |
N1—C1—C4 | 110.3 (3) | H7A—C7—H7B | 108.2 |
C2—C1—C4 | 109.3 (3) | O5—C8—C7 | 110.1 (3) |
N1—C1—C3 | 106.3 (3) | O5—C8—H8A | 109.6 |
C2—C1—C3 | 107.7 (3) | C7—C8—H8A | 109.6 |
C4—C1—C3 | 107.8 (3) | O5—C8—H8B | 109.6 |
O1—C2—C1 | 113.2 (3) | C7—C8—H8B | 109.6 |
O1—C2—H2A | 108.9 | H8A—C8—H8B | 108.1 |
C7—N1—C1—C2 | 72.7 (4) | C4—C1—C3—O2 | −82.8 (3) |
C5—N1—C1—C2 | −56.7 (4) | Cu1—O3—C4—C1 | 22.4 (3) |
Cu1—N1—C1—C2 | −171.5 (2) | N1—C1—C4—O3 | −60.1 (3) |
C7—N1—C1—C4 | −51.5 (4) | C2—C1—C4—O3 | 172.3 (3) |
C5—N1—C1—C4 | 179.1 (3) | C3—C1—C4—O3 | 55.5 (3) |
Cu1—N1—C1—C4 | 64.2 (3) | C7—N1—C5—C6 | 69.7 (4) |
C7—N1—C1—C3 | −168.1 (3) | C1—N1—C5—C6 | −158.5 (3) |
C5—N1—C1—C3 | 62.5 (3) | Cu1—N1—C5—C6 | −49.5 (3) |
Cu1—N1—C1—C3 | −52.3 (3) | Cu1—O4—C6—C5 | −28.5 (3) |
N1—C1—C2—O1 | −72.4 (3) | N1—C5—C6—O4 | 53.5 (4) |
C4—C1—C2—O1 | 52.4 (4) | C5—N1—C7—C8 | −91.3 (3) |
C3—C1—C2—O1 | 169.2 (2) | C1—N1—C7—C8 | 139.7 (3) |
Cu1—O2—C3—C1 | 2.2 (3) | Cu1—N1—C7—C8 | 28.6 (3) |
N1—C1—C3—O2 | 35.5 (3) | Cu1—O5—C8—C7 | 34.4 (3) |
C2—C1—C3—O2 | 159.4 (3) | N1—C7—C8—O5 | −41.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl1i | 0.83 (2) | 2.24 (2) | 3.068 (2) | 174 (4) |
O2—H2···O5ii | 0.86 (2) | 1.55 (2) | 2.408 (3) | 178 (4) |
O3—H3···O4iii | 0.82 (2) | 2.00 (2) | 2.758 (3) | 154 (4) |
O4—H4···O1iv | 0.82 (2) | 1.85 (2) | 2.663 (3) | 171 (4) |
C4—H4B···Cl1v | 0.99 | 2.97 | 3.906 (3) | 157 |
C5—H5A···Cl1i | 0.99 | 2.97 | 3.887 (4) | 155 |
C7—H7B···Cl1i | 0.99 | 2.85 | 3.727 (3) | 148 |
C8—H8B···O1vi | 0.99 | 2.65 | 3.577 (4) | 157 |
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x−1/2, −y+3/2, z−1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) −x, −y+2, −z+2. |
Acknowledgements
The authors thank Dr Marcos Flores Alamo (Facultad de Química, UNAM, Mexico) for the data collection.
Funding information
Funding for this research was provided by: Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (grant No. 00030 to Grupos de investigación interdisciplinaria 2023); Consejo Nacional de Ciencia y Tecnología (scholarship No. 1064640 to MF-V).
References
Fortis-Valera, M., Bernès, S., Arroyo-Carmona, R. E. & Pérez-Benítez, A. (2018). CSD Communication (refcode FIPRAY01). CCDC, Cambridge, England Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Inomata, Y., Gochou, Y., Nogami, M., Howell, F. S. & Takeuchi, T. (2004). J. Mol. Struct. 702, 61–70. CSD CrossRef CAS Google Scholar
Kirillova, M. V., Santos, C. I. M., André, V., Fernandes, T. A., Dias, S. S. P. & Kirillov, A. M. (2017). Inorg. Chem. Front. 4, 968–977. CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nicholson, K. N., Twamley, B. & Wood, S. (2001). Acta Cryst. E57, o1133–o1135. CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stamatatos, T. C., Abboud, K. A. & Christou, G. (2009). Dalton Trans. pp. 41–50. CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yilmaz, V. T., Andac, O., Karadag, A. & Harrison, W. T. A. (2002). J. Mol. Struct. 641, 119–124. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.