metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Synthesis and crystal structure of [Cs([2.2.2]crypt)]2[Mo(CO)5]

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
*Correspondence e-mail: nikolaus.korber@chemie.uni-regensburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 August 2019; accepted 6 September 2019; online 12 September 2019)

Reduction of the heteroleptic metal carbonyl complex Mo(CO)3(η5-Cp)H with the metallic salt Cs5Bi4 in the presence of [2.2.2]crypt (= 4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexa­cosa­ne) in liquid ammonia led to single crystals of bis­[(4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexa­cosa­ne)caesium] penta­carbonyl­molybdate, [Cs(C18H36N2O6)]2[Mo(CO)5] or [Cs([2.2.2]crypt)]2[Mo(CO)5]. The twofold negatively charged anionic complex corresponds to the 18 valence electron rule. It consists of an Mo atom coordinated by five carbonyl ligands in a shape inter­mediate between trigonal–bipyramidal and square-pyramidal. The Mo—C distances range from 1.961 (3) to 2.017 (3) Å, and the C≡O distances from 1.164 (3) to 1.180 (4) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Synthetic routes and structural compositions of neutral metal carbonyl complexes for group 4 to 11 as well as negatively charged carbonyl metalates for group 4 to 10 are well known in the literature, and are extensively documented (Holleman et al., 2016[Holleman, A. F., Wiberg, E. & Wiberg, N. (2016). Anorganische Chemie - Band 1: Grundlagen und Hauptgruppenelemente, 103rd ed., pp. 2108-2122 and 2130-2135. Berlin: De Gruyter.]). For a detailed review of metal carbonyl anions, see: Ellis (2003[Ellis, J. E. (2003). Organometallics, 22, 3322-3338.]). Only very recently, the first tricarbonyl nickelate, [Ni(CO)3]2–, could be synthesized via the reaction between Ni(CO)2(PPh3)2, K6Rb6Ge17 and chelating ligands in liquid ammonia (Lorenz et al., 2018[Lorenz, C., Kaas, M. & Korber, N. (2018). Z. Anorg. Allg. Chem. 644, 1678-1680.]). Thus, it was again demonstrated that Zintl phases are suitable for the reduction of metal carbonyl complexes. This behaviour has previously been exemplified in the reduction of Mn2(CO)10 by K4Ge9 to yield [Mn(CO)5] (Härtl, 2012[Härtl, O. (2012). PhD thesis. Universität Regensburg, Germany.]). In the field of group 6 homoleptic carbonyl metalates, crystal structures determined by single-crystal X-ray diffraction experiments are sporadically documented. The first crystal structure comprising [Cr(CO)5]2– and documented in the Cambridge Crystal Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted from the reaction between Cr(CO)6, [2.2.2]crypt and the nominal phase K3Cd2Sb2 in ethyl­enedi­amine (Zhai & Xu, 2011[Zhai, J. & Xu, L. (2011). Acta Cryst. C67, m202-m204.]). Previously, in 1985, the heavier homologue [W(CO)5]2– was obtained in the reaction between W(CO)2(NMe3), NaC10H8 and [2.2.1]crypt (Maher et al., 1985[Maher, J. M., Beatty, R. P. & Cooper, N. J. (1985). Organometallics, 4, 1354-1361.]). Using the same route, the corresponding Mo species could be synthesized, but there was no documentation of its structural characterization (Maher et al., 1982[Maher, J. M., Beatty, R. P. & Cooper, N. J. (1982). Organometallics, 1, 215-217.]). To our knowledge, there is no detailed structure data of the [Mo(CO)5]2– anion published so far. We here present the synthesis and crystal structure of the penta­carbonyl molybdate complex [Cs([2.2.2]crypt)]2[Mo(CO)5].

[Cs([2.2.2]crypt)]2[Mo(CO)5] was obtained by the reduction of Mo(CO)3(η5-Cp)H with Cs5Bi4 in the presence of [2.2.2]crypt in liquid ammonia. The asymmetric unit contains two [Cs([2.2.2]crypt)]+ cation complexes and a twofold negatively charged [Mo(CO)5]2– unit which follows the 18 valence electron rule (Fig. 1[link]). The Mo—C bonds in the anionic unit range from 1.961 (3) to 2.017 (3) Å and the C≡O bonds from 1.164 (3) to 1.180 (4) Å. The former bonds are slightly shorter and the latter bonds are slightly longer than the corresponding bonds in Mo(CO)6 (Mak, 1984[Mak, T. C. W. (1984). Z. Kristallogr. 166, 277-282.]). This can be explained by the high π-acceptor characteristics of the carbonyl ligands, which leads to a partial electron transfer into their π* orbitals and consequently to a weakening of the C≡O bonds. As expected, this effect is stronger in the negatively charged penta­carbonyl molybdate than in the neutral complex. The [Mo(CO)5]2– anion shows a shape inter­mediate between a trigonal bipyramid (TP) and a square pyramid (SP) (τ5 = 0.49; extreme forms: τ5 = 0 for SP and 1 for TP; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), with the following C—Mo—C angles: C1—Mo1—C2 = 168.11 (11)°, C3—Mo1—C4 = 108.89 (13)°, C3—Mo1—C5 = 112.35 (13)°, C4—Mo1—C5 = 138.76 (14)°. The carbonyl ligands point almost linearly towards the central metal atoms, with angular values in the range between 177.3 (2)° for Mo1—C2≡O2 and 179.2 (3)° for Mo1—C3≡O3. The overall charge of the anionic unit is compensated by two [Cs([2.2.2]crypt)]+ cation complexes. The caesium cations therein are located in the centre of the chelating mol­ecules and are coordinated by two nitro­gen atoms and six oxygen atoms, respectively. The Cs—N and the Cs—O distances in the two cationic units range from 3.053 (2) to 3.107 (3) Å and from 2.9457 (19) to 3.022 (2) Å, and agree with corresponding values in the compound [Cs([2.2.2]crypt)]SCN·H2O (Moras et al., 1973[Moras, D., Metz, B. & Weiss, R. (1973). Acta Cryst. B29, 388-395.]). The positions of the cationic complexes in the crystal structure are determined by weak hydrogen bonds between the donor C—H fragments of the [2.2.2]crypt mol­ecules and the acceptor O atoms of the carbonyl ligands. The shortest distances are found between C32—H32B ⋯ O2 [2.486 (2) Å], C22—H22B⋯O5 [2.663 (3) Å], C21—H21B⋯O1 [2.682 (3) Å] and C16—H16H⋯O2 [2.688 (2) Å] (Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of [Cs([2.2.2]crypt)]2[Mo(CO)5]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal structure of [Cs([2.2.2]crypt)]2[Mo(CO)5] in a projection onto the bc plane, including the shortest C—H⋯O hydrogen bonds. [Mo(CO)5]2− anions are drawn as polyhedra and hydrogen bonds as dashed lines.

Synthesis and crystallization

Mo(CO)3(η5-Cp)H was prepared via the route documented in the literature (Fischer et al., 1955[Fischer, E. O., Hafner, W. & Stahl, H. O. (1955). Z. Anorg. Allg. Chem. 282, 47-62.]) Cs5Bi4 was prepared by high-temperature synthesis from the elements (Gascoin & Sevov, 2001[Gascoin, F. & Sevov, S. C. (2001). Inorg. Chem. 40, 5177-5181.]). 13 mg (0.05 mmol) Mo(CO)3(η5-Cp)H, 40 mg (0.026 mmol) Cs5Bi4 and 50 mg (0.13 mmol) [2.2.2]crypt were dissolved in dry liquid ammonia in a baked-out reaction vessel. Liquid ammonia was previously dried over sodium metal and condensed using a standard Schlenk line. The mixture was stored at 237 K for crystallization. After several weeks, crystals appeared as red blocks in an orange solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Cs(C18H36N2O6)]2[Mo(CO)5]
Mr 1254.78
Crystal system, space group Monoclinic, P21/n
Temperature (K) 123
a, b, c (Å) 13.2243 (1), 16.1431 (2), 24.3966 (3)
β (°) 90.958 (1)
V3) 5207.49 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.70
Crystal size (mm) 0.16 × 0.12 × 0.12
 
Data collection
Diffractometer Rigaku Oxford DiffractionSuperNova Single source at offset/far, Eos
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.])
Tmin, Tmax 0.798, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33230, 11436, 9742
Rint 0.032
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.065, 1.07
No. of reflections 11436
No. of parameters 586
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.94, −0.54
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)caesium] pentacarbonylmolybdate top
Crystal data top
[Cs(C18H36N2O6)]2[Mo(CO)5]F(000) = 2536
Mr = 1254.78Dx = 1.600 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.2243 (1) ÅCell parameters from 16518 reflections
b = 16.1431 (2) Åθ = 3.4–30.2°
c = 24.3966 (3) ŵ = 1.70 mm1
β = 90.958 (1)°T = 123 K
V = 5207.49 (10) Å3Block, dark red
Z = 40.16 × 0.12 × 0.12 mm
Data collection top
Rigaku Oxford DiffractionSuperNova Single source at offset/far, Eos
diffractometer
11436 independent reflections
Radiation source: micro-focus sealed X-ray tube9742 reflections with I > 2σ(I)
Detector resolution: 15.9702 pixels mm-1Rint = 0.032
ω scansθmax = 27.1°, θmin = 3.3°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2017)
h = 1616
Tmin = 0.798, Tmax = 1.000k = 1920
33230 measured reflectionsl = 3127
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0225P)2 + 4.0699P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
11436 reflectionsΔρmax = 0.94 e Å3
586 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H-atoms could be located from difference Fourier maps, but were positioned with idealized geometry.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs20.74432 (2)0.20064 (2)0.38970 (2)0.02053 (5)
Cs10.76188 (2)0.46807 (2)0.71525 (2)0.02300 (5)
Mo10.75814 (2)0.71499 (2)0.43570 (2)0.01903 (6)
O120.69040 (15)0.24956 (12)0.27581 (8)0.0262 (4)
O160.93080 (15)0.30030 (12)0.40639 (9)0.0285 (5)
O150.57629 (15)0.13611 (12)0.45957 (8)0.0268 (4)
O60.83117 (15)0.58337 (12)0.62954 (8)0.0272 (5)
O130.72714 (14)0.06971 (12)0.30150 (8)0.0248 (4)
O170.91457 (14)0.13224 (12)0.45641 (9)0.0292 (5)
O140.60182 (14)0.31598 (12)0.44122 (9)0.0271 (5)
O100.90167 (15)0.37334 (13)0.78715 (8)0.0297 (5)
O90.55536 (15)0.44298 (13)0.67005 (9)0.0318 (5)
O30.73539 (16)0.81711 (14)0.54428 (9)0.0353 (5)
O80.58288 (16)0.46437 (14)0.79055 (9)0.0358 (5)
O110.84774 (14)0.30608 (12)0.67638 (8)0.0268 (5)
O20.61536 (15)0.56935 (12)0.47584 (9)0.0277 (5)
O70.82496 (15)0.64115 (13)0.74359 (9)0.0307 (5)
N10.73363 (17)0.41607 (14)0.59564 (10)0.0241 (5)
N40.73917 (17)0.01730 (14)0.42392 (10)0.0225 (5)
O40.59731 (18)0.77912 (15)0.34782 (12)0.0501 (7)
O50.93195 (17)0.58026 (14)0.44560 (12)0.0489 (7)
N20.7888 (2)0.52186 (17)0.83690 (11)0.0325 (6)
N30.74427 (18)0.38451 (14)0.35748 (10)0.0257 (5)
O10.92534 (17)0.82770 (14)0.38055 (11)0.0462 (7)
C30.7446 (2)0.77912 (17)0.50344 (12)0.0242 (6)
C10.8634 (2)0.78785 (18)0.40131 (13)0.0266 (7)
C70.7739 (2)0.56636 (19)0.58056 (12)0.0283 (7)
H7A0.7949150.6034480.5516170.034*
H7B0.7026640.5759790.5870400.034*
C60.7894 (2)0.47771 (18)0.56288 (12)0.0266 (6)
H6A0.7683420.4723580.5247610.032*
H6B0.8610080.4650230.5652520.032*
C400.9224 (2)0.04821 (18)0.43908 (13)0.0286 (7)
H40A0.9834640.0236600.4545310.034*
H40B0.9264430.0459060.3994420.034*
C370.9088 (2)0.38705 (18)0.41127 (13)0.0309 (7)
H37A0.9713520.4181820.4144700.037*
H37B0.8698650.3968450.4439830.037*
C290.7392 (2)0.03248 (17)0.37323 (13)0.0270 (6)
H29A0.7150510.0877750.3814510.032*
H29B0.8081150.0374110.3606470.032*
C170.6251 (2)0.41683 (19)0.58094 (13)0.0286 (7)
H17A0.6143610.3833040.5483740.034*
H17B0.6050600.4731240.5720950.034*
C20.6655 (2)0.62352 (18)0.46048 (11)0.0220 (6)
C40.6559 (2)0.75477 (19)0.38106 (14)0.0311 (7)
C410.8309 (2)0.00013 (18)0.45776 (13)0.0268 (6)
H41A0.8457560.0586540.4562210.032*
H41B0.8175070.0141720.4956110.032*
C260.7153 (2)0.18464 (18)0.23878 (13)0.0299 (7)
H26A0.7882010.1782930.2374370.036*
H26B0.6905310.1981220.2022170.036*
C340.6165 (2)0.07057 (18)0.49218 (12)0.0287 (7)
H34A0.5660820.0517950.5177820.034*
H34B0.6748020.0901870.5130800.034*
C300.6796 (2)0.43092 (17)0.39556 (13)0.0279 (7)
H30A0.6641500.4845230.3795180.033*
H30B0.7175040.4405710.4293270.033*
C330.5368 (2)0.20210 (19)0.49248 (13)0.0310 (7)
H33A0.5867080.2181160.5200820.037*
H33B0.4767820.1832250.5110720.037*
C250.7381 (2)0.32549 (18)0.26203 (13)0.0287 (7)
H25A0.7202400.3408160.2246680.034*
H25B0.8109950.3192830.2646250.034*
C270.6681 (2)0.10553 (18)0.25778 (12)0.0289 (7)
H27A0.6002190.1164960.2703130.035*
H27B0.6634890.0668030.2274470.035*
C320.5110 (2)0.27512 (19)0.45714 (14)0.0325 (7)
H32A0.4736070.2568810.4247830.039*
H32B0.4686790.3132950.4771770.039*
C280.6744 (2)0.00361 (18)0.32764 (13)0.0271 (6)
H28A0.6580940.0391320.3009940.032*
H28B0.6116590.0242510.3424660.032*
C350.6473 (2)0.00036 (18)0.45569 (13)0.0270 (6)
H35A0.6592940.0490680.4781530.032*
H35B0.5919910.0128590.4304190.032*
C360.8494 (2)0.41556 (18)0.36126 (13)0.0297 (7)
H36A0.8477050.4756370.3611670.036*
H36B0.8848910.3980280.3287890.036*
C240.7038 (2)0.39239 (18)0.30122 (13)0.0297 (7)
H24A0.7237380.4458400.2867980.036*
H24B0.6305210.3915350.3024310.036*
C380.9847 (2)0.2695 (2)0.45360 (14)0.0339 (7)
H38A0.9450640.2782990.4861750.041*
H38B1.0481930.2990200.4581280.041*
C50.8676 (2)0.62980 (19)0.44144 (14)0.0305 (7)
C310.5814 (2)0.38854 (18)0.40932 (13)0.0297 (7)
H31A0.5390040.4261040.4297940.036*
H31B0.5454750.3733830.3758140.036*
C210.9350 (2)0.2875 (2)0.70928 (13)0.0310 (7)
H21A0.9877600.3276870.7021610.037*
H21B0.9603590.2330460.6998270.037*
C230.7750 (2)0.33246 (19)0.58727 (13)0.0315 (7)
H23A0.7881930.3252130.5485760.038*
H23B0.7241560.2921710.5973230.038*
C160.5584 (2)0.3845 (2)0.62611 (13)0.0325 (7)
H16A0.4905300.3751710.6117110.039*
H16B0.5847070.3320830.6395720.039*
C110.8183 (3)0.6100 (2)0.83950 (14)0.0376 (8)
H11A0.8543200.6196940.8738790.045*
H11B0.7574900.6435090.8396410.045*
C220.8711 (2)0.3143 (2)0.61944 (13)0.0316 (7)
H22A0.9012730.2634620.6062580.038*
H22B0.9191500.3589550.6145720.038*
C391.0048 (2)0.1785 (2)0.44633 (15)0.0351 (8)
H39A1.0272170.1680910.4093100.042*
H39B1.0580660.1610740.4716160.042*
C130.6017 (2)0.5296 (2)0.82879 (14)0.0388 (8)
H13A0.5428490.5375390.8513700.047*
H13B0.6142490.5807570.8092160.047*
C100.8839 (3)0.6386 (2)0.79315 (14)0.0393 (8)
H10A0.9107440.6932770.8012440.047*
H10B0.9403440.6008860.7889690.047*
C140.4937 (2)0.4790 (2)0.75821 (14)0.0415 (9)
H14A0.4948110.5350390.7439090.050*
H14B0.4345500.4732640.7808860.050*
C180.8696 (3)0.4684 (2)0.86080 (14)0.0392 (8)
H18A0.8645340.4698200.9004060.047*
H18B0.9346140.4918340.8514680.047*
C120.6927 (3)0.5085 (2)0.86487 (14)0.0382 (8)
H12A0.6914390.5424220.8976710.046*
H12B0.6883440.4509630.8760620.046*
C190.8671 (3)0.3793 (2)0.84241 (13)0.0398 (8)
H19A0.9100650.3461470.8663980.048*
H19B0.7986180.3580840.8444520.048*
C80.8178 (3)0.66710 (19)0.64725 (13)0.0341 (7)
H8A0.7466140.6779900.6528370.041*
H8B0.8417130.7048480.6193660.041*
C150.4875 (2)0.4189 (2)0.71187 (15)0.0405 (9)
H15A0.5047610.3638150.7249210.049*
H15B0.4189130.4173240.6971080.049*
C200.9091 (2)0.28955 (19)0.76867 (13)0.0328 (7)
H20A0.8452290.2613980.7740710.039*
H20B0.9608590.2607920.7899090.039*
C90.8759 (3)0.6808 (2)0.69973 (14)0.0382 (8)
H9A0.9435860.6582260.6966270.046*
H9B0.8816550.7396730.7070240.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs20.02092 (9)0.01816 (9)0.02251 (10)0.00146 (7)0.00008 (6)0.00036 (7)
Cs10.02253 (9)0.02529 (10)0.02114 (10)0.00046 (7)0.00109 (6)0.00001 (7)
Mo10.01902 (12)0.01872 (12)0.01932 (13)0.00006 (9)0.00018 (9)0.00094 (9)
O120.0384 (12)0.0199 (10)0.0203 (11)0.0020 (9)0.0018 (8)0.0013 (8)
O160.0294 (11)0.0229 (11)0.0330 (13)0.0012 (9)0.0057 (9)0.0003 (9)
O150.0299 (11)0.0251 (11)0.0255 (12)0.0008 (9)0.0042 (8)0.0030 (9)
O60.0328 (11)0.0253 (11)0.0235 (11)0.0030 (9)0.0009 (8)0.0020 (9)
O130.0276 (10)0.0197 (10)0.0268 (12)0.0023 (8)0.0032 (8)0.0013 (8)
O170.0224 (10)0.0276 (11)0.0374 (13)0.0012 (9)0.0032 (9)0.0024 (9)
O140.0211 (10)0.0222 (10)0.0381 (13)0.0002 (8)0.0044 (9)0.0028 (9)
O100.0347 (11)0.0303 (11)0.0239 (12)0.0056 (9)0.0009 (9)0.0023 (9)
O90.0241 (11)0.0387 (12)0.0325 (13)0.0076 (9)0.0003 (9)0.0060 (10)
O30.0398 (13)0.0384 (13)0.0278 (13)0.0000 (10)0.0046 (10)0.0097 (10)
O80.0283 (11)0.0463 (14)0.0330 (13)0.0086 (10)0.0030 (9)0.0071 (11)
O110.0230 (10)0.0303 (11)0.0270 (12)0.0026 (9)0.0014 (8)0.0013 (9)
O20.0291 (11)0.0210 (10)0.0331 (13)0.0041 (9)0.0038 (9)0.0012 (9)
O70.0334 (11)0.0325 (12)0.0262 (12)0.0072 (10)0.0006 (9)0.0054 (9)
N10.0258 (12)0.0225 (12)0.0238 (14)0.0006 (10)0.0027 (10)0.0001 (10)
N40.0214 (12)0.0196 (12)0.0264 (14)0.0011 (10)0.0002 (9)0.0029 (10)
O40.0430 (14)0.0448 (15)0.0618 (19)0.0106 (12)0.0265 (13)0.0213 (13)
O50.0341 (13)0.0291 (13)0.083 (2)0.0085 (11)0.0051 (12)0.0028 (13)
N20.0372 (15)0.0360 (15)0.0242 (15)0.0069 (12)0.0008 (11)0.0004 (11)
N30.0288 (13)0.0184 (12)0.0297 (14)0.0012 (10)0.0015 (10)0.0018 (10)
O10.0343 (13)0.0298 (12)0.0753 (19)0.0023 (10)0.0252 (12)0.0133 (12)
C30.0207 (14)0.0246 (15)0.0274 (17)0.0035 (12)0.0007 (11)0.0029 (12)
C10.0238 (15)0.0217 (15)0.0346 (18)0.0056 (12)0.0042 (12)0.0021 (13)
C70.0316 (16)0.0295 (16)0.0237 (16)0.0046 (13)0.0010 (12)0.0056 (13)
C60.0301 (15)0.0320 (16)0.0178 (15)0.0020 (13)0.0020 (11)0.0002 (12)
C400.0244 (15)0.0306 (17)0.0306 (17)0.0074 (13)0.0026 (12)0.0029 (13)
C370.0292 (16)0.0259 (16)0.0375 (19)0.0040 (13)0.0015 (13)0.0053 (14)
C290.0280 (15)0.0186 (14)0.0346 (18)0.0033 (12)0.0014 (12)0.0003 (12)
C170.0294 (16)0.0278 (16)0.0282 (17)0.0011 (13)0.0109 (12)0.0013 (13)
C20.0201 (14)0.0243 (15)0.0216 (15)0.0032 (12)0.0032 (11)0.0038 (12)
C40.0305 (16)0.0258 (16)0.0366 (19)0.0100 (13)0.0058 (14)0.0067 (14)
C410.0281 (15)0.0233 (15)0.0288 (17)0.0052 (12)0.0033 (12)0.0063 (12)
C260.0376 (17)0.0299 (16)0.0221 (16)0.0070 (14)0.0028 (13)0.0003 (13)
C340.0261 (15)0.0324 (17)0.0277 (17)0.0030 (13)0.0042 (12)0.0039 (13)
C300.0328 (16)0.0178 (14)0.0330 (18)0.0025 (12)0.0000 (13)0.0013 (12)
C330.0268 (15)0.0335 (17)0.0332 (18)0.0042 (13)0.0107 (13)0.0112 (14)
C250.0383 (17)0.0262 (16)0.0215 (16)0.0018 (13)0.0024 (12)0.0057 (12)
C270.0374 (17)0.0247 (16)0.0245 (17)0.0062 (13)0.0070 (13)0.0037 (12)
C320.0214 (15)0.0300 (17)0.046 (2)0.0010 (13)0.0094 (13)0.0106 (14)
C280.0296 (16)0.0219 (15)0.0296 (17)0.0002 (12)0.0013 (12)0.0031 (13)
C350.0294 (15)0.0217 (15)0.0301 (17)0.0021 (12)0.0029 (12)0.0058 (12)
C360.0329 (16)0.0190 (15)0.0373 (19)0.0040 (13)0.0036 (13)0.0004 (13)
C240.0384 (17)0.0203 (15)0.0302 (18)0.0010 (13)0.0034 (13)0.0067 (13)
C380.0234 (15)0.0391 (18)0.039 (2)0.0072 (14)0.0094 (13)0.0012 (15)
C50.0269 (16)0.0234 (16)0.041 (2)0.0042 (13)0.0067 (13)0.0011 (14)
C310.0282 (16)0.0261 (16)0.0347 (18)0.0079 (13)0.0009 (13)0.0052 (13)
C210.0265 (15)0.0307 (17)0.0356 (19)0.0059 (13)0.0032 (13)0.0009 (14)
C230.0408 (18)0.0281 (16)0.0255 (17)0.0039 (14)0.0047 (13)0.0040 (13)
C160.0281 (16)0.0323 (17)0.0369 (19)0.0055 (14)0.0094 (13)0.0066 (14)
C110.0442 (19)0.0409 (19)0.0274 (18)0.0034 (16)0.0058 (14)0.0072 (15)
C220.0322 (17)0.0325 (17)0.0304 (18)0.0080 (14)0.0030 (13)0.0030 (14)
C390.0191 (15)0.0388 (19)0.047 (2)0.0003 (14)0.0076 (13)0.0079 (16)
C130.0360 (18)0.045 (2)0.036 (2)0.0102 (16)0.0135 (14)0.0069 (16)
C100.0406 (19)0.0387 (19)0.038 (2)0.0078 (16)0.0076 (15)0.0094 (16)
C140.0222 (16)0.062 (2)0.041 (2)0.0089 (16)0.0068 (14)0.0126 (18)
C180.0442 (19)0.052 (2)0.0210 (17)0.0117 (17)0.0087 (14)0.0053 (15)
C120.047 (2)0.043 (2)0.0243 (18)0.0051 (16)0.0043 (14)0.0003 (15)
C190.050 (2)0.046 (2)0.0230 (18)0.0152 (17)0.0017 (14)0.0071 (15)
C80.0476 (19)0.0229 (16)0.0319 (19)0.0063 (14)0.0068 (14)0.0013 (13)
C150.0225 (16)0.055 (2)0.044 (2)0.0055 (15)0.0011 (14)0.0185 (17)
C200.0339 (17)0.0289 (17)0.0353 (19)0.0073 (14)0.0044 (14)0.0071 (14)
C90.0431 (19)0.0334 (18)0.038 (2)0.0141 (15)0.0058 (15)0.0043 (15)
Geometric parameters (Å, º) top
Cs2—O122.964 (2)C17—H17A0.9700
Cs2—O162.967 (2)C17—H17B0.9700
Cs2—O153.009 (2)C17—C161.516 (4)
Cs2—O133.022 (2)C41—H41A0.9700
Cs2—O172.969 (2)C41—H41B0.9700
Cs2—O142.9457 (19)C26—H26A0.9700
Cs2—N43.076 (2)C26—H26B0.9700
Cs2—N33.070 (2)C26—C271.498 (4)
Cs1—O62.956 (2)C34—H34A0.9700
Cs1—O102.954 (2)C34—H34B0.9700
Cs1—O92.956 (2)C34—C351.511 (4)
Cs1—O83.021 (2)C30—H30A0.9700
Cs1—O113.010 (2)C30—H30B0.9700
Cs1—O72.994 (2)C30—C311.510 (4)
Cs1—N13.053 (2)C33—H33A0.9700
Cs1—N23.107 (3)C33—H33B0.9700
Mo1—C31.961 (3)C33—C321.497 (5)
Mo1—C12.016 (3)C25—H25A0.9700
Mo1—C22.017 (3)C25—H25B0.9700
Mo1—C41.989 (3)C25—C241.517 (4)
Mo1—C52.000 (3)C27—H27A0.9700
O12—C261.426 (3)C27—H27B0.9700
O12—C251.422 (3)C32—H32A0.9700
O16—C371.436 (3)C32—H32B0.9700
O16—C381.433 (4)C28—H28A0.9700
O15—C341.422 (3)C28—H28B0.9700
O15—C331.437 (3)C35—H35A0.9700
O6—C71.431 (3)C35—H35B0.9700
O6—C81.431 (4)C36—H36A0.9700
O13—C271.433 (3)C36—H36B0.9700
O13—C281.430 (3)C24—H24A0.9700
O17—C401.425 (3)C24—H24B0.9700
O17—C391.433 (4)C38—H38A0.9700
O14—C321.430 (3)C38—H38B0.9700
O14—C311.429 (4)C38—C391.503 (4)
O10—C191.434 (4)C31—H31A0.9700
O10—C201.430 (4)C31—H31B0.9700
O9—C161.430 (4)C21—H21A0.9700
O9—C151.424 (4)C21—H21B0.9700
O3—C31.178 (4)C21—C201.495 (4)
O8—C131.425 (4)C23—H23A0.9700
O8—C141.428 (4)C23—H23B0.9700
O11—C211.427 (3)C23—C221.511 (4)
O11—C221.434 (4)C16—H16A0.9700
O2—C21.164 (3)C16—H16B0.9700
O7—C101.428 (4)C11—H11A0.9700
O7—C91.426 (4)C11—H11B0.9700
N1—C61.481 (4)C11—C101.509 (5)
N1—C171.473 (4)C22—H22A0.9700
N1—C231.472 (4)C22—H22B0.9700
N4—C291.475 (4)C39—H39A0.9700
N4—C411.482 (3)C39—H39B0.9700
N4—C351.479 (4)C13—H13A0.9700
O4—C41.180 (4)C13—H13B0.9700
O5—C51.171 (4)C13—C121.518 (5)
N2—C111.476 (4)C10—H10A0.9700
N2—C181.485 (4)C10—H10B0.9700
N2—C121.468 (4)C14—H14A0.9700
N3—C301.478 (4)C14—H14B0.9700
N3—C361.479 (4)C14—C151.491 (5)
N3—C241.470 (4)C18—H18A0.9700
O1—C11.165 (3)C18—H18B0.9700
C7—H7A0.9700C18—C191.508 (5)
C7—H7B0.9700C12—H12A0.9700
C7—C61.510 (4)C12—H12B0.9700
C6—H6A0.9700C19—H19A0.9700
C6—H6B0.9700C19—H19B0.9700
C40—H40A0.9700C8—H8A0.9700
C40—H40B0.9700C8—H8B0.9700
C40—C411.515 (4)C8—C91.498 (5)
C37—H37A0.9700C15—H15A0.9700
C37—H37B0.9700C15—H15B0.9700
C37—C361.512 (4)C20—H20A0.9700
C29—H29A0.9700C20—H20B0.9700
C29—H29B0.9700C9—H9A0.9700
C29—C281.509 (4)C9—H9B0.9700
O12—Cs2—O1699.83 (6)O12—C26—C27109.2 (2)
O12—Cs2—O15117.06 (6)H26A—C26—H26B108.3
O12—Cs2—O1360.32 (5)C27—C26—H26A109.8
O12—Cs2—O17141.38 (6)C27—C26—H26B109.8
O12—Cs2—N4120.31 (6)O15—C34—H34A109.7
O12—Cs2—N360.23 (6)O15—C34—H34B109.7
O16—Cs2—O15136.88 (6)O15—C34—C35109.7 (2)
O16—Cs2—O13121.97 (6)H34A—C34—H34B108.2
O16—Cs2—O1760.36 (5)C35—C34—H34A109.7
O16—Cs2—N4120.43 (6)C35—C34—H34B109.7
O16—Cs2—N360.50 (6)N3—C30—H30A108.6
O15—Cs2—O1396.53 (5)N3—C30—H30B108.6
O15—Cs2—N459.55 (6)N3—C30—C31114.8 (2)
O15—Cs2—N3118.86 (6)H30A—C30—H30B107.5
O13—Cs2—N461.22 (6)C31—C30—H30A108.6
O13—Cs2—N3119.62 (6)C31—C30—H30B108.6
O17—Cs2—O1596.95 (6)O15—C33—H33A109.6
O17—Cs2—O13100.22 (5)O15—C33—H33B109.6
O17—Cs2—N460.88 (6)O15—C33—C32110.1 (3)
O17—Cs2—N3119.79 (6)H33A—C33—H33B108.2
O14—Cs2—O1294.93 (6)C32—C33—H33A109.6
O14—Cs2—O1697.75 (5)C32—C33—H33B109.6
O14—Cs2—O1559.56 (5)O12—C25—H25A109.9
O14—Cs2—O13134.82 (5)O12—C25—H25B109.9
O14—Cs2—O17119.07 (6)O12—C25—C24109.0 (2)
O14—Cs2—N4118.36 (6)H25A—C25—H25B108.3
O14—Cs2—N360.06 (6)C24—C25—H25A109.9
N3—Cs2—N4178.41 (6)C24—C25—H25B109.9
O6—Cs1—O8134.25 (6)O13—C27—C26110.5 (2)
O6—Cs1—O11101.60 (5)O13—C27—H27A109.6
O6—Cs1—O759.15 (6)O13—C27—H27B109.6
O6—Cs1—N162.07 (6)C26—C27—H27A109.6
O6—Cs1—N2117.89 (6)C26—C27—H27B109.6
O10—Cs1—O6123.21 (6)H27A—C27—H27B108.1
O10—Cs1—O9135.70 (6)O14—C32—C33109.6 (2)
O10—Cs1—O896.75 (6)O14—C32—H32A109.8
O10—Cs1—O1160.12 (6)O14—C32—H32B109.8
O10—Cs1—O7100.19 (6)C33—C32—H32A109.8
O10—Cs1—N1119.38 (6)C33—C32—H32B109.8
O10—Cs1—N261.11 (6)H32A—C32—H32B108.2
O9—Cs1—O696.77 (6)O13—C28—C29110.0 (2)
O9—Cs1—O859.71 (6)O13—C28—H28A109.7
O9—Cs1—O1196.57 (6)O13—C28—H28B109.7
O9—Cs1—O7117.78 (6)C29—C28—H28A109.7
O9—Cs1—N160.55 (6)C29—C28—H28B109.7
O9—Cs1—N2119.00 (6)H28A—C28—H28B108.2
O8—Cs1—N1119.42 (6)N4—C35—C34113.2 (2)
O8—Cs1—N260.20 (7)N4—C35—H35A108.9
O11—Cs1—O8118.55 (6)N4—C35—H35B108.9
O11—Cs1—N160.06 (6)C34—C35—H35A108.9
O11—Cs1—N2120.39 (6)C34—C35—H35B108.9
O7—Cs1—O895.51 (6)H35A—C35—H35B107.7
O7—Cs1—O11141.12 (5)N3—C36—C37115.0 (2)
O7—Cs1—N1120.43 (6)N3—C36—H36A108.5
O7—Cs1—N259.44 (6)N3—C36—H36B108.5
N1—Cs1—N2179.48 (7)C37—C36—H36A108.5
C3—Mo1—C196.68 (12)C37—C36—H36B108.5
C3—Mo1—C293.98 (11)H36A—C36—H36B107.5
C3—Mo1—C4108.89 (13)N3—C24—C25114.7 (2)
C3—Mo1—C5112.35 (13)N3—C24—H24A108.6
C1—Mo1—C2168.11 (11)N3—C24—H24B108.6
C4—Mo1—C189.93 (12)C25—C24—H24A108.6
C4—Mo1—C291.60 (11)C25—C24—H24B108.6
C4—Mo1—C5138.76 (14)H24A—C24—H24B107.6
C5—Mo1—C185.78 (11)O16—C38—H38A109.8
C5—Mo1—C285.30 (11)O16—C38—H38B109.8
C26—O12—Cs2110.09 (16)O16—C38—C39109.3 (3)
C25—O12—Cs2110.52 (16)H38A—C38—H38B108.3
C25—O12—C26112.1 (2)C39—C38—H38A109.8
C37—O16—Cs2111.78 (16)C39—C38—H38B109.8
C38—O16—Cs2108.87 (16)O5—C5—Mo1179.0 (3)
C38—O16—C37111.8 (2)O14—C31—C30109.7 (2)
C34—O15—Cs2107.55 (15)O14—C31—H31A109.7
C34—O15—C33112.0 (2)O14—C31—H31B109.7
C33—O15—Cs2109.78 (15)C30—C31—H31A109.7
C7—O6—Cs1107.69 (15)C30—C31—H31B109.7
C7—O6—C8111.5 (2)H31A—C31—H31B108.2
C8—O6—Cs1109.88 (16)O11—C21—H21A109.6
C27—O13—Cs2106.33 (15)O11—C21—H21B109.6
C28—O13—Cs2103.63 (16)O11—C21—C20110.1 (2)
C28—O13—C27111.7 (2)H21A—C21—H21B108.2
C40—O17—Cs2104.45 (16)C20—C21—H21A109.6
C40—O17—C39112.4 (2)C20—C21—H21B109.6
C39—O17—Cs2109.77 (16)N1—C23—H23A108.6
C32—O14—Cs2111.76 (15)N1—C23—H23B108.6
C31—O14—Cs2113.70 (16)N1—C23—C22114.7 (3)
C31—O14—C32112.0 (2)H23A—C23—H23B107.6
C19—O10—Cs1108.50 (17)C22—C23—H23A108.6
C20—O10—Cs1110.37 (17)C22—C23—H23B108.6
C20—O10—C19112.6 (2)O9—C16—C17110.0 (2)
C16—O9—Cs1109.44 (16)O9—C16—H16A109.7
C15—O9—Cs1111.09 (18)O9—C16—H16B109.7
C15—O9—C16112.5 (2)C17—C16—H16A109.7
C13—O8—Cs1104.66 (17)C17—C16—H16B109.7
C13—O8—C14111.9 (2)H16A—C16—H16B108.2
C14—O8—Cs1108.00 (17)N2—C11—H11A108.6
C21—O11—Cs1108.13 (16)N2—C11—H11B108.6
C21—O11—C22112.3 (2)N2—C11—C10114.7 (3)
C22—O11—Cs1108.25 (16)H11A—C11—H11B107.6
C10—O7—Cs1108.36 (18)C10—C11—H11A108.6
C9—O7—Cs1112.26 (17)C10—C11—H11B108.6
C9—O7—C10113.0 (2)O11—C22—C23109.2 (2)
C6—N1—Cs1106.09 (16)O11—C22—H22A109.8
C17—N1—Cs1109.48 (17)O11—C22—H22B109.8
C17—N1—C6110.8 (2)C23—C22—H22A109.8
C23—N1—Cs1110.17 (17)C23—C22—H22B109.8
C23—N1—C6110.6 (2)H22A—C22—H22B108.3
C23—N1—C17109.7 (2)O17—C39—C38109.9 (2)
C29—N4—Cs2107.23 (16)O17—C39—H39A109.7
C29—N4—C41110.7 (2)O17—C39—H39B109.7
C29—N4—C35110.2 (2)C38—C39—H39A109.7
C41—N4—Cs2108.03 (16)C38—C39—H39B109.7
C35—N4—Cs2110.47 (16)H39A—C39—H39B108.2
C35—N4—C41110.1 (2)O8—C13—H13A109.7
C11—N2—Cs1109.65 (18)O8—C13—H13B109.7
C11—N2—C18110.8 (3)O8—C13—C12110.0 (3)
C18—N2—Cs1106.43 (18)H13A—C13—H13B108.2
C12—N2—Cs1108.47 (19)C12—C13—H13A109.7
C12—N2—C11110.6 (3)C12—C13—H13B109.7
C12—N2—C18110.8 (3)O7—C10—C11109.3 (3)
C30—N3—Cs2109.07 (16)O7—C10—H10A109.8
C30—N3—C36110.0 (2)O7—C10—H10B109.8
C36—N3—Cs2108.40 (16)C11—C10—H10A109.8
C24—N3—Cs2108.73 (16)C11—C10—H10B109.8
C24—N3—C30109.7 (2)H10A—C10—H10B108.3
C24—N3—C36110.9 (2)O8—C14—H14A109.6
O3—C3—Mo1179.2 (3)O8—C14—H14B109.6
O1—C1—Mo1177.8 (3)O8—C14—C15110.3 (3)
O6—C7—H7A109.6H14A—C14—H14B108.1
O6—C7—H7B109.6C15—C14—H14A109.6
O6—C7—C6110.4 (2)C15—C14—H14B109.6
H7A—C7—H7B108.1N2—C18—H18A108.5
C6—C7—H7A109.6N2—C18—H18B108.5
C6—C7—H7B109.6N2—C18—C19115.2 (3)
N1—C6—C7114.3 (2)H18A—C18—H18B107.5
N1—C6—H6A108.7C19—C18—H18A108.5
N1—C6—H6B108.7C19—C18—H18B108.5
C7—C6—H6A108.7N2—C12—C13112.4 (3)
C7—C6—H6B108.7N2—C12—H12A109.1
H6A—C6—H6B107.6N2—C12—H12B109.1
O17—C40—H40A109.7C13—C12—H12A109.1
O17—C40—H40B109.7C13—C12—H12B109.1
O17—C40—C41109.6 (2)H12A—C12—H12B107.9
H40A—C40—H40B108.2O10—C19—C18109.8 (3)
C41—C40—H40A109.7O10—C19—H19A109.7
C41—C40—H40B109.7O10—C19—H19B109.7
O16—C37—H37A109.8C18—C19—H19A109.7
O16—C37—H37B109.8C18—C19—H19B109.7
O16—C37—C36109.5 (2)H19A—C19—H19B108.2
H37A—C37—H37B108.2O6—C8—H8A109.8
C36—C37—H37A109.8O6—C8—H8B109.8
C36—C37—H37B109.8O6—C8—C9109.5 (3)
N4—C29—H29A108.9H8A—C8—H8B108.2
N4—C29—H29B108.9C9—C8—H8A109.8
N4—C29—C28113.5 (2)C9—C8—H8B109.8
H29A—C29—H29B107.7O9—C15—C14109.7 (3)
C28—C29—H29A108.9O9—C15—H15A109.7
C28—C29—H29B108.9O9—C15—H15B109.7
N1—C17—H17A108.9C14—C15—H15A109.7
N1—C17—H17B108.9C14—C15—H15B109.7
N1—C17—C16113.4 (2)H15A—C15—H15B108.2
H17A—C17—H17B107.7O10—C20—C21110.2 (3)
C16—C17—H17A108.9O10—C20—H20A109.6
C16—C17—H17B108.9O10—C20—H20B109.6
O2—C2—Mo1177.3 (2)C21—C20—H20A109.6
O4—C4—Mo1178.3 (3)C21—C20—H20B109.6
N4—C41—C40112.8 (2)H20A—C20—H20B108.1
N4—C41—H41A109.0O7—C9—C8109.5 (3)
N4—C41—H41B109.0O7—C9—H9A109.8
C40—C41—H41A109.0O7—C9—H9B109.8
C40—C41—H41B109.0C8—C9—H9A109.8
H41A—C41—H41B107.8C8—C9—H9B109.8
O12—C26—H26A109.8H9A—C9—H9B108.2
O12—C26—H26B109.8
 

Acknowledgements

We thank the group of Professor Scheer (University of Regensburg) for providing the heteroleptic molybdenum carbonyl complex.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllis, J. E. (2003). Organometallics, 22, 3322–3338.  Web of Science CrossRef CAS Google Scholar
First citationFischer, E. O., Hafner, W. & Stahl, H. O. (1955). Z. Anorg. Allg. Chem. 282, 47–62.  CrossRef CAS Web of Science Google Scholar
First citationGascoin, F. & Sevov, S. C. (2001). Inorg. Chem. 40, 5177–5181.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHärtl, O. (2012). PhD thesis. Universität Regensburg, Germany.  Google Scholar
First citationHolleman, A. F., Wiberg, E. & Wiberg, N. (2016). Anorganische Chemie - Band 1: Grundlagen und Hauptgruppenelemente, 103rd ed., pp. 2108–2122 and 2130-2135. Berlin: De Gruyter.  Google Scholar
First citationLorenz, C., Kaas, M. & Korber, N. (2018). Z. Anorg. Allg. Chem. 644, 1678–1680.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaher, J. M., Beatty, R. P. & Cooper, N. J. (1982). Organometallics, 1, 215–217.  CrossRef CAS Web of Science Google Scholar
First citationMaher, J. M., Beatty, R. P. & Cooper, N. J. (1985). Organometallics, 4, 1354–1361.  CSD CrossRef CAS Web of Science Google Scholar
First citationMak, T. C. W. (1984). Z. Kristallogr. 166, 277–282.  CAS Google Scholar
First citationMoras, D., Metz, B. & Weiss, R. (1973). Acta Cryst. B29, 388–395.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhai, J. & Xu, L. (2011). Acta Cryst. C67, m202–m204.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds