metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(5-Fluoro-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-1-ido-κN1)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)zinc(II) perchlorate

crossmark logo

aFaculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan, and bCollege of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Nagoya 463-8521, Japan
*Correspondence e-mail: h-kurosaki@kinjo-u.ac.jp

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 22 April 2024; accepted 9 May 2024; online 21 May 2024)

In the structure of the title complex, [Zn(C4H2FN2O2)(C10H24N4)]ClO4, the zinc(II) ion forms coordination bonds with the four nitro­gen atoms of cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane or [14]aneN4) as well as with the nitro­gen atom of a deprotonated 5-fluoro­uracil ion (FU). Cyclam adopts a trans-I type conformation within this structure. The coordination structure of the zinc(II) ion is a square pyramid with a distorted base plane formed by the four nitro­gen atoms of the cyclam. FU engages in inter­molecular hydrogen bonding with neighboring FU mol­ecules and with the cyclam mol­ecule.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclam (= 1,4,8,11-tetra­aza­cyclo­tetra­decane or [14]aneN4) is a widely recognized macrocyclic polyamine renowned for its strong chelation properties with transition-metal cations, such as cobalt(III) ion (Fang et al., 2024[Fang, J., Orobator, O. N., Olelewe, C., Passeri, G., Singh, K., Awuah, S. G. & Suntharalingam, K. (2024). Angew. Chem. Int. Ed. 63, e202317940.]), copper(II) ion (Emsley et al., 1990[Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1990). J. Mol. Struct. 220, 1-12.]), and nickel(II) ion (Prasad et al., 1987[Prasad, L., Nyburg, S. C. & McAuley, A. (1987). Acta Cryst. C43, 1038-1042.]). We have reported the crystal structure of a zinc(II) ion and a cyclam complex (ZnII–cyclam) (Ichimaru et al., 2022[Ichimaru, Y., Kato, K., Kurihara, M., Jin, W., Koike, T. & Kurosaki, H. (2022). IUCr Data. 7, x220854.]). Cyclen (= 1,4,7,10-tetra­aza­cyclo­dodecane or [12]aneN4) shares similarities with cyclam as a macrocyclic polyamine. Cyclen's chelation properties with metal cations are largely akin to those of cyclam, including its affinity for zinc(II) ions (Ichimaru et al., 2021[Ichimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data. 6, x210397.]). Cyclam and cyclen differ in the number of atoms forming their rings. In metal–cyclam complexes, the metal cation and four nitro­gen atoms lie within the same plane, allowing for the coordination of two counter-anions perpendicular to the plane; the coordination structure of a central metal is octa­hedral. Conversely, in metal–cyclen complexes, the metal cation is located above the plane formed by the four nitro­gen atoms, enabling the coordination of one counter anion; the coordination structure of a central metal is a square pyramid. We previously reported on the formation of a complex between deprotonated 5-fluoro­uracil (FU) and ZnII–cyclen (Ichimaru et al., 2023[Ichimaru, Y., Kato, K., Nakatani, R., Sugiura, K., Mizutani, H., Kinoshita-Kikuta, E., Koike, T., Jin, W., Imai, M. & Kurosaki, H. (2023). Inorg. Chem. Commun. 147, 110221.]). In this study, we attempted to synthesize the aforementioned complex by reacting ZnII–cyclam with FU at a 1:2 stoichiometry. However, the resulting mol­ecule was identified as the title complex, that is, ZnII–cyclam and FU formed a complex with 1:1 stoichiometry. Further studies on the reaction conditions for complex formation, including changing the reaction stoichiometry, are expected in the future.

The title complex comprises an FU bound to a zinc(II) ion chelated by cyclam (Fig. 1[link]). The FU mol­ecule was formed by deprotonation of the N–H group at the most acidic 3-position of FU. Additionally, one perchlorate ion serves as a counter-anion adjacent to the complex. In terms of the cyclam ring's conformation within the title complex, it adopts a trans-I (R, S, R, S) type, while the energetically most stable coordination is the trans-III (R, R, S, S) type (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.]; Oakley et al., 2024[Oakley, M. S., Oakes, M. R., Wagner, B. D. & Pearson, J. K. (2024). Theor. Chem. Acc. 143, 4.]). In instances where the central metal is a zinc(II) ion, it is noted that two counter-anions can coordinate perpendicular to the plane established by the trans-III type cyclam (Ichimaru et al., 2022[Ichimaru, Y., Kato, K., Kurihara, M., Jin, W., Koike, T. & Kurosaki, H. (2022). IUCr Data. 7, x220854.]). However, in the title complex, contrary to our expectation, only one FU mol­ecule coordinates with the zinc(II) ion, while the cyclam adopts a trans-I type. In cases where an anion coordinates with the central metal of N-tetra­methyl­cyclam, the trans-I type is often adopted, primarily due to non-bonding inter­actions (Liang & Sadler, 2004[Liang, X. & Sadler, P. J. (2004). Chem. Soc. Rev. 33, 246-266.]). However, it is uncommon for N-non-substituted cyclam to adopt the trans-I type. The coordination system of zinc(II) ion is shown in Fig. 2[link]. The bond angles formed by N5—Zn1 and the nitro­gen atoms of cyclam (N1, N2, N3, and N4) are 108.17 (13), 90.91 (13), 115.88 (13), and 100.68 (13)°, respectively. These bond angles were observed to be smaller for the longer bond lengths between Zn1 and the nitro­gen atoms of cyclam (N1, N2, N3, and N4). In a typical ZnII–cyclam complex, the corresponding bond angles and bond lengths are approximately 90° and 2.08 Å, respectively (Ichimaru et al., 2022[Ichimaru, Y., Kato, K., Kurihara, M., Jin, W., Koike, T. & Kurosaki, H. (2022). IUCr Data. 7, x220854.]). In the title compound, the bond Z1—N2 is 2.211 (3) Å when the bond angle N5—Zn1—N2 is 90.91 (13)°, and the distance Zn1—N1 equals 2.082 (3) Å when the bond angle N5—Zn1—N1 amounts to 108.17 (13)°. The distances between two pairs of N atoms located diagonally across Zn1 are N1⋯N3 = 3.840 (5) and N2⋯N4 = 4.349 (5) Å. In a typical ZnII–cyclam complex, the corresponding distance is approximately 4.17 Å (Ichimaru et al., 2022[Ichimaru, Y., Kato, K., Kurihara, M., Jin, W., Koike, T. & Kurosaki, H. (2022). IUCr Data. 7, x220854.]). As discussed earlier, the nitro­gen atoms of the cyclam are not situated in the same plane. The coordination structure of the zinc(II) ion is a distorted square pyramid. The zinc(II) ion is located 0.5034 (18) Å vertically above the centroid of the mean plane formed by the nitro­gen atoms of the cyclam.

[Figure 1]
Figure 1
The title complex with displacement ellipsoids drawn at the 50% probability level. C-bound H atoms and a perchlorate ion are omitted for clarity.
[Figure 2]
Figure 2
The coordination structure of Zn1 showing with displacement ellipsoids drawn at the 50% probability level. Bond angles and bond lengths are shown in red and black, respectively.

FU mol­ecules engage in inter­molecular hydrogen bonding with neighboring FU mol­ecules (Fig. 3[link]). In addition, there are intra­molecular hydrogen bonds between the carbonyl groups and the NH moieties of the cyclam. The perchlorate ion forms hydrogen bonds to two different cyclam rings. Table 1[link] provides a summary of numerical data related to hydrogen bonding. The hydrogen bonding involves the N6—H6 group, which is not coordinated with the cyclam, and the oxygen atom (O2) of the carbonyl group adjacent to the N6—H6 group. Similar hydrogen-bond formations are observed in complexes of FU and zinc(II) ions other than the title complex (Icsel et al., 2022[Icsel, C., Yilmaz, V. T., Aygun, M., Erkisa, M. & Ulukaya, E. (2022). Dalton Trans. 51, 5208-5217.]). Even in crystals where a complex has not formed, two FU mol­ecules form a hydrogen bond similar to that in the title compound (Hulme & Tocher, 2004[Hulme, A. T. & Tocher, D. A. (2004). Acta Cryst. E60, o1781-o1782.]). However, the N—H group participating in this hydrogen bonding is different from that of the title compound, that is, a more acidic N—H is involved in the hydrogen bond. In the title complex, the highly acidic hydrogen atom is released, allowing another N—H to form a hydrogen bond. In polyamine complexes such as ZnII–cyclen and ZnII–cyclam, the N—H group involved in ring formation can contribute to the hydrogen bonding network with counter anions and/or ligands (Ichimaru et al., 2021[Ichimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data. 6, x210397.]; Donaghy et al., 2023[Donaghy, C., Javellana, J. G., Hong, Y.-J., Djoko, K. & Angeles-Boza, A. M. (2023). Molecules, 28, 2156.]). In our previously reported complex of FU bound to ZnII–cyclen, the carbonyl oxygen of FU formed hydrogen bonds with the N—H of cyclen and a perchlorate ion (Ichimaru et al., 2023[Ichimaru, Y., Kato, K., Nakatani, R., Sugiura, K., Mizutani, H., Kinoshita-Kikuta, E., Koike, T., Jin, W., Imai, M. & Kurosaki, H. (2023). Inorg. Chem. Commun. 147, 110221.]). The torsion angles between the two carbonyl groups of FU and the two pairs of nitro­gen atoms (N1 and N3, N2, and N4) located diagonally across the zinc(II) ion are O1—O2—N3—N1 = −25.84 (8)° and O2—O1—N2—N4 = −76.57 (11)°. This indicates that the two carbonyl groups are not aligned parallel to either of the two pairs of nitro­gen atoms situated at opposite angles. A packing diagram is provided in Fig. 4[link]. Besides the aforementioned hydrogen bonding, no other inter­molecular inter­actions were observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O2i 0.88 1.94 2.803 (4) 167
N1—H1⋯O1 1.00 2.19 2.966 (4) 133
N3—H3⋯O2 1.00 2.37 3.066 (4) 126
N3—H3⋯O5 1.00 2.24 3.055 (4) 138
N4—H4⋯O5ii 1.00 2.44 3.403 (5) 161
N4—H4⋯O6ii 1.00 2.44 3.229 (5) 136
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The inter­molecular hydrogen-bonding inter­actions of the title complex with displacement ellipsoids drawn at the 50% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines. [Symmetry code: (i) 1 − x, 1 − y, 1 − z.]
[Figure 4]
Figure 4
Packing view down b-axis of the title complex showing with displacement ellipsoids drawn at the 50% probability level. Perchlorate ions and C-bound H atoms are omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines.

Synthesis and crystallization

[ZnII–cyclam](ClO4)2 was synthesized using a previously reported method (Tyson et al., 1990[Tyson, T. A., Hodgson, K. O., Hedman, B. & Clark, G. R. (1990). Acta Cryst. C46, 1638-1640.]). 5-Fluoro­uracil (60.0 mg, 0.46 mmol) in 4.54 ml of H2O, 0.46 ml of 1 mol L−1 NaOH aq was added to clarify the suspension. After stirring at room temperature for 30 min, a solution of aqueous [ZnII–cyclam](ClO4)2 (107.1 mg, 0.23 mmol, 2.0 ml) was added dropwise to the reaction mixture; it was then stirred at 323 K for 4 h. Subsequently, the reaction mixture was filtered through a cellulose acetate filter (0.22-µm pore size) and then allowed to stand overnight at room temperature. Colorless crystals suitable for X-ray crystallographic analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C4H2FN2O2)(C10H24N4)]ClO4
Mr 494.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.8065 (2), 12.5029 (3), 16.1592 (3)
β (°) 95.599 (2)
V3) 1971.82 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.48
Crystal size (mm) 0.91 × 0.64 × 0.55
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-i
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.465, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17193, 3587, 3489
Rint 0.092
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.179, 1.11
No. of reflections 3587
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.60, −1.36
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO Rigaku Corporation, Tokyo, Japan.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

(5-Fluoro-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-1-ido-κN1)(1,4,8,11-tetraazacyclotetradecane-κ4N)zinc(II) perchlorate top
Crystal data top
[Zn(C4H2FN2O2)(C10H24N4)]ClO4F(000) = 1024
Mr = 494.23Dx = 1.665 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.8065 (2) ÅCell parameters from 13648 reflections
b = 12.5029 (3) Åθ = 2.7–68.1°
c = 16.1592 (3) ŵ = 3.48 mm1
β = 95.599 (2)°T = 100 K
V = 1971.82 (7) Å3Block, colourless
Z = 40.91 × 0.64 × 0.55 mm
Data collection top
Rigaku XtaLAB Synergy-i
diffractometer
3587 independent reflections
Radiation source: microfocus sealed X-ray tube, PhotonJet-i3489 reflections with I > 2σ(I)
Multi-layer mirror optics monochromatorRint = 0.092
Detector resolution: 10.0 pixels mm-1θmax = 68.2°, θmin = 4.5°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1414
Tmin = 0.465, Tmax = 1.000l = 1919
17193 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.1099P)2 + 4.5604P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
3587 reflectionsΔρmax = 1.60 e Å3
262 parametersΔρmin = 1.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were located by a geometrical calculation, and were not refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.29929 (5)0.24605 (3)0.66114 (3)0.0114 (2)
Cl10.20118 (9)0.70678 (7)0.71977 (6)0.0210 (3)
F10.7396 (2)0.1048 (2)0.52427 (16)0.0335 (6)
O20.4045 (3)0.4332 (2)0.56678 (17)0.0222 (6)
O10.5241 (3)0.0863 (2)0.62077 (19)0.0260 (6)
N50.4640 (3)0.2604 (2)0.5961 (2)0.0137 (7)
O50.2791 (3)0.6245 (2)0.6828 (2)0.0318 (7)
N60.5912 (3)0.3668 (3)0.51134 (19)0.0185 (7)
H60.6060660.4292110.4886640.022*
O30.1333 (4)0.6626 (3)0.7866 (2)0.0404 (8)
N30.2281 (3)0.3864 (2)0.7091 (2)0.0188 (7)
H30.2807210.4453800.6850200.023*
N20.1593 (4)0.2636 (3)0.5461 (2)0.0225 (8)
H20.2101310.3054940.5062440.027*
N40.3982 (3)0.2264 (3)0.7856 (2)0.0226 (7)
H40.4945460.2024950.7810570.027*
O60.2940 (3)0.7882 (2)0.7519 (2)0.0373 (8)
O40.1026 (4)0.7510 (3)0.6582 (3)0.0483 (11)
N10.2305 (3)0.0887 (3)0.6509 (2)0.0257 (8)
H10.3088610.0471000.6319590.031*
C110.5473 (4)0.1728 (3)0.5874 (2)0.0185 (8)
C140.4839 (4)0.3561 (3)0.5584 (2)0.0160 (7)
C120.6572 (4)0.1887 (3)0.5358 (3)0.0226 (8)
C130.6767 (4)0.2824 (4)0.4984 (2)0.0206 (8)
H130.7485160.2903680.4634520.025*
C60.2659 (4)0.3903 (3)0.8005 (3)0.0266 (9)
H6A0.1948170.3538070.8297150.032*
H6B0.2717400.4656100.8194800.032*
C70.4033 (4)0.3354 (4)0.8208 (3)0.0294 (10)
H7A0.4761860.3771440.7973920.035*
H7B0.4251050.3316520.8818910.035*
C30.0264 (4)0.3177 (4)0.5502 (3)0.0283 (10)
H3A0.0354050.2702110.5782560.034*
H3B0.0161000.3309250.4929780.034*
C50.0810 (4)0.4135 (3)0.6891 (3)0.0261 (9)
H5A0.0614960.4820040.7163490.031*
H5B0.0242680.3573960.7121160.031*
C20.1450 (4)0.1550 (4)0.5130 (3)0.0311 (10)
H2A0.2296260.1339550.4883750.037*
H2B0.0676780.1519480.4687910.037*
C80.3328 (5)0.1478 (4)0.8374 (3)0.0315 (10)
H8A0.2430740.1763960.8502670.038*
H8B0.3906880.1388910.8906340.038*
C10.1190 (4)0.0788 (4)0.5827 (3)0.0310 (10)
H1A0.0300780.0958030.6038040.037*
H1B0.1148710.0044020.5616040.037*
C40.0412 (4)0.4232 (4)0.5966 (3)0.0313 (10)
H4A0.1112040.4668790.5720680.038*
H4B0.0469100.4621950.5879020.038*
C100.1970 (5)0.0352 (3)0.7273 (3)0.0311 (10)
H10A0.1743030.0405010.7145310.037*
H10B0.1145580.0693870.7464860.037*
C90.3108 (5)0.0393 (4)0.7964 (3)0.0370 (11)
H9A0.3969830.0172820.7740660.044*
H9B0.2912470.0134090.8394190.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0045 (3)0.0164 (3)0.0130 (3)0.00001 (15)0.0012 (2)0.00062 (16)
Cl10.0161 (5)0.0239 (5)0.0228 (5)0.0025 (3)0.0017 (4)0.0047 (3)
F10.0190 (12)0.0423 (15)0.0409 (15)0.0160 (11)0.0114 (11)0.0067 (12)
O20.0159 (13)0.0226 (13)0.0293 (15)0.0014 (11)0.0087 (11)0.0055 (11)
O10.0149 (13)0.0264 (14)0.0370 (16)0.0072 (11)0.0043 (12)0.0098 (12)
N50.0052 (14)0.0212 (16)0.0141 (16)0.0008 (11)0.0025 (12)0.0044 (11)
O50.0373 (17)0.0244 (15)0.0364 (17)0.0027 (13)0.0177 (14)0.0023 (13)
N60.0085 (14)0.0293 (17)0.0175 (16)0.0018 (12)0.0002 (12)0.0070 (13)
O30.046 (2)0.0431 (19)0.0362 (18)0.0070 (16)0.0235 (16)0.0082 (15)
N30.0142 (15)0.0187 (15)0.0235 (17)0.0018 (12)0.0027 (12)0.0001 (13)
N20.0134 (17)0.039 (2)0.0148 (17)0.0011 (14)0.0029 (13)0.0009 (14)
N40.0096 (16)0.0353 (18)0.0227 (18)0.0010 (14)0.0001 (13)0.0054 (15)
O60.0218 (16)0.0215 (15)0.067 (2)0.0057 (13)0.0039 (15)0.0077 (15)
O40.035 (2)0.077 (3)0.032 (2)0.0136 (17)0.0048 (17)0.0084 (16)
N10.0142 (16)0.0202 (16)0.044 (2)0.0012 (13)0.0062 (14)0.0012 (15)
C110.0074 (16)0.030 (2)0.0176 (18)0.0036 (15)0.0030 (14)0.0009 (15)
C140.0086 (16)0.0249 (18)0.0137 (17)0.0042 (14)0.0033 (13)0.0017 (14)
C120.0103 (17)0.032 (2)0.025 (2)0.0058 (16)0.0006 (15)0.0011 (17)
C130.0057 (17)0.038 (2)0.0181 (19)0.0009 (16)0.0005 (14)0.0044 (17)
C60.024 (2)0.027 (2)0.029 (2)0.0044 (17)0.0063 (17)0.0105 (17)
C70.019 (2)0.048 (3)0.020 (2)0.0122 (19)0.0057 (16)0.0106 (19)
C30.0088 (17)0.050 (3)0.025 (2)0.0003 (18)0.0067 (15)0.0113 (19)
C50.0123 (18)0.0234 (19)0.044 (2)0.0036 (15)0.0084 (17)0.0005 (18)
C20.0163 (19)0.055 (3)0.021 (2)0.0066 (19)0.0030 (16)0.012 (2)
C80.029 (2)0.052 (3)0.0137 (19)0.005 (2)0.0008 (16)0.0146 (19)
C10.020 (2)0.030 (2)0.044 (3)0.0044 (17)0.0064 (18)0.0156 (19)
C40.0132 (19)0.032 (2)0.048 (3)0.0081 (17)0.0009 (18)0.013 (2)
C100.025 (2)0.0191 (19)0.051 (3)0.0006 (16)0.012 (2)0.0098 (18)
C90.034 (2)0.032 (2)0.049 (3)0.0103 (19)0.018 (2)0.020 (2)
Geometric parameters (Å, º) top
Zn1—N52.019 (3)C11—C121.438 (5)
Zn1—N32.067 (3)C12—C131.340 (6)
Zn1—N22.211 (3)C13—H130.9500
Zn1—N42.159 (4)C6—H6A0.9900
Zn1—N12.082 (3)C6—H6B0.9900
Cl1—O51.445 (3)C6—C71.520 (6)
Cl1—O31.433 (3)C7—H7A0.9900
Cl1—O61.429 (3)C7—H7B0.9900
Cl1—O41.429 (4)C3—H3A0.9900
F1—C121.348 (5)C3—H3B0.9900
O2—C141.255 (5)C3—C41.517 (7)
O1—C111.240 (5)C5—H5A0.9900
N5—C111.381 (5)C5—H5B0.9900
N5—C141.365 (5)C5—C41.513 (7)
N6—H60.8800C2—H2A0.9900
N6—C141.363 (5)C2—H2B0.9900
N6—C131.377 (5)C2—C11.517 (7)
N3—H31.0000C8—H8A0.9900
N3—C61.489 (5)C8—H8B0.9900
N3—C51.486 (5)C8—C91.516 (7)
N2—H21.0000C1—H1A0.9900
N2—C31.476 (5)C1—H1B0.9900
N2—C21.462 (6)C4—H4A0.9900
N4—H41.0000C4—H4B0.9900
N4—C71.476 (6)C10—H10A0.9900
N4—C81.478 (6)C10—H10B0.9900
N1—H11.0000C10—C91.501 (7)
N1—C11.479 (6)C9—H9A0.9900
N1—C101.469 (6)C9—H9B0.9900
N5—Zn1—N3115.88 (13)N3—C6—H6B109.8
N5—Zn1—N290.91 (13)N3—C6—C7109.2 (3)
N5—Zn1—N4100.68 (13)H6A—C6—H6B108.3
N5—Zn1—N1108.17 (13)C7—C6—H6A109.8
N3—Zn1—N291.50 (13)C7—C6—H6B109.8
N3—Zn1—N483.40 (14)N4—C7—C6109.8 (3)
N3—Zn1—N1135.54 (13)N4—C7—H7A109.7
N4—Zn1—N2168.41 (14)N4—C7—H7B109.7
N1—Zn1—N281.80 (14)C6—C7—H7A109.7
N1—Zn1—N494.55 (15)C6—C7—H7B109.7
O3—Cl1—O5109.9 (2)H7A—C7—H7B108.2
O6—Cl1—O5108.3 (2)N2—C3—H3A109.2
O6—Cl1—O3109.1 (2)N2—C3—H3B109.2
O6—Cl1—O4109.9 (2)N2—C3—C4112.2 (3)
O4—Cl1—O5109.6 (2)H3A—C3—H3B107.9
O4—Cl1—O3110.0 (2)C4—C3—H3A109.2
C11—N5—Zn1119.6 (2)C4—C3—H3B109.2
C14—N5—Zn1117.8 (2)N3—C5—H5A109.1
C14—N5—C11122.5 (3)N3—C5—H5B109.1
C14—N6—H6119.2N3—C5—C4112.6 (3)
C14—N6—C13121.6 (3)H5A—C5—H5B107.8
C13—N6—H6119.2C4—C5—H5A109.1
Zn1—N3—H3105.9C4—C5—H5B109.1
C6—N3—Zn1109.8 (2)N2—C2—H2A109.8
C6—N3—H3105.9N2—C2—H2B109.8
C5—N3—Zn1117.9 (2)N2—C2—C1109.2 (3)
C5—N3—H3105.9H2A—C2—H2B108.3
C5—N3—C6110.5 (3)C1—C2—H2A109.8
Zn1—N2—H2106.6C1—C2—H2B109.8
C3—N2—Zn1119.1 (3)N4—C8—H8A108.9
C3—N2—H2106.6N4—C8—H8B108.9
C2—N2—Zn1104.2 (3)N4—C8—C9113.5 (4)
C2—N2—H2106.6H8A—C8—H8B107.7
C2—N2—C3112.9 (3)C9—C8—H8A108.9
Zn1—N4—H4107.9C9—C8—H8B108.9
C7—N4—Zn1104.5 (3)N1—C1—C2109.6 (3)
C7—N4—H4107.9N1—C1—H1A109.7
C7—N4—C8113.3 (3)N1—C1—H1B109.7
C8—N4—Zn1115.0 (3)C2—C1—H1A109.7
C8—N4—H4107.9C2—C1—H1B109.7
Zn1—N1—H1105.2H1A—C1—H1B108.2
C1—N1—Zn1110.4 (3)C3—C4—H4A108.5
C1—N1—H1105.2C3—C4—H4B108.5
C10—N1—Zn1117.4 (3)C5—C4—C3115.0 (4)
C10—N1—H1105.2C5—C4—H4A108.5
C10—N1—C1112.2 (3)C5—C4—H4B108.5
O1—C11—N5120.7 (3)H4A—C4—H4B107.5
O1—C11—C12123.6 (4)N1—C10—H10A108.9
N5—C11—C12115.7 (4)N1—C10—H10B108.9
O2—C14—N5120.5 (3)N1—C10—C9113.5 (4)
O2—C14—N6120.3 (3)H10A—C10—H10B107.7
N6—C14—N5119.1 (3)C9—C10—H10A108.9
F1—C12—C11117.7 (4)C9—C10—H10B108.9
C13—C12—F1120.2 (4)C8—C9—H9A108.6
C13—C12—C11122.0 (4)C8—C9—H9B108.6
N6—C13—H13120.5C10—C9—C8114.8 (4)
C12—C13—N6119.0 (4)C10—C9—H9A108.6
C12—C13—H13120.5C10—C9—H9B108.6
N3—C6—H6A109.8H9A—C9—H9B107.6
Zn1—N5—C11—O11.8 (5)N2—C2—C1—N155.9 (4)
Zn1—N5—C11—C12176.4 (3)N4—C8—C9—C1073.7 (5)
Zn1—N5—C14—O22.3 (5)N1—C10—C9—C873.2 (5)
Zn1—N5—C14—N6177.4 (2)C11—N5—C14—O2178.8 (3)
Zn1—N3—C6—C733.7 (4)C11—N5—C14—N61.0 (5)
Zn1—N3—C5—C459.2 (4)C11—C12—C13—N61.7 (6)
Zn1—N2—C3—C448.6 (4)C14—N5—C11—O1178.2 (3)
Zn1—N2—C2—C146.3 (4)C14—N5—C11—C120.0 (5)
Zn1—N4—C7—C644.9 (4)C14—N6—C13—C122.8 (6)
Zn1—N4—C8—C952.6 (4)C13—N6—C14—O2177.4 (3)
Zn1—N1—C1—C234.4 (4)C13—N6—C14—N52.4 (5)
Zn1—N1—C10—C953.3 (4)C6—N3—C5—C4173.4 (3)
F1—C12—C13—N6180.0 (3)C7—N4—C8—C9172.6 (4)
O1—C11—C12—F10.6 (6)C3—N2—C2—C184.4 (4)
O1—C11—C12—C13177.7 (4)C5—N3—C6—C7165.5 (3)
N5—C11—C12—F1178.7 (3)C2—N2—C3—C4171.2 (4)
N5—C11—C12—C130.4 (6)C8—N4—C7—C680.9 (4)
N3—C6—C7—N454.1 (4)C1—N1—C10—C9177.2 (4)
N3—C5—C4—C375.5 (4)C10—N1—C1—C2167.4 (3)
N2—C3—C4—C569.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O2i0.881.942.803 (4)167
N1—H1···O11.002.192.966 (4)133
N3—H3···O21.002.373.066 (4)126
N3—H3···O51.002.243.055 (4)138
N4—H4···O5ii1.002.443.403 (5)161
N4—H4···O6ii1.002.443.229 (5)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors would like to thank Enago (www.enago.jp) for the English language review.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (JSPS) JSPS KAKENHI Grants (grant No. JP23K14339 to Y. Ichimaru, grant No. JP21K15244 to K. Kato and grant No. JP21K06455 to H. Kurosaki).

References

First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDonaghy, C., Javellana, J. G., Hong, Y.-J., Djoko, K. & Angeles-Boza, A. M. (2023). Molecules, 28, 2156.  CrossRef PubMed Google Scholar
First citationEmsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1990). J. Mol. Struct. 220, 1–12.  CSD CrossRef CAS Web of Science Google Scholar
First citationFang, J., Orobator, O. N., Olelewe, C., Passeri, G., Singh, K., Awuah, S. G. & Suntharalingam, K. (2024). Angew. Chem. Int. Ed. 63, e202317940.  CSD CrossRef Google Scholar
First citationHulme, A. T. & Tocher, D. A. (2004). Acta Cryst. E60, o1781–o1782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIchimaru, Y., Kato, K., Kurihara, M., Jin, W., Koike, T. & Kurosaki, H. (2022). IUCr Data. 7, x220854.  Google Scholar
First citationIchimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data. 6, x210397.  Google Scholar
First citationIchimaru, Y., Kato, K., Nakatani, R., Sugiura, K., Mizutani, H., Kinoshita-Kikuta, E., Koike, T., Jin, W., Imai, M. & Kurosaki, H. (2023). Inorg. Chem. Commun. 147, 110221.  CSD CrossRef Google Scholar
First citationIcsel, C., Yilmaz, V. T., Aygun, M., Erkisa, M. & Ulukaya, E. (2022). Dalton Trans. 51, 5208–5217.  CSD CrossRef CAS PubMed Google Scholar
First citationLiang, X. & Sadler, P. J. (2004). Chem. Soc. Rev. 33, 246–266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOakley, M. S., Oakes, M. R., Wagner, B. D. & Pearson, J. K. (2024). Theor. Chem. Acc. 143, 4.  CrossRef PubMed Google Scholar
First citationPrasad, L., Nyburg, S. C. & McAuley, A. (1987). Acta Cryst. C43, 1038–1042.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTyson, T. A., Hodgson, K. O., Hedman, B. & Clark, G. R. (1990). Acta Cryst. C46, 1638–1640.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146