ISSN 2414-3146

Received 23 August 2023
Accepted 14 September 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; chromium; acetate; tetrahydrofurane; paddle wheel.

CCDC reference: 2294928

Structural data: full structural data are available from iucrdata.iucr.org

Tetrakis $\left(\mu\right.$-acetato- $\left.\kappa^{2} O: O^{\prime}\right)$ bis[(tetrahydrofuranκ) chromium(II)]

Christian Heiser and Kurt Merzweiler*

Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany. *Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

The title compound, $\left[\mathrm{Cr}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]$ or $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}(\mathrm{THF})_{2}\right]$ (OAc is acetate, THF is tetrahydrofuran), was obtained by recrystallization of anhydrous chromium(II) acetate $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}\right]$ from hot tetrahydrofuran. The centrosymmetric complex forms monoclinic crystals, space group $C 2 / c$, and consists of two $\mathrm{Cr}^{\mathrm{II}}$ atoms bridged by four acetate ligands. Additionally, each $\mathrm{Cr}^{\mathrm{II}}$ atom is coordinated by a terminal THF ligand, which leads to a square-pyramidal coordination.

Chemical scheme

Structure description

Chromium(II) acetate was discovered as early as 1844 by Peligot (Peligot, 1844). Determinations of the crystal structure of the dihydrate date back to 1953 (van Niekerk et al., 1953) and 1971 (Cotton et al., 1971). A few years later, the crystal structure of anhydrous chromium(II) acetate was reported (Cotton et al., 1977). Chromium(II) acetate is frequently used as the starting compound for chromium(II) complexes (Cotton et al., 2005). Over the past decades, a large number of chromium(II) acetate complexes with different ligands L have been investigated. Typical compounds are of the type $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4} L_{2}\right]$. In most cases, L represents a nitrogen ligand such as pyridine (Cotton \& Felthouse, 1980), acetonitrile (Cotton et al., 2000) or 4,4'-bipyridine (Cotton \& Felthouse, 1980). However, there are also examples with oxygen donor ligands, among them the dihydrate $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (van Niekerk et al., 1953) and the analogous derivative with acetic acid ligands $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}(\mathrm{HOAc})_{2}\right]$ (Cotton \& Rice, 1978). Crystal structures of chromium(II) acetate complexes with common ether donor ligands have not yet been reported. This is in contrast to other chromium(II) carboxylates, where 18 complexes with ether donors have been characterized by crystal-structure determinations. Apart from some dimethoxyethane (DME) and diethyl ether complexes such as $\left[\mathrm{Cr}_{2}(9-\right.$ anthracenecarboxylate $\left.)_{4}(\mathrm{DME})\right]_{n}$ (Cotton et al., 1978) and $\left[\mathrm{Cr}_{2}\left(\mathrm{OOC}-\mathrm{CF}_{3}\right)_{4}\left(\mathrm{OEt}_{2}\right)_{2}\right]$ (Cotton et al., 1978), this area is dominated by THF complexes.

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Cr}-\mathrm{Cr}^{\mathrm{i}}$	$2.3242(6)$	$\mathrm{O} 4-\mathrm{C} 3$	$1.261(2)$
$\mathrm{Cr}-\mathrm{O} 4^{\mathrm{i}}$	$2.0121(14)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.262(2)$
$\mathrm{Cr}-\mathrm{O} 2^{\mathrm{i}}$	$2.0146(13)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.263(2)$
$\mathrm{Cr}-\mathrm{O} 1$	$2.0083(13)$	$\mathrm{O} 5-\mathrm{C} 5$	$1.447(2)$
$\mathrm{Cr}-\mathrm{O} 5$	$2.3267(13)$	$\mathrm{O} 5-\mathrm{C} 8$	$1.444(2)$
$\mathrm{Cr}-\mathrm{O} 3$	$2.0175(13)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.262(2)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cr}-\mathrm{O} 2^{\mathrm{i}}$	$90.40(6)$	$\mathrm{O} 1-\mathrm{Cr}-\mathrm{O} 4^{\mathrm{i}}$	$89.91(6)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cr}-\mathrm{O} 5$	$89.29(5)$	$\mathrm{O} 1-\mathrm{Cr}-\mathrm{O} 2^{\mathrm{i}}$	$177.24(5)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cr}-\mathrm{O} 3$	$177.16(5)$	$\mathrm{O} 1-\mathrm{Cr}-\mathrm{O} 5$	$94.38(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cr}-\mathrm{O} 5$	$88.36(5)$	$\mathrm{O} 1-\mathrm{Cr}-\mathrm{O} 3$	$90.19(6)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cr}-\mathrm{O} 3$	$89.37(6)$	$\mathrm{O} 3-\mathrm{Cr}-\mathrm{O} 5$	$93.53(5)$

Symmetry code: (i) $-x+\frac{1}{2},-y+\frac{3}{2},-z+1$.
$\left[\mathrm{Cr}_{2}\left\{\mathrm{OOC}-\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right\}_{4}(\mathrm{THF})_{2}\right]$ (Kulangara et al., 2012), $\left[\mathrm{Cr}_{2}\left(\mathrm{OOC}-\mathrm{CPh}_{3}\right)_{4}(\mathrm{THF})_{2}\right]($ Cotton \& Thompson, 1981) and $\left[\mathrm{Cr}_{2}\left(\mathrm{OOC}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)_{4}(\mathrm{THF})_{2}\right]$ (Huang et al., 2019) may serve as representative examples.

Here we report on the crystal structure of $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}{ }^{-}\right.$ $(\mathrm{THF})_{2}$] (1). Compound $\mathbf{1}$ was synthesized by dissolution of anhydrous chromium(II) acetate in hot THF. Upon cooling to room temperature, the product precipitated in the form of dark-red crystals that easily loose THF when separated from the mother liquor.

The crystal structure of $\mathbf{1}$ consists of discrete $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}{ }^{-}\right.$ $\left.(\mathrm{THF})_{2}\right]$ molecules that possess crystallographic $\overline{1}$ symmetry. The $\left\{\mathrm{Cr}_{2}(\mathrm{OAc})_{4}\right\}$ core displays a characteristic paddle-wheel structure as was observed in the prototypes $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}\right]$ (Cotton et al., 1977) and $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (van Niekerk et al., 1953). Apart from four acetate O atoms, each $\mathrm{Cr}^{\mathrm{II}}$ atom binds to the O atom of one THF ligand. This leads to a squarepyramidal coordination environment for the $\mathrm{Cr}^{\mathrm{II}}$ atoms. A $\mathrm{Cr}-\mathrm{Cr}$ contact completes the coordination sphere (Fig. 1). Compound 1 exhibits $\mathrm{Cr}-\mathrm{O}_{(\mathrm{OAc})}$ distances in the range from $2.0083(13)$ to $2.0175(13) \AA$ (Table 1). The $\mathrm{O}_{(\mathrm{OAc})}-\mathrm{Cr}-\mathrm{O}_{(\mathrm{OAc})}$ angles are 89.37 (6)-90.40 (6) ${ }^{\circ}$ for the cis arranged O atoms and $177.16(5)-177.24(5)^{\circ}$ for the trans

Figure 1
Molecular structure of $\mathbf{1}$ in the crystal. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.98	2.60	$3.472(3)$	148

Symmetry code: (ii) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.
positions. The observed bond lengths and angles are typical for $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4} L_{2}\right]$ compounds. According to the Cambridge Structural Database (Groom et al., 2016), the $\mathrm{Cr}-\mathrm{O}_{(\mathrm{OAc})}$ distances vary from 1.988 to $2.036 \AA$ with a median value of $2.014 \AA$ (14 entries, 34 data). The cis $-\mathrm{O}_{(\mathrm{OAc})}-\mathrm{Cr}-\mathrm{O}_{(\mathrm{OAc})}$ angles range between 87.13 and 92.06° with a median of 89.80° (13 entries, 66 data) and the trans $-\mathrm{O}_{(\mathrm{OAc})}-\mathrm{Cr}-\mathrm{O}_{(\mathrm{OAc})}$ angles are distributed between 173.76 and 178.99° with a median value of 176.65° (14 entries, 25 data).

The $\mathrm{Cr}-\mathrm{O}_{(\mathrm{THF})}$ distance is 2.3267 (13) $\AA .\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Cotton et al., 1971) and $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}(\mathrm{HOAc})_{2}\right]$ (Cotton \& Rice, 1978) exhibit corresponding $\mathrm{Cr}-\mathrm{O}$ distances of 2.272 (3) and 2.306 (3) A , respectively, for the axially bound ligand. Chromium(II) carboxylates with THF ligands show $\mathrm{Cr}-\mathrm{O}_{\text {(THF) }}$ distances from 2.228 to $2.316 \AA$ with a median of $2.258 \AA$ (14 entries, 14 data).

Compound 1 displays a $\mathrm{Cr}-\mathrm{Cr}$ distance of 2.3242 (6) \AA. This is very close to the median value of $2.337 \AA$ that was obtained from 16 data (14 entries) of the CSD database. Generally, the $\mathrm{Cr}-\mathrm{Cr}$ distances in $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4} L_{2}\right]$ complexes vary over a relatively large range from 2.270 to $2.452 \AA$. In $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Cotton et al., 1971) and $\left[\mathrm{Cr}_{2}(\mathrm{OAc})_{4}{ }^{-}\right.$ $\left.(\mathrm{HOAc})_{2}\right]$ (Cotton \& Rice, 1978), the $\mathrm{Cr}-\mathrm{Cr}$ distances are 2.362 (1) and 2.300 (1) \AA.

Regarding supramolecular interactions, a Hirshfeld surface analysis with CrystalExplorer (Spackman et al., 2021) reveals weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2) between the acetate methyl group and acetate O atoms of neighbouring molecules (Fig. 2). As a result, linear chains along [101] are formed (Fig. 3).

Figure 2
View of the Hirshfeld surface of $\mathbf{1}$ mapped over $d_{\text {norm }}$ in the range of -0.062 to 1.826 au. Red-colored surfaces show short contacts, dashed green lines indicate hydrogen-bonding interactions.

Figure 3
Crystal structure of $\mathbf{1}$, with intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds shown as dashed lines.

Synthesis and crystallization

A suspension of chromium(II) acetate ($0.5 \mathrm{~g} ; 1.5 \mathrm{mmol}$) in THF (20 ml) was refluxed for 2 h . Afterwards, the hot solution was filtered and the solid residue further extracted with hot THF ($2 \times 5 \mathrm{ml}$). THF was evaporated under reduced pressure to give 20 ml of a concentrated solution. Upon storage at 248 K, the product precipitated after several days. The crystalline compound was filtered off and dried under reduced pressure. Yield: 0.57 g (80%). The chromium content was determined photometrically as chromate (Lange \& Vejdělek, 1978). Analysis for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{Cr}_{2} \mathrm{O}_{10}$ (484.38): calculated: Cr 21.5%, found: $\mathrm{Cr} 21.7 \%$; IR (ATR; in cm^{-1}): $v=2962 w, 2937$ $w, 2896 w, 2867 w, 1581 m, 1482 m, 1435 s, 1351 m, 1297 m$, $1249 w, 1233 w, 1178 w, 1035 m, 950 m, 916 m, 878 m, 672 s, 626$ $m, 583 m, 557 m, 542 m, 495 m, 395 s, 346 m, 297 s, 276 m, 229$ $m, 208 m$.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Acknowledgements

We thank Andreas Kiowski for technical support.

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Cotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. \& Ucko, D. A. (1971). Acta Cryst. B27, 1664-1671.

Cotton, F. A., Extine, M. \& Rice, G. W. (1978). Inorg. Chem. 17, 176186.

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$

$V\left(\hat{A}^{3}\right)$
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$R_{\text {int }} \quad 0.025$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right) \quad 0.634$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
484.38

213
2172.9 (7)

4
Mo $K \alpha$
1.05
$\left[\mathrm{Cr}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right.$]
Monoclinic, $C 2 / c$
20.833 (4), 9.6413 (15), 15.654 (3)
136.283 (10)
$0.19 \times 0.16 \times 0.14$
Stoe IPDSII
Integration [Absorption correction
with X-RED32 (Stoe, 2009) by
\quad Gaussian integration analogous
to Coppens (1970)]
$0.736,0.873$
$8042,2297,2085$

0.025
0.634

$0.028,0.084,1.06$
2297
129
H-atom parameters constrained
$0.54,-0.25$

Stoe IPDSII

Integration [Absorption correction with X-RED32 (Stoe, 2009) by Gaussian integration analogous to Coppens (1970)]
0.736, 0.873

8042, 2297, 2085

Computer programs: X-AREA (Stoe, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg, 2019 and OLEX2 (Dolomanov et al., 2009).

Cotton, F. A. \& Felthouse, T. R. (1980). Inorg. Chem. 19, 328-331.
Cotton, F. A., Hillard, E. A., Murillo, C. A. \& Zhou, H.-C. (2000). J. Am. Chem. Soc. 122, 416-417.
Cotton, F. A., Murillo, C. A. \& Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.
Cotton, F. A., Rice, C. E. \& Rice, G. W. (1977). J. Am. Chem. Soc. 99, 4704-4707.
Cotton, F. A. \& Rice, G. W. (1978). Inorg. Chem. 17, 2004-2009.
Cotton, F. A. \& Thompson, J. L. (1981). Inorg. Chem. 20, 1292-1296.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. \& Miyasaka, H. (2019). Dalton Trans. 48, 908-914.
Kulangara, S. V., Mason, C., Juba, M., Yang, Y., Thapa, I., Gambarotta, S., Korobkov, I. \& Duchateau, R. (2012). Organometallics, 31, 6438-6449.
Lange, B. \& Vejdělek, Z. J. (1978). Photometrische Analyse, 1st ed. Weinheim, New York: VCH.
Niekerk, J. N. van, Schoening, F. R. L. \& de Wet, J. F. (1953). Acta Cryst. 6, 501-504.
Peligot, M. E. (1844). C. R. Acad. Sci. pp. 609-615.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Stoe (2009). X-RED32. Stoe \& Cie, Darmstadt, Germany.
Stoe (2016). X-AREA. Stoe \& Cie, Darmstadt, Germany.

full crystallographic data

IUCrData (2023). 8, x230801 [https://doi.org/10.1107/S2414314623008015]
Tetrakis (μ-acetato- $\left.\kappa^{2} O: O^{\prime}\right)$ bis[(tetrahydrofuran- κO)chromium(II)]
Christian Heiser and Kurt Merzweiler

Tetrakis $\left(\mu\right.$-acetato- $\left.\kappa^{2} O: O^{\prime}\right)$ bis[(tetrahydrofuran- κO) chromium(II)](Cr-Cr)

Crystal data

$\left[\mathrm{Cr}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]$
$M_{r}=484.38$
Monoclinic, C2/c
$a=20.833$ (4) \AA
$b=9.6413$ (15) \AA
$c=15.654$ (3) \AA
$\beta=136.283(10)^{\circ}$
$V=2172.9(7) \AA^{3}$
$Z=4$

Data collection

Stoe IPDSII
diffractometer
Radiation source: sealed X-ray tube, 12×0.4
mm long-fine focus
Plane graphite monochromator
Detector resolution: 6.67 pixels mm^{-1}
rotation method, ω scans
$F(000)=1008$
$D_{\mathrm{x}}=1.481 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 10024 reflections
$\theta=1.9-27.1^{\circ}$
$\mu=1.05 \mathrm{~mm}^{-1}$
$T=213 \mathrm{~K}$
Block, clear red
$0.19 \times 0.16 \times 0.14 \mathrm{~mm}$

Absorption correction: integration

[Absorption correction with X-Red32 (Stoe,
2009) by Gaussian integration analogous to

Coppens (1970)]
$T_{\text {min }}=0.736, T_{\text {max }}=0.873$
8042 measured reflections
2297 independent reflections
2085 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=26.8^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-26 \rightarrow 26$
$k=-12 \rightarrow 11$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.084$
$S=1.06$
2297 reflections
129 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0467 P)^{2}+2.3382 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.54 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Cr	$0.26094(2)$	$0.66145(3)$	$0.46117(2)$	$0.02544(11)$
O4	$0.14551(9)$	$0.92201(13)$	$0.36838(12)$	$0.0342(3)$
O2	$0.34181(9)$	$0.94502(13)$	$0.57992(12)$	$0.0333(3)$
O1	$0.36182(9)$	$0.77547(14)$	$0.50418(12)$	$0.0345(3)$
O5	$0.28145(10)$	$0.47338(14)$	$0.38969(12)$	$0.0372(3)$
O3	$0.16586(9)$	$0.75243(13)$	$0.29340(11)$	$0.0323(3)$
C1	$0.38244(12)$	$0.8921(2)$	$0.55545(16)$	$0.0318(4)$
C7	$0.2675(2)$	$0.2300(2)$	$0.3690(3)$	$0.0598(7)$
H7A	0.256700	0.153198	0.399458	0.072^{*}
H7B	0.302134	0.193893	0.352458	0.072^{*}
C4	$0.05644(14)$	$0.9286(2)$	$0.15474(18)$	$0.0437(5)$
H4A	0.028412	1.008695	0.156494	0.065^{*}
H4B	0.008049	0.860582	0.094730	0.065^{*}
H4C	0.086525	0.959150	0.130761	0.065^{*}
C6	$0.17708(19)$	$0.2950(3)$	$0.2548(2)$	$0.0557(6)$
H6A	0.149691	0.245473	0.179140	0.067^{*}
H6B	0.131657	0.296526	0.258606	0.067^{*}
C2	$0.46056(14)$	$0.9713(2)$	$0.5899(2)$	$0.0447(5)$
H2A	0.451210	1.070872	0.590081	0.067^{*}
H2B	0.461851	0.951885	0.529713	0.067^{*}
H2C	0.519618	0.942836	0.672441	0.067^{*}
C5	$0.20714(15)$	$0.4391(2)$	$0.25966(19)$	$0.0396(4)$
H5A	0.229504	0.441548	0.221381	0.048^{*}
H5B	0.154969	0.505239	0.215539	0.048^{*}
C3	$0.12762(12)$	$0.86336(19)$	$0.28110(16)$	$0.0296(4)$
C8	$0.31894(19)$	$0.3462(2)$	$0.4601(2)$	$0.0537(6)$
H8A	0.310317	0.343141	0.514527	0.064^{*}
H8B	0.386159	0.339342	0.512128	0.064^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr	$0.02569(16)$	$0.02424(17)$	$0.02535(16)$	$0.00141(10)$	$0.01810(14)$	$0.00139(10)$
O4	$0.0342(7)$	$0.0303(6)$	$0.0301(6)$	$0.0073(5)$	$0.0206(6)$	$0.0046(5)$
O2	$0.0330(6)$	$0.0300(6)$	$0.0358(7)$	$-0.0039(5)$	$0.0245(6)$	$-0.0014(5)$
O1	$0.0324(6)$	$0.0367(7)$	$0.0387(7)$	$-0.0011(5)$	$0.0272(6)$	$-0.0005(6)$
O5	$0.0429(7)$	$0.0283(6)$	$0.0389(7)$	$0.0034(6)$	$0.0290(6)$	$-0.0013(5)$
O3	$0.0353(6)$	$0.0321(6)$	$0.0276(6)$	$0.0030(5)$	$0.0221(6)$	$0.0024(5)$
C1	$0.0269(8)$	$0.0356(9)$	$0.0257(8)$	$-0.0001(7)$	$0.0167(7)$	$0.0068(7)$

C7	$0.090(2)$	$0.0343(11)$	$0.0689(16)$	$0.0016(12)$	$0.0617(16)$	$0.0012(11)$
C4	$0.0388(10)$	$0.0433(11)$	$0.0299(9)$	$0.0054(9)$	$0.0185(9)$	$0.0106(8)$
C6	$0.0637(15)$	$0.0443(12)$	$0.0557(14)$	$-0.0147(11)$	$0.0420(13)$	$-0.0109(11)$
C2	$0.0333(10)$	$0.0517(12)$	$0.0432(11)$	$-0.0084(9)$	$0.0257(9)$	$0.0034(9)$
C5	$0.0444(11)$	$0.0372(10)$	$0.0373(10)$	$0.0029(8)$	$0.0296(9)$	$-0.0014(8)$
C3	$0.0245(8)$	$0.0303(8)$	$0.0264(8)$	$-0.0014(7)$	$0.0159(7)$	$0.0038(7)$
C8	$0.0604(14)$	$0.0347(11)$	$0.0486(13)$	$0.0132(10)$	$0.0336(12)$	$0.0067(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cr}-\mathrm{Cr}^{\text {i }}$	2.3242 (6)	C7-C8	1.492 (3)
$\mathrm{Cr}-\mathrm{O} 4{ }^{\text {i }}$	2.0121 (14)	C4-H4A	0.9800
$\mathrm{Cr}-\mathrm{O} 2{ }^{\text {i }}$	2.0146 (13)	C4-H4B	0.9800
$\mathrm{Cr}-\mathrm{O} 1$	2.0083 (13)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800
$\mathrm{Cr}-\mathrm{O} 5$	2.3267 (13)	C4-C3	1.506 (2)
$\mathrm{Cr}-\mathrm{O} 3$	2.0175 (13)	C6-H6A	0.9900
O4-C3	1.261 (2)	C6-H6B	0.9900
O2-C1	1.262 (2)	C6-C5	1.503 (3)
O1-C1	1.263 (2)	C2-H2A	0.9800
O5-C5	1.447 (2)	C2-H2B	0.9800
O5-C8	1.444 (2)	C2-H2C	0.9800
O3-C3	1.262 (2)	C5-H5A	0.9900
$\mathrm{C} 1-\mathrm{C} 2$	1.501 (3)	C5-H5B	0.9900
C7-H7A	0.9900	C8-H8A	0.9900
C7-H7B	0.9900	C8-H8B	0.9900
C7-C6	1.506 (4)		
Cri- ${ }^{\text {i }}$ - -O 5	176.08 (4)	H4A-C4-H4C	109.5
$\mathrm{O} 4-\mathrm{Cr}-\mathrm{Cr}^{\text {i }}$	88.19 (4)	H4B-C4-H4C	109.5
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Cr}-\mathrm{O} 2^{\mathrm{i}}$	90.40 (6)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{O} 4{ }^{\text {i }} \mathrm{Cr}-\mathrm{O} 5$	89.29 (5)	C3-C4-H4B	109.5
$\mathrm{O} 4-\mathrm{Cr}-\mathrm{O} 3$	177.16 (5)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cr}-\mathrm{Cr}^{\text {i }}$	88.66 (4)	C7-C6-H6A	111.4
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cr}-\mathrm{O} 5$	88.36 (5)	C7-C6-H6B	111.4
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cr}-\mathrm{O} 3$	89.37 (6)	H6A-C6-H6B	109.2
$\mathrm{O} 1-\mathrm{Cr}-\mathrm{Cr}^{\text {i }}$	88.61 (4)	C5-C6-C7	101.9 (2)
$\mathrm{O} 1-\mathrm{Cr}-\mathrm{O} 4{ }^{\text {i }}$	89.91 (6)	C5-C6-H6A	111.4
$\mathrm{O} 1-\mathrm{Cr}-\mathrm{O}^{2}{ }^{\text {i }}$	177.24 (5)	C5-C6-H6B	111.4
$\mathrm{O} 1-\mathrm{Cr}-\mathrm{O} 5$	94.38 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{O} 1-\mathrm{Cr}-\mathrm{O} 3$	90.19 (6)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{O} 3-\mathrm{Cr}-\mathrm{Cr}^{\text {i }}$	88.98 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{O} 3-\mathrm{Cr}-\mathrm{O} 5$	93.53 (5)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{C} 3-\mathrm{O} 4-\mathrm{Cr}^{\text {i }}$	120.14 (11)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cr}^{\text {i }}$	119.21 (12)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cr}$	119.57 (12)	O5-C5-C6	105.37 (17)
C5-O5-Cr	118.23 (11)	O5-C5-H5A	110.7
C8-O5-Cr	118.74 (13)	O5-C5-H5B	110.7
C8-O5-C5	108.56 (15)	C6-C5-H5A	110.7

C3-O3-Cr	118.98 (11)	C6-C5-H5B	110.7
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	123.94 (17)	H5A-C5-H5B	108.8
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	118.42 (18)	$\mathrm{O} 4-\mathrm{C} 3-\mathrm{O} 3$	123.71 (16)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.64 (18)	O4-C3-C4	118.37 (17)
H7A-C7-H7B	109.0	O3-C3-C4	117.92 (17)
C6-C7-H7A	111.0	O5-C8-C7	106.84 (19)
C6-C7-H7B	111.0	O5-C8-H8A	110.4
C8-C7-H7A	111.0	O5-C8-H8B	110.4
C8-C7-H7B	111.0	C7-C8-H8A	110.4
C8-C7-C6	103.9 (2)	C7-C8-H8B	110.4
H4A-C4-H4B	109.5	H8A-C8-H8B	108.6
Cri$-\mathrm{O} 4-\mathrm{C} 3-\mathrm{O} 3$	-0.4 (2)	$\mathrm{Cr}-\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 4$	0.2 (2)
$\mathrm{Cr}^{\mathrm{i}}-\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 4$	179.40 (13)	$\mathrm{Cr}-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	-179.60 (13)
$\mathrm{Cr}^{\mathrm{i}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	1.2 (2)	C7-C6-C5-O5	-34.4 (2)
$\mathrm{Cr}^{\mathrm{i}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	-178.35 (12)	C6-C7-C8-O5	-23.6 (3)
$\mathrm{Cr}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-1.6 (2)	C5-O5-C8-C7	1.9 (3)
$\mathrm{Cr}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	177.88 (12)	C8-O5-C5-C6	20.7 (2)
$\mathrm{Cr}-\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 6$	-118.42 (16)	C8-C7-C6-C5	35.1 (3)
$\mathrm{Cr}-\mathrm{O} 5-\mathrm{C} 8-\mathrm{C} 7$	140.80 (18)		

Symmetry code: (i) $-x+1 / 2,-y+3 / 2,-z+1$.

Hydrogen-bond geometry $\left({ }^{A},{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 B \cdots 1^{\mathrm{ii}}$	0.98	2.60	$3.472(3)$	148

Symmetry code: (ii) $x-1 / 2,-y+3 / 2, z-1 / 2$.

