organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Amino-3,5-di­chloro­pyridinium 3-hy­dr­oxy­pico­linate monohydrate

crossmark logo

aDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India, bDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India, and cAssistant Professor, Department of Chemistry, DM College of Science, Dhanamanjuri University, Imphal, Manipur-795 001, India
*Correspondence e-mail: hemamalini2k3@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 15 September 2023; accepted 19 September 2023; online 22 September 2023)

In the title hydrated salt, C5H5Cl2N2+·C6H4NO3·H2O, the pyridine N atom of the cation is protonated and an intra­molecular O—H⋯O hydrogen bond is observed in the anion, which generates an S(6) ring. The crystal packing features N—H⋯N, O—H⋯O, N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds, which generate a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

4-Amino­pyridine and its derivatives are used clinically to treat Lambert–Eaton myasthenic syndrome and multiple sclerosis because they block potassium channels, which prolongs action potentials and increases transmitter release at the neuromuscular junction (Judge & Bever, 2006[Judge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224-259.]). Picolinic acid, which contains N and O donors, has attracted much attention for the design and synthesis of self-assembling systems (e.g., Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). In this regard, 3-hy­droxy­picolinic acid is of inter­est because it can be used as a neutral ligand or, depending on the pH value, as an anionic or cationic ligand. In addition, due to the arrangement of its functional groups, it can act as a monodentate or bidentate ligand, which allows it to form five- or six-membered chelate rings. As part of our work in this area, we now report the synthesis and structure of the title hydrated mol­ecular salt.

The asymmetric unit (Fig. 1[link]) of the title salt contains a 4-amino-3,5-di­chloro­pyridinium cation, a 3-hy­droxy picolinate anion and a water mol­ecule. The pyridinium cation is essentially planar, with a maximum deviation of 0.010 (2) Å for atom C2. A wider than normal angle [C5—N1—C1 = 120.41 (12)°] is subtended at the protonated N1 atom. In the anion, a typical intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring, is seen. In the extended structure, the cations, anions and water mol­ecules are connected by N—H⋯N, O—H⋯O, C—H⋯Cl, N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]), forming a three-dimensional network (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.79 2.5155 (17) 147
N1—H1⋯N3i 0.86 1.90 2.7546 (17) 171
N2—H2A⋯O1Wii 0.86 2.13 2.9414 (17) 157
N2—H2B⋯O1Wiii 0.86 2.05 2.8269 (17) 149
O1W—H1W⋯O2 0.85 1.90 2.7442 (17) 170
O1W—H2W⋯O1iv 0.85 1.98 2.8181 (18) 170
C5—H5⋯O1i 0.93 2.31 2.9864 (18) 129
C5—H5⋯Cl2v 0.93 2.97 3.7363 (16) 141
C7—H7⋯O3vi 0.93 2.52 3.399 (2) 157
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+2, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids. The intra­molecular hydrogen bond is shown with dashed lines.
[Figure 2]
Figure 2
One-dimensional supra­molecular hydrogen-bonded chain mediated by water mol­ecules in the title compound.
[Figure 3]
Figure 3
Crystal packing viewed down [100] in the title compound.

A search of the Cambridge Structural Database (Version 5.43, update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 3,5-di­chloro-4-amino pyridine fragment with additional substit­uents yielded hexa­aqua­magnesium(II) bis­(4-amino-3,5,6-tri­chloro-picolinate) tetra­hydrate (CSD refcode BAWGOV; Smith et al., 1981[Smith, G., Reilly, E. J. O. & Kennard, C. H. L. (1981). Cryst. Struct. Commun. 10, 1277.]), [(4-amino-3,5-di­chloro-6-fluoro­pyridin-2-yl)­oxy]acetic acid (EZONOY; Park et al., 2016[Park, H., Choi, M. Y., Kwon, E. & Kim, T. H. (2016). Acta Cryst. E72, 1836-1838.]), sodium picloramate hexa­hydrate (CURLIM; Smith et al., 2015[Smith, G. (2015). Acta Cryst. E71, 931-933.]), guanidinium 4-amino-3,5,6-tri­chloro­picolinate (GUPICL10; Parthasarathi et al., 1982[Parthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Smith, G., Reilly, E. J. O. & Kennard, C. H. L. (1982). Cryst. Struct. Commun. 11, 1519.]), and 6-chloro-3-(tri­fluoro­meth­oxy)pyridine-2-carb­oxy­lic acid (MAFTEU; Manteau et al., 2010[Manteau, B., Genix, P., Brelot, L., Vors, J.-P., Pazenok, S., Giornal, F., Leuenberger, C. & Leroux, F. R. (2010). Eur. J. Org. Chem. 604.]).

Synthesis and crystallization

A hot methanol solution of 3-hy­droxy picolinic acid (40 mg) was mixed with a hot aqueous solution of 4-amino 3,5-di­chloro pyridine (34 mg). The mixture was cooled slowly and kept at room temperature. After a few days, colourless block shaped crystals were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H5Cl2N2+·C6H4NO3·H2O
Mr 320.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.4267 (19), 14.084 (3), 10.900 (2)
β (°) 91.953 (8)
V3) 1292.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.52
Crystal size (mm) 0.46 × 0.32 × 0.13
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Multi-scan
Tmin, Tmax 0.819, 0.937
No. of measured, independent and observed [I > 2σ(I)] reflections 45801, 3296, 2853
Rint 0.038
(sin θ/λ)max−1) 0.675
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.03
No. of reflections 3296
No. of parameters 185
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.35
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: PLATON (Spek, 2020).

4-Amino-3,5-dichloropyridinium 3-hydroxypyridine-2-carboxylate monohydrate top
Crystal data top
C5H5Cl2N2+·C6H4NO3·H2OF(000) = 656
Mr = 320.13Dx = 1.645 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4267 (19) ÅCell parameters from 3676 reflections
b = 14.084 (3) Åθ = 2.5–28.8°
c = 10.900 (2) ŵ = 0.52 mm1
β = 91.953 (8)°T = 296 K
V = 1292.9 (5) Å3Plate, colourless
Z = 40.46 × 0.32 × 0.13 mm
Data collection top
Agilent Xcalibur, Atlas, Gemini
diffractometer
2853 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
ω scansθmax = 28.7°, θmin = 2.4°
Absorption correction: multi-scanh = 1111
Tmin = 0.819, Tmax = 0.937k = 1818
45801 measured reflectionsl = 1414
3296 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.3959P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3296 reflectionsΔρmax = 0.24 e Å3
185 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The water H atoms were located in a difference Fourier map and allowed to refine freely. The remaining H atoms were positioned geometrically (C—H = 0.93 and N—H = 0.86 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85851 (4)0.68420 (3)0.15096 (4)0.04683 (12)
Cl20.89478 (5)0.30311 (2)0.10521 (4)0.04737 (12)
O10.42463 (12)0.67099 (7)0.27823 (11)0.0439 (3)
O20.61861 (13)0.71788 (7)0.40818 (11)0.0459 (3)
O30.82471 (14)0.60173 (8)0.48694 (13)0.0535 (3)
H30.7806420.6532200.4772300.080*
N30.50360 (13)0.48436 (8)0.31752 (10)0.0321 (2)
N11.19792 (14)0.49866 (8)0.22147 (11)0.0371 (3)
H11.2945310.5003010.2494790.045*
N20.73770 (13)0.49223 (8)0.08094 (11)0.0355 (3)
H2A0.6851530.5442640.0720570.043*
H2B0.6949060.4391550.0591090.043*
C100.59379 (14)0.55395 (9)0.36845 (11)0.0288 (3)
C110.53872 (15)0.65512 (9)0.34965 (13)0.0326 (3)
C30.88438 (14)0.49383 (9)0.12820 (11)0.0291 (3)
C40.96128 (15)0.57881 (9)0.16585 (12)0.0321 (3)
C60.73510 (16)0.53325 (10)0.43364 (13)0.0353 (3)
C20.97853 (16)0.41096 (9)0.14404 (12)0.0325 (3)
C51.11412 (16)0.57934 (10)0.21103 (13)0.0362 (3)
H51.1609410.6365080.2349610.043*
C11.13192 (17)0.41529 (10)0.18845 (13)0.0373 (3)
H1A1.1913750.3598360.1959190.045*
C90.55198 (17)0.39478 (10)0.32671 (14)0.0388 (3)
H90.4889010.3471630.2915830.047*
C80.69351 (18)0.37002 (10)0.38699 (15)0.0428 (3)
H80.7257230.3068860.3902730.051*
C70.78549 (17)0.43927 (11)0.44166 (15)0.0431 (3)
H70.8800280.4237580.4834330.052*
O1W0.48614 (13)0.86692 (8)0.53048 (11)0.0441 (3)
H1W0.5180860.8166600.4959340.066*
H2W0.4629440.8492780.6022500.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0388 (2)0.03527 (19)0.0658 (3)0.00513 (13)0.00686 (17)0.01076 (16)
Cl20.0497 (2)0.03070 (18)0.0608 (3)0.00776 (14)0.01108 (18)0.00405 (15)
O10.0385 (5)0.0339 (5)0.0585 (7)0.0032 (4)0.0120 (5)0.0042 (5)
O20.0429 (6)0.0320 (5)0.0621 (7)0.0008 (4)0.0073 (5)0.0116 (5)
O30.0416 (6)0.0449 (6)0.0723 (8)0.0023 (5)0.0249 (6)0.0072 (6)
N30.0294 (5)0.0297 (5)0.0371 (6)0.0000 (4)0.0023 (4)0.0008 (4)
N10.0295 (5)0.0419 (6)0.0393 (6)0.0021 (5)0.0075 (5)0.0026 (5)
N20.0278 (5)0.0345 (6)0.0438 (6)0.0027 (4)0.0051 (5)0.0019 (5)
C100.0268 (6)0.0282 (6)0.0313 (6)0.0006 (5)0.0004 (5)0.0009 (5)
C110.0294 (6)0.0290 (6)0.0397 (7)0.0010 (5)0.0023 (5)0.0010 (5)
C30.0273 (6)0.0342 (6)0.0258 (6)0.0031 (5)0.0007 (5)0.0009 (5)
C40.0299 (6)0.0327 (6)0.0335 (6)0.0009 (5)0.0010 (5)0.0027 (5)
C60.0290 (6)0.0371 (7)0.0396 (7)0.0004 (5)0.0039 (5)0.0003 (6)
C20.0340 (6)0.0304 (6)0.0329 (6)0.0047 (5)0.0028 (5)0.0039 (5)
C50.0323 (6)0.0387 (7)0.0374 (7)0.0054 (5)0.0035 (5)0.0036 (6)
C10.0357 (7)0.0363 (7)0.0396 (7)0.0008 (5)0.0048 (6)0.0065 (6)
C90.0387 (7)0.0292 (6)0.0483 (8)0.0009 (5)0.0021 (6)0.0018 (6)
C80.0413 (8)0.0320 (7)0.0549 (9)0.0084 (6)0.0016 (7)0.0068 (6)
C70.0327 (7)0.0436 (8)0.0526 (9)0.0074 (6)0.0066 (6)0.0075 (7)
O1W0.0418 (6)0.0358 (5)0.0542 (7)0.0069 (4)0.0077 (5)0.0016 (5)
Geometric parameters (Å, º) top
Cl1—C41.7233 (14)C10—C111.5103 (18)
Cl2—C21.7217 (14)C3—C41.4151 (17)
O1—C111.2366 (17)C3—C21.4184 (18)
O2—C111.2697 (17)C4—C51.3631 (18)
O3—C61.3446 (17)C6—C71.392 (2)
O3—H30.8200C2—C11.3661 (19)
N3—C91.3287 (18)C5—H50.9300
N3—C101.3481 (16)C1—H1A0.9300
N1—C51.3406 (18)C9—C81.386 (2)
N1—C11.3430 (18)C9—H90.9300
N1—H10.8600C8—C71.370 (2)
N2—C31.3229 (16)C8—H80.9300
N2—H2A0.8600C7—H70.9300
N2—H2B0.8600O1W—H1W0.8499
C10—C61.3965 (18)O1W—H2W0.8500
C6—O3—H3109.5O3—C6—C10121.79 (13)
C9—N3—C10119.47 (12)C7—C6—C10118.91 (13)
C5—N1—C1120.41 (12)C1—C2—C3121.66 (12)
C5—N1—H1119.8C1—C2—Cl2120.10 (11)
C1—N1—H1119.8C3—C2—Cl2118.24 (10)
C3—N2—H2A120.0N1—C5—C4120.96 (13)
C3—N2—H2B120.0N1—C5—H5119.5
H2A—N2—H2B120.0C4—C5—H5119.5
N3—C10—C6121.12 (12)N1—C1—C2120.81 (13)
N3—C10—C11117.62 (11)N1—C1—H1A119.6
C6—C10—C11121.24 (11)C2—C1—H1A119.6
O1—C11—O2125.31 (13)N3—C9—C8122.09 (13)
O1—C11—C10118.99 (12)N3—C9—H9119.0
O2—C11—C10115.68 (12)C8—C9—H9119.0
N2—C3—C4122.67 (12)C7—C8—C9119.48 (13)
N2—C3—C2123.00 (12)C7—C8—H8120.3
C4—C3—C2114.33 (11)C9—C8—H8120.3
C5—C4—C3121.81 (12)C8—C7—C6118.88 (13)
C5—C4—Cl1119.66 (11)C8—C7—H7120.6
C3—C4—Cl1118.52 (10)C6—C7—H7120.6
O3—C6—C7119.29 (12)H1W—O1W—H2W104.5
C9—N3—C10—C61.8 (2)C4—C3—C2—C11.97 (19)
C9—N3—C10—C11176.65 (12)N2—C3—C2—Cl22.54 (18)
N3—C10—C11—O17.84 (19)C4—C3—C2—Cl2178.22 (10)
C6—C10—C11—O1170.60 (13)C1—N1—C5—C40.6 (2)
N3—C10—C11—O2173.80 (12)C3—C4—C5—N10.0 (2)
C6—C10—C11—O27.76 (19)Cl1—C4—C5—N1178.74 (11)
N2—C3—C4—C5178.05 (13)C5—N1—C1—C20.2 (2)
C2—C3—C4—C51.20 (19)C3—C2—C1—N11.5 (2)
N2—C3—C4—Cl10.74 (18)Cl2—C2—C1—N1178.65 (11)
C2—C3—C4—Cl1179.99 (10)C10—N3—C9—C80.2 (2)
N3—C10—C6—O3178.70 (13)N3—C9—C8—C71.6 (2)
C11—C10—C6—O32.9 (2)C9—C8—C7—C60.9 (2)
N3—C10—C6—C72.4 (2)O3—C6—C7—C8179.94 (15)
C11—C10—C6—C7175.97 (13)C10—C6—C7—C81.0 (2)
N2—C3—C2—C1177.27 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.792.5155 (17)147
N1—H1···N3i0.861.902.7546 (17)171
N2—H2A···O1Wii0.862.132.9414 (17)157
N2—H2B···O1Wiii0.862.052.8269 (17)149
O1W—H1W···O20.851.902.7442 (17)170
O1W—H2W···O1iv0.851.982.8181 (18)170
C5—H5···O1i0.932.312.9864 (18)129
C5—H5···Cl2v0.932.973.7363 (16)141
C7—H7···O3vi0.932.523.399 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x+2, y+1/2, z+1/2; (vi) x+2, y+1, z+1.
 

Funding information

MH thanks SERB-IRE for financial support (Ref. No. SIR/2022/000011). SJK thanks TANSCHE for financial support (File No. RGP/2019–20/MTWU/HECP-0080).

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJudge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManteau, B., Genix, P., Brelot, L., Vors, J.-P., Pazenok, S., Giornal, F., Leuenberger, C. & Leroux, F. R. (2010). Eur. J. Org. Chem. 604.  Google Scholar
First citationPark, H., Choi, M. Y., Kwon, E. & Kim, T. H. (2016). Acta Cryst. E72, 1836–1838.  CSD CrossRef IUCr Journals Google Scholar
First citationParthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Smith, G., Reilly, E. J. O. & Kennard, C. H. L. (1982). Cryst. Struct. Commun. 11, 1519.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G. (2015). Acta Cryst. E71, 931–933.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Reilly, E. J. O. & Kennard, C. H. L. (1981). Cryst. Struct. Commun. 10, 1277.  Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146