metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­kis(μ-acetato-κ2O:O′)bis­­[(tetra­hydro­furan-κO)chromium(II)]

crossmark logo

aMartin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 August 2023; accepted 14 September 2023; online 22 September 2023)

The title compound, [Cr2(C2H3O2)4(C4H8O)2] or [Cr2(OAc)4(THF)2] (OAc is acetate, THF is tetra­hydro­furan), was obtained by recrystallization of anhydrous chromium(II) acetate [Cr2(OAc)4] from hot tetra­hydro­furan. The centrosymmetric complex forms monoclinic crystals, space group C2/c, and consists of two CrII atoms bridged by four acetate ligands. Additionally, each CrII atom is coordinated by a terminal THF ligand, which leads to a square-pyramidal coordination.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chromium(II) acetate was discovered as early as 1844 by Peligot (Peligot, 1844[Peligot, M. E. (1844). C. R. Acad. Sci. pp. 609-615.]). Determinations of the crystal structure of the dihydrate date back to 1953 (van Niekerk et al., 1953[Niekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst. 6, 501-504.]) and 1971 (Cotton et al., 1971[Cotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664-1671.]). A few years later, the crystal structure of anhydrous chromium(II) acetate was reported (Cotton et al., 1977[Cotton, F. A., Rice, C. E. & Rice, G. W. (1977). J. Am. Chem. Soc. 99, 4704-4707.]). Chromium(II) acetate is frequently used as the starting compound for chromium(II) complexes (Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.]). Over the past decades, a large number of chromium(II) acetate complexes with different ligands L have been investigated. Typical compounds are of the type [Cr2(OAc)4L2]. In most cases, L represents a nitro­gen ligand such as pyridine (Cotton & Felthouse, 1980[Cotton, F. A. & Felthouse, T. R. (1980). Inorg. Chem. 19, 328-331.]), aceto­nitrile (Cotton et al., 2000[Cotton, F. A., Hillard, E. A., Murillo, C. A. & Zhou, H.-C. (2000). J. Am. Chem. Soc. 122, 416-417.]) or 4,4′-bi­pyridine (Cotton & Felthouse, 1980[Cotton, F. A. & Felthouse, T. R. (1980). Inorg. Chem. 19, 328-331.]). However, there are also examples with oxygen donor ligands, among them the dihydrate [Cr2(OAc)4(H2O)2] (van Niekerk et al., 1953[Niekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst. 6, 501-504.]) and the analogous derivative with acetic acid ligands [Cr2(OAc)4(HOAc)2] (Cotton & Rice, 1978[Cotton, F. A. & Rice, G. W. (1978). Inorg. Chem. 17, 2004-2009.]). Crystal structures of chromium(II) acetate complexes with common ether donor ligands have not yet been reported. This is in contrast to other chromium(II) carboxyl­ates, where 18 complexes with ether donors have been characterized by crystal-structure determinations. Apart from some di­meth­oxy­ethane (DME) and diethyl ether complexes such as [Cr2(9-anthracene­carboxyl­ate)4(DME)]n (Cotton et al., 1978[Cotton, F. A., Extine, M. & Rice, G. W. (1978). Inorg. Chem. 17, 176-186.]) and [Cr2(OOC—CF3)4(OEt2)2] (Cotton et al., 1978[Cotton, F. A., Extine, M. & Rice, G. W. (1978). Inorg. Chem. 17, 176-186.]), this area is dominated by THF complexes. [Cr2{OOC—CH(PPh2)2}4(THF)2] (Kulangara et al., 2012[Kulangara, S. V., Mason, C., Juba, M., Yang, Y., Thapa, I., Gambarotta, S., Korobkov, I. & Duchateau, R. (2012). Organometallics, 31, 6438-6449.]), [Cr2(OOC—CPh3)4(THF)2] (Cotton & Thompson, 1981[Cotton, F. A. & Thompson, J. L. (1981). Inorg. Chem. 20, 1292-1296.]) and [Cr2(OOC—C6H4-p-F)4(THF)2] (Huang et al., 2019[Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2019). Dalton Trans. 48, 908-914.]) may serve as representative examples.

Here we report on the crystal structure of [Cr2(OAc)4(THF)2] (1). Compound 1 was synthesized by dissolution of anhydrous chromium(II) acetate in hot THF. Upon cooling to room temperature, the product precipitated in the form of dark-red crystals that easily loose THF when separated from the mother liquor.

The crystal structure of 1 consists of discrete [Cr2(OAc)4(THF)2] mol­ecules that possess crystallographic [\overline{1}] symmetry. The {Cr2(OAc)4} core displays a characteristic paddle-wheel structure as was observed in the prototypes [Cr2(OAc)4] (Cotton et al., 1977[Cotton, F. A., Rice, C. E. & Rice, G. W. (1977). J. Am. Chem. Soc. 99, 4704-4707.]) and [Cr2(OAc)4(H2O)2] (van Niekerk et al., 1953[Niekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst. 6, 501-504.]). Apart from four acetate O atoms, each CrII atom binds to the O atom of one THF ligand. This leads to a square-pyramidal coordination environment for the CrII atoms. A Cr—Cr contact completes the coordination sphere (Fig. 1[link]). Compound 1 exhibits Cr—O(OAc) distances in the range from 2.0083 (13) to 2.0175 (13) Å (Table 1[link]). The O(OAc)—Cr—O(OAc) angles are 89.37 (6)–90.40 (6)° for the cis arranged O atoms and 177.16 (5)–177.24 (5)° for the trans positions. The observed bond lengths and angles are typical for [Cr2(OAc)4L2] compounds. According to the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the Cr—O(OAc) distances vary from 1.988 to 2.036 Å with a median value of 2.014 Å (14 entries, 34 data). The cis-O(OAc)—Cr—O(OAc) angles range between 87.13 and 92.06° with a median of 89.80° (13 entries, 66 data) and the trans-O(OAc)—Cr—O(OAc) angles are distributed between 173.76 and 178.99° with a median value of 176.65° (14 entries, 25 data).

Table 1
Selected geometric parameters (Å, °)

Cr—Cri 2.3242 (6) O4—C3 1.261 (2)
Cr—O4i 2.0121 (14) O2—C1 1.262 (2)
Cr—O2i 2.0146 (13) O1—C1 1.263 (2)
Cr—O1 2.0083 (13) O5—C5 1.447 (2)
Cr—O5 2.3267 (13) O5—C8 1.444 (2)
Cr—O3 2.0175 (13) O3—C3 1.262 (2)
       
O4i—Cr—O2i 90.40 (6) O1—Cr—O4i 89.91 (6)
O4i—Cr—O5 89.29 (5) O1—Cr—O2i 177.24 (5)
O4i—Cr—O3 177.16 (5) O1—Cr—O5 94.38 (5)
O2i—Cr—O5 88.36 (5) O1—Cr—O3 90.19 (6)
O2i—Cr—O3 89.37 (6) O3—Cr—O5 93.53 (5)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of 1 in the crystal. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

The Cr—O(THF) distance is 2.3267 (13) Å. [Cr2(OAc)4(H2O)2] (Cotton et al., 1971[Cotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664-1671.]) and [Cr2(OAc)4(HOAc)2] (Cotton & Rice, 1978[Cotton, F. A. & Rice, G. W. (1978). Inorg. Chem. 17, 2004-2009.]) exhibit corresponding Cr—O distances of 2.272 (3) and 2.306 (3) Å, respectively, for the axially bound ligand. Chromium(II) carboxyl­ates with THF ligands show Cr—O(THF) distances from 2.228 to 2.316 Å with a median of 2.258 Å (14 entries, 14 data).

Compound 1 displays a Cr—Cr distance of 2.3242 (6) Å. This is very close to the median value of 2.337 Å that was obtained from 16 data (14 entries) of the CSD database. Generally, the Cr—Cr distances in [Cr2(OAc)4L2] complexes vary over a relatively large range from 2.270 to 2.452 Å. In [Cr2(OAc)4(H2O)2] (Cotton et al., 1971[Cotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664-1671.]) and [Cr2(OAc)4(HOAc)2] (Cotton & Rice, 1978[Cotton, F. A. & Rice, G. W. (1978). Inorg. Chem. 17, 2004-2009.]), the Cr—Cr distances are 2.362 (1) and 2.300 (1) Å.

Regarding supra­molecular inter­actions, a Hirshfeld surface analysis with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) reveals weak C—H⋯O inter­actions (Table 2[link]) between the acetate methyl group and acetate O atoms of neighbouring mol­ecules (Fig. 2[link]). As a result, linear chains along [101] are formed (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O1ii 0.98 2.60 3.472 (3) 148
Symmetry code: (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the Hirshfeld surface of 1 mapped over dnorm in the range of −0.062 to 1.826 au. Red-colored surfaces show short contacts, dashed green lines indicate hydrogen-bonding inter­actions.
[Figure 3]
Figure 3
Crystal structure of 1, with inter­molecular C—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

A suspension of chromium(II) acetate (0.5 g; 1.5 mmol) in THF (20 ml) was refluxed for 2 h. Afterwards, the hot solution was filtered and the solid residue further extracted with hot THF (2 × 5 ml). THF was evaporated under reduced pressure to give 20 ml of a concentrated solution. Upon storage at 248 K, the product precipitated after several days. The crystalline compound was filtered off and dried under reduced pressure. Yield: 0.57 g (80%). The chromium content was determined photometrically as chromate (Lange & Vejdělek, 1978[Lange, B. & Vejdělek, Z. J. (1978). Photometrische Analyse, 1st ed. Weinheim, New York: VCH.]). Analysis for C16H28Cr2O10 (484.38): calculated: Cr 21.5%, found: Cr 21.7%; IR (ATR; in cm−1): ν = 2962 w, 2937 w, 2896 w, 2867 w, 1581 m, 1482 m, 1435 s, 1351 m, 1297 m, 1249 w, 1233 w, 1178 w, 1035 m, 950 m, 916 m, 878 m, 672 s, 626 m, 583 m, 557 m, 542 m, 495 m, 395 s, 346 m, 297 s, 276 m, 229 m, 208 m.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Cr2(C2H3O2)4(C4H8O)2]
Mr 484.38
Crystal system, space group Monoclinic, C2/c
Temperature (K) 213
a, b, c (Å) 20.833 (4), 9.6413 (15), 15.654 (3)
β (°) 136.283 (10)
V3) 2172.9 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.05
Crystal size (mm) 0.19 × 0.16 × 0.14
 
Data collection
Diffractometer Stoe IPDSII
Absorption correction Integration [Absorption correction with X-RED32 (Stoe, 2009[Stoe (2009). X-RED32. Stoe & Cie, Darmstadt, Germany.]) by Gaussian integration analogous to Coppens (1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.])]
Tmin, Tmax 0.736, 0.873
No. of measured, independent and observed [I > 2σ(I)] reflections 8042, 2297, 2085
Rint 0.025
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.084, 1.06
No. of reflections 2297
No. of parameters 129
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.25
Computer programs: X-AREA (Stoe, 2016[Stoe (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2019[Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.] and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe, 2016); cell refinement: X-AREA (Stoe, 2016); data reduction: X-AREA (Stoe, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2019; software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Tetrakis(µ-acetato-κ2O:O')bis[(tetrahydrofuran-κO)chromium(II)](CrCr) top
Crystal data top
[Cr2(C2H3O2)4(C4H8O)2]F(000) = 1008
Mr = 484.38Dx = 1.481 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.833 (4) ÅCell parameters from 10024 reflections
b = 9.6413 (15) Åθ = 1.9–27.1°
c = 15.654 (3) ŵ = 1.05 mm1
β = 136.283 (10)°T = 213 K
V = 2172.9 (7) Å3Block, clear red
Z = 40.19 × 0.16 × 0.14 mm
Data collection top
Stoe IPDSII
diffractometer
2297 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2085 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.025
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 2.5°
rotation method, ω scansh = 2626
Absorption correction: integration
[Absorption correction with X-Red32 (Stoe, 2009) by Gaussian integration analogous to Coppens (1970)]
k = 1211
Tmin = 0.736, Tmax = 0.873l = 1919
8042 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0467P)2 + 2.3382P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2297 reflectionsΔρmax = 0.54 e Å3
129 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.26094 (2)0.66145 (3)0.46117 (2)0.02544 (11)
O40.14551 (9)0.92201 (13)0.36838 (12)0.0342 (3)
O20.34181 (9)0.94502 (13)0.57992 (12)0.0333 (3)
O10.36182 (9)0.77547 (14)0.50418 (12)0.0345 (3)
O50.28145 (10)0.47338 (14)0.38969 (12)0.0372 (3)
O30.16586 (9)0.75243 (13)0.29340 (11)0.0323 (3)
C10.38244 (12)0.8921 (2)0.55545 (16)0.0318 (4)
C70.2675 (2)0.2300 (2)0.3690 (3)0.0598 (7)
H7A0.2567000.1531980.3994580.072*
H7B0.3021340.1938930.3524580.072*
C40.05644 (14)0.9286 (2)0.15474 (18)0.0437 (5)
H4A0.0284121.0086950.1564940.065*
H4B0.0080490.8605820.0947300.065*
H4C0.0865250.9591500.1307610.065*
C60.17708 (19)0.2950 (3)0.2548 (2)0.0557 (6)
H6A0.1496910.2454730.1791400.067*
H6B0.1316570.2965260.2586060.067*
C20.46056 (14)0.9713 (2)0.5899 (2)0.0447 (5)
H2A0.4512101.0708720.5900810.067*
H2B0.4618510.9518850.5297130.067*
H2C0.5196180.9428360.6724410.067*
C50.20714 (15)0.4391 (2)0.25966 (19)0.0396 (4)
H5A0.2295040.4415480.2213810.048*
H5B0.1549690.5052390.2155390.048*
C30.12762 (12)0.86336 (19)0.28110 (16)0.0296 (4)
C80.31894 (19)0.3462 (2)0.4601 (2)0.0537 (6)
H8A0.3103170.3431410.5145270.064*
H8B0.3861590.3393420.5121280.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.02569 (16)0.02424 (17)0.02535 (16)0.00141 (10)0.01810 (14)0.00139 (10)
O40.0342 (7)0.0303 (6)0.0301 (6)0.0073 (5)0.0206 (6)0.0046 (5)
O20.0330 (6)0.0300 (6)0.0358 (7)0.0039 (5)0.0245 (6)0.0014 (5)
O10.0324 (6)0.0367 (7)0.0387 (7)0.0011 (5)0.0272 (6)0.0005 (6)
O50.0429 (7)0.0283 (6)0.0389 (7)0.0034 (6)0.0290 (6)0.0013 (5)
O30.0353 (6)0.0321 (6)0.0276 (6)0.0030 (5)0.0221 (6)0.0024 (5)
C10.0269 (8)0.0356 (9)0.0257 (8)0.0001 (7)0.0167 (7)0.0068 (7)
C70.090 (2)0.0343 (11)0.0689 (16)0.0016 (12)0.0617 (16)0.0012 (11)
C40.0388 (10)0.0433 (11)0.0299 (9)0.0054 (9)0.0185 (9)0.0106 (8)
C60.0637 (15)0.0443 (12)0.0557 (14)0.0147 (11)0.0420 (13)0.0109 (11)
C20.0333 (10)0.0517 (12)0.0432 (11)0.0084 (9)0.0257 (9)0.0034 (9)
C50.0444 (11)0.0372 (10)0.0373 (10)0.0029 (8)0.0296 (9)0.0014 (8)
C30.0245 (8)0.0303 (8)0.0264 (8)0.0014 (7)0.0159 (7)0.0038 (7)
C80.0604 (14)0.0347 (11)0.0486 (13)0.0132 (10)0.0336 (12)0.0067 (9)
Geometric parameters (Å, º) top
Cr—Cri2.3242 (6)C7—C81.492 (3)
Cr—O4i2.0121 (14)C4—H4A0.9800
Cr—O2i2.0146 (13)C4—H4B0.9800
Cr—O12.0083 (13)C4—H4C0.9800
Cr—O52.3267 (13)C4—C31.506 (2)
Cr—O32.0175 (13)C6—H6A0.9900
O4—C31.261 (2)C6—H6B0.9900
O2—C11.262 (2)C6—C51.503 (3)
O1—C11.263 (2)C2—H2A0.9800
O5—C51.447 (2)C2—H2B0.9800
O5—C81.444 (2)C2—H2C0.9800
O3—C31.262 (2)C5—H5A0.9900
C1—C21.501 (3)C5—H5B0.9900
C7—H7A0.9900C8—H8A0.9900
C7—H7B0.9900C8—H8B0.9900
C7—C61.506 (4)
Cri—Cr—O5176.08 (4)H4A—C4—H4C109.5
O4i—Cr—Cri88.19 (4)H4B—C4—H4C109.5
O4i—Cr—O2i90.40 (6)C3—C4—H4A109.5
O4i—Cr—O589.29 (5)C3—C4—H4B109.5
O4i—Cr—O3177.16 (5)C3—C4—H4C109.5
O2i—Cr—Cri88.66 (4)C7—C6—H6A111.4
O2i—Cr—O588.36 (5)C7—C6—H6B111.4
O2i—Cr—O389.37 (6)H6A—C6—H6B109.2
O1—Cr—Cri88.61 (4)C5—C6—C7101.9 (2)
O1—Cr—O4i89.91 (6)C5—C6—H6A111.4
O1—Cr—O2i177.24 (5)C5—C6—H6B111.4
O1—Cr—O594.38 (5)C1—C2—H2A109.5
O1—Cr—O390.19 (6)C1—C2—H2B109.5
O3—Cr—Cri88.98 (4)C1—C2—H2C109.5
O3—Cr—O593.53 (5)H2A—C2—H2B109.5
C3—O4—Cri120.14 (11)H2A—C2—H2C109.5
C1—O2—Cri119.21 (12)H2B—C2—H2C109.5
C1—O1—Cr119.57 (12)O5—C5—C6105.37 (17)
C5—O5—Cr118.23 (11)O5—C5—H5A110.7
C8—O5—Cr118.74 (13)O5—C5—H5B110.7
C8—O5—C5108.56 (15)C6—C5—H5A110.7
C3—O3—Cr118.98 (11)C6—C5—H5B110.7
O2—C1—O1123.94 (17)H5A—C5—H5B108.8
O2—C1—C2118.42 (18)O4—C3—O3123.71 (16)
O1—C1—C2117.64 (18)O4—C3—C4118.37 (17)
H7A—C7—H7B109.0O3—C3—C4117.92 (17)
C6—C7—H7A111.0O5—C8—C7106.84 (19)
C6—C7—H7B111.0O5—C8—H8A110.4
C8—C7—H7A111.0O5—C8—H8B110.4
C8—C7—H7B111.0C7—C8—H8A110.4
C8—C7—C6103.9 (2)C7—C8—H8B110.4
H4A—C4—H4B109.5H8A—C8—H8B108.6
Cri—O4—C3—O30.4 (2)Cr—O3—C3—O40.2 (2)
Cri—O4—C3—C4179.40 (13)Cr—O3—C3—C4179.60 (13)
Cri—O2—C1—O11.2 (2)C7—C6—C5—O534.4 (2)
Cri—O2—C1—C2178.35 (12)C6—C7—C8—O523.6 (3)
Cr—O1—C1—O21.6 (2)C5—O5—C8—C71.9 (3)
Cr—O1—C1—C2177.88 (12)C8—O5—C5—C620.7 (2)
Cr—O5—C5—C6118.42 (16)C8—C7—C6—C535.1 (3)
Cr—O5—C8—C7140.80 (18)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O1ii0.982.603.472 (3)148
Symmetry code: (ii) x1/2, y+3/2, z1/2.
 

Acknowledgements

We thank Andreas Kiowski for technical support.

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

First citationBrandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationCotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664–1671.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCotton, F. A., Extine, M. & Rice, G. W. (1978). Inorg. Chem. 17, 176–186.  CSD CrossRef ICSD CAS Google Scholar
First citationCotton, F. A. & Felthouse, T. R. (1980). Inorg. Chem. 19, 328–331.  CSD CrossRef CAS Google Scholar
First citationCotton, F. A., Hillard, E. A., Murillo, C. A. & Zhou, H.-C. (2000). J. Am. Chem. Soc. 122, 416–417.  Web of Science CSD CrossRef CAS Google Scholar
First citationCotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.  Google Scholar
First citationCotton, F. A., Rice, C. E. & Rice, G. W. (1977). J. Am. Chem. Soc. 99, 4704–4707.  CSD CrossRef CAS Google Scholar
First citationCotton, F. A. & Rice, G. W. (1978). Inorg. Chem. 17, 2004–2009.  CSD CrossRef ICSD CAS Google Scholar
First citationCotton, F. A. & Thompson, J. L. (1981). Inorg. Chem. 20, 1292–1296.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2019). Dalton Trans. 48, 908–914.  CSD CrossRef CAS PubMed Google Scholar
First citationKulangara, S. V., Mason, C., Juba, M., Yang, Y., Thapa, I., Gambarotta, S., Korobkov, I. & Duchateau, R. (2012). Organometallics, 31, 6438–6449.  CSD CrossRef CAS Google Scholar
First citationLange, B. & Vejdělek, Z. J. (1978). Photometrische Analyse, 1st ed. Weinheim, New York: VCH.  Google Scholar
First citationNiekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst. 6, 501–504.  CSD CrossRef IUCr Journals Google Scholar
First citationPeligot, M. E. (1844). C. R. Acad. Sci. pp. 609–615.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2009). X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146