metal-organic compounds
Tetrakis(μ-acetato-κ2O:O′)bis[(tetrahydrofuran-κO)chromium(II)]
aMartin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de
The title compound, [Cr2(C2H3O2)4(C4H8O)2] or [Cr2(OAc)4(THF)2] (OAc is acetate, THF is tetrahydrofuran), was obtained by recrystallization of anhydrous chromium(II) acetate [Cr2(OAc)4] from hot tetrahydrofuran. The centrosymmetric complex forms monoclinic crystals, C2/c, and consists of two CrII atoms bridged by four acetate ligands. Additionally, each CrII atom is coordinated by a terminal THF ligand, which leads to a square-pyramidal coordination.
Keywords: crystal structure; chromium; acetate; tetrahydrofurane; paddle wheel.
CCDC reference: 2294928
Structure description
Chromium(II) acetate was discovered as early as 1844 by Peligot (Peligot, 1844). Determinations of the of the dihydrate date back to 1953 (van Niekerk et al., 1953) and 1971 (Cotton et al., 1971). A few years later, the of anhydrous chromium(II) acetate was reported (Cotton et al., 1977). Chromium(II) acetate is frequently used as the starting compound for chromium(II) complexes (Cotton et al., 2005). Over the past decades, a large number of chromium(II) acetate complexes with different ligands L have been investigated. Typical compounds are of the type [Cr2(OAc)4L2]. In most cases, L represents a nitrogen ligand such as pyridine (Cotton & Felthouse, 1980), acetonitrile (Cotton et al., 2000) or 4,4′-bipyridine (Cotton & Felthouse, 1980). However, there are also examples with oxygen donor ligands, among them the dihydrate [Cr2(OAc)4(H2O)2] (van Niekerk et al., 1953) and the analogous derivative with acetic acid ligands [Cr2(OAc)4(HOAc)2] (Cotton & Rice, 1978). Crystal structures of chromium(II) acetate complexes with common ether donor ligands have not yet been reported. This is in contrast to other chromium(II) carboxylates, where 18 complexes with ether donors have been characterized by crystal-structure determinations. Apart from some dimethoxyethane (DME) and diethyl ether complexes such as [Cr2(9-anthracenecarboxylate)4(DME)]n (Cotton et al., 1978) and [Cr2(OOC—CF3)4(OEt2)2] (Cotton et al., 1978), this area is dominated by THF complexes. [Cr2{OOC—CH(PPh2)2}4(THF)2] (Kulangara et al., 2012), [Cr2(OOC—CPh3)4(THF)2] (Cotton & Thompson, 1981) and [Cr2(OOC—C6H4-p-F)4(THF)2] (Huang et al., 2019) may serve as representative examples.
Here we report on the 2(OAc)4(THF)2] (1). Compound 1 was synthesized by dissolution of anhydrous chromium(II) acetate in hot THF. Upon cooling to room temperature, the product precipitated in the form of dark-red crystals that easily loose THF when separated from the mother liquor.
of [CrThe 1 consists of discrete [Cr2(OAc)4(THF)2] molecules that possess crystallographic symmetry. The {Cr2(OAc)4} core displays a characteristic paddle-wheel structure as was observed in the prototypes [Cr2(OAc)4] (Cotton et al., 1977) and [Cr2(OAc)4(H2O)2] (van Niekerk et al., 1953). Apart from four acetate O atoms, each CrII atom binds to the O atom of one THF ligand. This leads to a square-pyramidal coordination environment for the CrII atoms. A Cr—Cr contact completes the coordination sphere (Fig. 1). Compound 1 exhibits Cr—O(OAc) distances in the range from 2.0083 (13) to 2.0175 (13) Å (Table 1). The O(OAc)—Cr—O(OAc) angles are 89.37 (6)–90.40 (6)° for the cis arranged O atoms and 177.16 (5)–177.24 (5)° for the trans positions. The observed bond lengths and angles are typical for [Cr2(OAc)4L2] compounds. According to the Cambridge Structural Database (Groom et al., 2016), the Cr—O(OAc) distances vary from 1.988 to 2.036 Å with a median value of 2.014 Å (14 entries, 34 data). The cis-O(OAc)—Cr—O(OAc) angles range between 87.13 and 92.06° with a median of 89.80° (13 entries, 66 data) and the trans-O(OAc)—Cr—O(OAc) angles are distributed between 173.76 and 178.99° with a median value of 176.65° (14 entries, 25 data).
ofThe Cr—O(THF) distance is 2.3267 (13) Å. [Cr2(OAc)4(H2O)2] (Cotton et al., 1971) and [Cr2(OAc)4(HOAc)2] (Cotton & Rice, 1978) exhibit corresponding Cr—O distances of 2.272 (3) and 2.306 (3) Å, respectively, for the axially bound ligand. Chromium(II) carboxylates with THF ligands show Cr—O(THF) distances from 2.228 to 2.316 Å with a median of 2.258 Å (14 entries, 14 data).
Compound 1 displays a Cr—Cr distance of 2.3242 (6) Å. This is very close to the median value of 2.337 Å that was obtained from 16 data (14 entries) of the CSD database. Generally, the Cr—Cr distances in [Cr2(OAc)4L2] complexes vary over a relatively large range from 2.270 to 2.452 Å. In [Cr2(OAc)4(H2O)2] (Cotton et al., 1971) and [Cr2(OAc)4(HOAc)2] (Cotton & Rice, 1978), the Cr—Cr distances are 2.362 (1) and 2.300 (1) Å.
Regarding supramolecular interactions, a Hirshfeld surface analysis with CrystalExplorer (Spackman et al., 2021) reveals weak C—H⋯O interactions (Table 2) between the acetate methyl group and acetate O atoms of neighbouring molecules (Fig. 2). As a result, linear chains along [101] are formed (Fig. 3).
Synthesis and crystallization
A suspension of chromium(II) acetate (0.5 g; 1.5 mmol) in THF (20 ml) was refluxed for 2 h. Afterwards, the hot solution was filtered and the solid residue further extracted with hot THF (2 × 5 ml). THF was evaporated under reduced pressure to give 20 ml of a concentrated solution. Upon storage at 248 K, the product precipitated after several days. The crystalline compound was filtered off and dried under reduced pressure. Yield: 0.57 g (80%). The chromium content was determined photometrically as chromate (Lange & Vejdělek, 1978). Analysis for C16H28Cr2O10 (484.38): calculated: Cr 21.5%, found: Cr 21.7%; IR (ATR; in cm−1): ν = 2962 w, 2937 w, 2896 w, 2867 w, 1581 m, 1482 m, 1435 s, 1351 m, 1297 m, 1249 w, 1233 w, 1178 w, 1035 m, 950 m, 916 m, 878 m, 672 s, 626 m, 583 m, 557 m, 542 m, 495 m, 395 s, 346 m, 297 s, 276 m, 229 m, 208 m.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 2294928
https://doi.org/10.1107/S2414314623008015/wm4196sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623008015/wm4196Isup2.hkl
Data collection: X-AREA (Stoe, 2016); cell
X-AREA (Stoe, 2016); data reduction: X-AREA (Stoe, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2019; software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Cr2(C2H3O2)4(C4H8O)2] | F(000) = 1008 |
Mr = 484.38 | Dx = 1.481 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.833 (4) Å | Cell parameters from 10024 reflections |
b = 9.6413 (15) Å | θ = 1.9–27.1° |
c = 15.654 (3) Å | µ = 1.05 mm−1 |
β = 136.283 (10)° | T = 213 K |
V = 2172.9 (7) Å3 | Block, clear red |
Z = 4 | 0.19 × 0.16 × 0.14 mm |
Stoe IPDSII diffractometer | 2297 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2085 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.025 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.8°, θmin = 2.5° |
rotation method, ω scans | h = −26→26 |
Absorption correction: integration [Absorption correction with X-Red32 (Stoe, 2009) by Gaussian integration analogous to Coppens (1970)] | k = −12→11 |
Tmin = 0.736, Tmax = 0.873 | l = −19→19 |
8042 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0467P)2 + 2.3382P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2297 reflections | Δρmax = 0.54 e Å−3 |
129 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cr | 0.26094 (2) | 0.66145 (3) | 0.46117 (2) | 0.02544 (11) | |
O4 | 0.14551 (9) | 0.92201 (13) | 0.36838 (12) | 0.0342 (3) | |
O2 | 0.34181 (9) | 0.94502 (13) | 0.57992 (12) | 0.0333 (3) | |
O1 | 0.36182 (9) | 0.77547 (14) | 0.50418 (12) | 0.0345 (3) | |
O5 | 0.28145 (10) | 0.47338 (14) | 0.38969 (12) | 0.0372 (3) | |
O3 | 0.16586 (9) | 0.75243 (13) | 0.29340 (11) | 0.0323 (3) | |
C1 | 0.38244 (12) | 0.8921 (2) | 0.55545 (16) | 0.0318 (4) | |
C7 | 0.2675 (2) | 0.2300 (2) | 0.3690 (3) | 0.0598 (7) | |
H7A | 0.256700 | 0.153198 | 0.399458 | 0.072* | |
H7B | 0.302134 | 0.193893 | 0.352458 | 0.072* | |
C4 | 0.05644 (14) | 0.9286 (2) | 0.15474 (18) | 0.0437 (5) | |
H4A | 0.028412 | 1.008695 | 0.156494 | 0.065* | |
H4B | 0.008049 | 0.860582 | 0.094730 | 0.065* | |
H4C | 0.086525 | 0.959150 | 0.130761 | 0.065* | |
C6 | 0.17708 (19) | 0.2950 (3) | 0.2548 (2) | 0.0557 (6) | |
H6A | 0.149691 | 0.245473 | 0.179140 | 0.067* | |
H6B | 0.131657 | 0.296526 | 0.258606 | 0.067* | |
C2 | 0.46056 (14) | 0.9713 (2) | 0.5899 (2) | 0.0447 (5) | |
H2A | 0.451210 | 1.070872 | 0.590081 | 0.067* | |
H2B | 0.461851 | 0.951885 | 0.529713 | 0.067* | |
H2C | 0.519618 | 0.942836 | 0.672441 | 0.067* | |
C5 | 0.20714 (15) | 0.4391 (2) | 0.25966 (19) | 0.0396 (4) | |
H5A | 0.229504 | 0.441548 | 0.221381 | 0.048* | |
H5B | 0.154969 | 0.505239 | 0.215539 | 0.048* | |
C3 | 0.12762 (12) | 0.86336 (19) | 0.28110 (16) | 0.0296 (4) | |
C8 | 0.31894 (19) | 0.3462 (2) | 0.4601 (2) | 0.0537 (6) | |
H8A | 0.310317 | 0.343141 | 0.514527 | 0.064* | |
H8B | 0.386159 | 0.339342 | 0.512128 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr | 0.02569 (16) | 0.02424 (17) | 0.02535 (16) | 0.00141 (10) | 0.01810 (14) | 0.00139 (10) |
O4 | 0.0342 (7) | 0.0303 (6) | 0.0301 (6) | 0.0073 (5) | 0.0206 (6) | 0.0046 (5) |
O2 | 0.0330 (6) | 0.0300 (6) | 0.0358 (7) | −0.0039 (5) | 0.0245 (6) | −0.0014 (5) |
O1 | 0.0324 (6) | 0.0367 (7) | 0.0387 (7) | −0.0011 (5) | 0.0272 (6) | −0.0005 (6) |
O5 | 0.0429 (7) | 0.0283 (6) | 0.0389 (7) | 0.0034 (6) | 0.0290 (6) | −0.0013 (5) |
O3 | 0.0353 (6) | 0.0321 (6) | 0.0276 (6) | 0.0030 (5) | 0.0221 (6) | 0.0024 (5) |
C1 | 0.0269 (8) | 0.0356 (9) | 0.0257 (8) | −0.0001 (7) | 0.0167 (7) | 0.0068 (7) |
C7 | 0.090 (2) | 0.0343 (11) | 0.0689 (16) | 0.0016 (12) | 0.0617 (16) | 0.0012 (11) |
C4 | 0.0388 (10) | 0.0433 (11) | 0.0299 (9) | 0.0054 (9) | 0.0185 (9) | 0.0106 (8) |
C6 | 0.0637 (15) | 0.0443 (12) | 0.0557 (14) | −0.0147 (11) | 0.0420 (13) | −0.0109 (11) |
C2 | 0.0333 (10) | 0.0517 (12) | 0.0432 (11) | −0.0084 (9) | 0.0257 (9) | 0.0034 (9) |
C5 | 0.0444 (11) | 0.0372 (10) | 0.0373 (10) | 0.0029 (8) | 0.0296 (9) | −0.0014 (8) |
C3 | 0.0245 (8) | 0.0303 (8) | 0.0264 (8) | −0.0014 (7) | 0.0159 (7) | 0.0038 (7) |
C8 | 0.0604 (14) | 0.0347 (11) | 0.0486 (13) | 0.0132 (10) | 0.0336 (12) | 0.0067 (9) |
Cr—Cri | 2.3242 (6) | C7—C8 | 1.492 (3) |
Cr—O4i | 2.0121 (14) | C4—H4A | 0.9800 |
Cr—O2i | 2.0146 (13) | C4—H4B | 0.9800 |
Cr—O1 | 2.0083 (13) | C4—H4C | 0.9800 |
Cr—O5 | 2.3267 (13) | C4—C3 | 1.506 (2) |
Cr—O3 | 2.0175 (13) | C6—H6A | 0.9900 |
O4—C3 | 1.261 (2) | C6—H6B | 0.9900 |
O2—C1 | 1.262 (2) | C6—C5 | 1.503 (3) |
O1—C1 | 1.263 (2) | C2—H2A | 0.9800 |
O5—C5 | 1.447 (2) | C2—H2B | 0.9800 |
O5—C8 | 1.444 (2) | C2—H2C | 0.9800 |
O3—C3 | 1.262 (2) | C5—H5A | 0.9900 |
C1—C2 | 1.501 (3) | C5—H5B | 0.9900 |
C7—H7A | 0.9900 | C8—H8A | 0.9900 |
C7—H7B | 0.9900 | C8—H8B | 0.9900 |
C7—C6 | 1.506 (4) | ||
Cri—Cr—O5 | 176.08 (4) | H4A—C4—H4C | 109.5 |
O4i—Cr—Cri | 88.19 (4) | H4B—C4—H4C | 109.5 |
O4i—Cr—O2i | 90.40 (6) | C3—C4—H4A | 109.5 |
O4i—Cr—O5 | 89.29 (5) | C3—C4—H4B | 109.5 |
O4i—Cr—O3 | 177.16 (5) | C3—C4—H4C | 109.5 |
O2i—Cr—Cri | 88.66 (4) | C7—C6—H6A | 111.4 |
O2i—Cr—O5 | 88.36 (5) | C7—C6—H6B | 111.4 |
O2i—Cr—O3 | 89.37 (6) | H6A—C6—H6B | 109.2 |
O1—Cr—Cri | 88.61 (4) | C5—C6—C7 | 101.9 (2) |
O1—Cr—O4i | 89.91 (6) | C5—C6—H6A | 111.4 |
O1—Cr—O2i | 177.24 (5) | C5—C6—H6B | 111.4 |
O1—Cr—O5 | 94.38 (5) | C1—C2—H2A | 109.5 |
O1—Cr—O3 | 90.19 (6) | C1—C2—H2B | 109.5 |
O3—Cr—Cri | 88.98 (4) | C1—C2—H2C | 109.5 |
O3—Cr—O5 | 93.53 (5) | H2A—C2—H2B | 109.5 |
C3—O4—Cri | 120.14 (11) | H2A—C2—H2C | 109.5 |
C1—O2—Cri | 119.21 (12) | H2B—C2—H2C | 109.5 |
C1—O1—Cr | 119.57 (12) | O5—C5—C6 | 105.37 (17) |
C5—O5—Cr | 118.23 (11) | O5—C5—H5A | 110.7 |
C8—O5—Cr | 118.74 (13) | O5—C5—H5B | 110.7 |
C8—O5—C5 | 108.56 (15) | C6—C5—H5A | 110.7 |
C3—O3—Cr | 118.98 (11) | C6—C5—H5B | 110.7 |
O2—C1—O1 | 123.94 (17) | H5A—C5—H5B | 108.8 |
O2—C1—C2 | 118.42 (18) | O4—C3—O3 | 123.71 (16) |
O1—C1—C2 | 117.64 (18) | O4—C3—C4 | 118.37 (17) |
H7A—C7—H7B | 109.0 | O3—C3—C4 | 117.92 (17) |
C6—C7—H7A | 111.0 | O5—C8—C7 | 106.84 (19) |
C6—C7—H7B | 111.0 | O5—C8—H8A | 110.4 |
C8—C7—H7A | 111.0 | O5—C8—H8B | 110.4 |
C8—C7—H7B | 111.0 | C7—C8—H8A | 110.4 |
C8—C7—C6 | 103.9 (2) | C7—C8—H8B | 110.4 |
H4A—C4—H4B | 109.5 | H8A—C8—H8B | 108.6 |
Cri—O4—C3—O3 | −0.4 (2) | Cr—O3—C3—O4 | 0.2 (2) |
Cri—O4—C3—C4 | 179.40 (13) | Cr—O3—C3—C4 | −179.60 (13) |
Cri—O2—C1—O1 | 1.2 (2) | C7—C6—C5—O5 | −34.4 (2) |
Cri—O2—C1—C2 | −178.35 (12) | C6—C7—C8—O5 | −23.6 (3) |
Cr—O1—C1—O2 | −1.6 (2) | C5—O5—C8—C7 | 1.9 (3) |
Cr—O1—C1—C2 | 177.88 (12) | C8—O5—C5—C6 | 20.7 (2) |
Cr—O5—C5—C6 | −118.42 (16) | C8—C7—C6—C5 | 35.1 (3) |
Cr—O5—C8—C7 | 140.80 (18) |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···O1ii | 0.98 | 2.60 | 3.472 (3) | 148 |
Symmetry code: (ii) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
We thank Andreas Kiowski for technical support.
Funding information
We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).
References
Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Cotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664–1671. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Cotton, F. A., Extine, M. & Rice, G. W. (1978). Inorg. Chem. 17, 176–186. CSD CrossRef ICSD CAS Google Scholar
Cotton, F. A. & Felthouse, T. R. (1980). Inorg. Chem. 19, 328–331. CSD CrossRef CAS Google Scholar
Cotton, F. A., Hillard, E. A., Murillo, C. A. & Zhou, H.-C. (2000). J. Am. Chem. Soc. 122, 416–417. Web of Science CSD CrossRef CAS Google Scholar
Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc. Google Scholar
Cotton, F. A., Rice, C. E. & Rice, G. W. (1977). J. Am. Chem. Soc. 99, 4704–4707. CSD CrossRef CAS Google Scholar
Cotton, F. A. & Rice, G. W. (1978). Inorg. Chem. 17, 2004–2009. CSD CrossRef ICSD CAS Google Scholar
Cotton, F. A. & Thompson, J. L. (1981). Inorg. Chem. 20, 1292–1296. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2019). Dalton Trans. 48, 908–914. CSD CrossRef CAS PubMed Google Scholar
Kulangara, S. V., Mason, C., Juba, M., Yang, Y., Thapa, I., Gambarotta, S., Korobkov, I. & Duchateau, R. (2012). Organometallics, 31, 6438–6449. CSD CrossRef CAS Google Scholar
Lange, B. & Vejdělek, Z. J. (1978). Photometrische Analyse, 1st ed. Weinheim, New York: VCH. Google Scholar
Niekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst. 6, 501–504. CSD CrossRef IUCr Journals Google Scholar
Peligot, M. E. (1844). C. R. Acad. Sci. pp. 609–615. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe (2009). X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe (2016). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.