metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[di(μ2-2-hy­dr­oxy­propano­ato)cadmium]

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
*Correspondence e-mail: yinzheng@sust.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 June 2019; accepted 9 September 2019; online 10 September 2019)

The asymmetric unit of the title inorganic–organic salt, poly[di(μ2-2-hy­droxy­propano­ato)cadmium], [Cd(C3H5O3)2]n or [Cd(Hlac)2]n (H2lac = 2-hy­droxy­propanoic acid), comprises of a cadmium cation and two 2-hy­droxy­propano­ate anions. The cadmium cation exhibits a distorted penta­gonal–bipyramidal coordination environment defined by the hy­droxy and carbonyl O atoms of the 2-hy­droxy­propano­ate anions. The coordination mode leads to the formation of layers extending parallel to (010). O—H⋯O hydrogen bonding between the hy­droxy and carbonyl groups stabilizes the structure packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds with metal–organic framework (MOF) structures with accessible open space have rapidly grown into a major area of chemical research because of their structural diversity and wide applications (Furukawa et al., 2013[Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.]). Crystal engineering of MOFs has been dominated by single organic units like polycarboxyl­ates, polypyridines, azolate or their derivatives. Recently, mixed-ligand MOFs (Yin et al., 2015[Yin, Z., Zhou, Y. L., Zeng, M. H. & Kurmoo, M. (2015). Dalton Trans. 44, 5258-5275.]), were found to be successful in the rational construction of materials with targeted functionalities. One of the inter­esting candidates for the construction of mixed-ligand MOFs is 2-hy­droxy­propanoic acid (H2lac). Working with the corresponding anion has several advantages: (i) multiple coordination modes by using the hydroxyl and carboxyl groups are possible; (ii) the anion is flexible and a chelating ligand, and thus can facilitate the formation of key building units such as chains or layers; (iii) the terminal methyl group can be replaced by –H, –C2H5, –Ph and other groups for structural regulation and expansion. As a typical example, the combination of H2lac and linear pyridine carboxyl­ate generates highly stable rod-spacer MOFs with double π-wall and square nano-channels (Zeng et al., 2010[Zeng, M. H., Wang, Q. X., Tan, Y. X., Hu, S., Zhao, H. X., Long, L. S. & Kurmoo, M. (2010). J. Am. Chem. Soc. 132, 2561-2563.]), achieving high-efficiency iodine capture.

During exploration of the coordination chemistry of H2lac with different metals and co-ligands, the title compound was obtained as a single-ligand cadmium compound, notwithstanding the presence of the linear pyrazine co-ligand under the given solvothermal conditions. The asymmetric unit of the title compound comprises of one cadmium cation and two 2-hy­droxy­propano­ate anions (Fig. 1[link]). The Cd1 cation is sevenfold-coordinated by oxygen and adopts a distorted penta­gonal–bipyramidal coordination environment. Four oxygen atoms stem from carboxyl groups and three from hydroxyl groups from four different Hlac ligands whereby three ligands are chelating and one is monodentate. This coordination mode leads to the formation of layers extending parallel to (010) (Fig. 2[link], left). Under consideration of the Cd as nodes, the cations are extended to tapes parallel to [001] consisting of a (4,4) grid (Fig. 2[link], right). The tapes are stacked along [100] and are linked into a three-dimensional network by more distant nodes [Cd⋯Cd distances of 6.4014 (14) Å] parallel to [210]. The crystal packing is consolidated by O—H⋯O hydrogen-bonding inter­actions of medium strength between hy­droxy and carbonyl functions, and additional weak C—H⋯O inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.87 (1) 1.81 (2) 2.657 (6) 163 (5)
C5—H5⋯O4ii 0.98 2.22 3.021 (8) 139
O6—H6⋯O5ii 0.85 (1) 2.11 (9) 2.747 (7) 132 (11)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Left: formation of polymeric layers extending parallel to (010); right: bands of (4,4) grids between Cd nodes extending parallel to [001]. H atoms have been omitted for clarity.

Synthesis and crystallization

A mixture of H2lac (0.125 mmol), pyrazine (0.1 mmol) and Cd(NO3)2·4H2O (0.2 mmol) in C2H5OH (15 ml) was stirred in air with a magnetic stirrer, generating a colourless clear solution after 10 min. The reaction solution was then transferred to a solvo­thermal PTFE reaction vessel with 25 ml capacity, followed by heating at 393 K for 72 h. The reaction vessel was then cooled to room temperature at a rate of 10 K h−1. The formed crystalline material was filtered to obtain colourless rod-like crystals with a yield of about 52% (based on Cd). The obtained crystals are insoluble in common organic solvents such as DMF, CH3OH, C2H5OH, CH2Cl2, and acetone. IR (KBr pellets, cm−1): 3044 (m), 1626 (s), 1563 (s), 1451 (s), 1370 (s), 1092 (m). Elemental analysis (%), calculated: C, 24.80; H, 3.47; found: C, 24.71; H, 3.55. The compound is thermally stable up to 533 K under an N2 atmosphere.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C3H5O3)2]
Mr 290.54
Crystal system, space group Orthorhombic, Iba2
Temperature (K) 298
a, b, c (Å) 10.238 (2), 19.104 (4), 9.463 (2)
V3) 1850.8 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.36
Crystal size (mm) 0.3 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.547, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9606, 2230, 2032
Rint 0.031
(sin θ/λ)max−1) 0.672
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.05
No. of reflections 2230
No. of parameters 127
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.88, −0.36
Absolute structure Flack x determined using 836 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (2)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2016); cell refinement: APEX2(Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

Poly[di(µ2-2-hydroxypropanoato)cadmium] top
Crystal data top
[Cd(C3H5O3)2]Dx = 2.085 Mg m3
Mr = 290.54Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Iba2Cell parameters from 9045 reflections
a = 10.238 (2) Åθ = 3.1–28.5°
b = 19.104 (4) ŵ = 2.36 mm1
c = 9.463 (2) ÅT = 298 K
V = 1850.8 (7) Å3Block, clear light colourless
Z = 80.3 × 0.2 × 0.2 mm
F(000) = 1136
Data collection top
Bruker APEXII CCD
diffractometer
2032 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.5°, θmin = 3.6°
Tmin = 0.547, Tmax = 0.746h = 1313
9606 measured reflectionsk = 2025
2230 independent reflectionsl = 1012
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0315P)2 + 2.8326P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.88 e Å3
2230 reflectionsΔρmin = 0.36 e Å3
127 parametersAbsolute structure: Flack x determined using 836 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
18 restraintsAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms (H3 and H6) bound to the O3 and O6 atoms were located from a difference-Fourier map. The O—H bond lengths were restrained by DFIX command to be 0.85 Å. The DANG command was used for H3 and H6 to restrain their orientation. Due to unresolved disorder of the methyl groups involving C3 and C6, the latter atoms were treated with ISOR commands.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.45111 (3)0.35060 (2)0.51898 (10)0.03129 (11)
O10.4657 (3)0.3771 (3)0.2739 (5)0.0439 (10)
O20.3965 (5)0.4340 (2)0.0914 (5)0.0512 (11)
O30.3247 (5)0.4498 (2)0.4582 (5)0.0458 (10)
H30.332 (5)0.4896 (11)0.502 (3)0.069*
O40.8064 (5)0.2269 (3)0.4374 (6)0.0697 (18)
O50.6209 (4)0.2835 (2)0.4492 (5)0.0461 (10)
O60.7918 (5)0.1741 (3)0.6884 (5)0.0573 (13)
C10.3958 (5)0.4223 (3)0.2229 (6)0.0344 (11)
C20.3081 (7)0.4690 (4)0.3124 (7)0.0514 (16)
H20.33760.51740.30100.062*
C30.1765 (9)0.4651 (6)0.2688 (12)0.086 (3)
H3A0.14400.41860.28470.129*
H3B0.17060.47610.17000.129*
H3C0.12540.49800.32200.129*
C40.7044 (5)0.2430 (3)0.5010 (10)0.0370 (17)
C50.6793 (7)0.2125 (4)0.6430 (6)0.0497 (16)
H50.66630.25130.70930.060*
C60.5661 (9)0.1679 (6)0.6511 (14)0.086 (3)
H6A0.57900.12750.59230.129*
H6B0.49060.19320.61930.129*
H6C0.55320.15320.74720.129*
H60.843 (6)0.202 (2)0.732 (11)0.12 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03011 (16)0.03302 (16)0.03074 (17)0.00204 (12)0.0024 (2)0.0012 (2)
O10.039 (2)0.049 (2)0.043 (2)0.0177 (17)0.004 (2)0.004 (2)
O20.073 (3)0.043 (2)0.037 (2)0.015 (2)0.012 (2)0.0042 (18)
O30.061 (3)0.044 (2)0.0328 (18)0.011 (2)0.0017 (18)0.0084 (18)
O40.052 (3)0.096 (4)0.061 (3)0.036 (3)0.021 (2)0.046 (3)
O50.045 (2)0.053 (2)0.040 (2)0.0210 (19)0.0023 (18)0.0086 (19)
O60.059 (3)0.084 (3)0.029 (2)0.036 (3)0.004 (2)0.002 (2)
C10.035 (3)0.030 (2)0.039 (3)0.001 (2)0.002 (2)0.000 (2)
C20.060 (4)0.058 (4)0.037 (3)0.021 (3)0.002 (3)0.003 (3)
C30.070 (4)0.111 (5)0.078 (5)0.025 (4)0.001 (4)0.001 (4)
C40.033 (2)0.037 (2)0.041 (5)0.0039 (18)0.002 (2)0.001 (2)
C50.052 (4)0.069 (4)0.028 (3)0.029 (3)0.002 (2)0.007 (3)
C60.072 (4)0.092 (4)0.094 (5)0.002 (4)0.013 (4)0.028 (4)
Geometric parameters (Å, º) top
Cd1—O1i2.607 (5)O6—Cd1iv2.335 (5)
Cd1—O12.379 (5)O6—C51.432 (7)
Cd1—O2i2.333 (5)O6—H60.848 (14)
Cd1—O32.366 (4)C1—C21.523 (8)
Cd1—O4ii2.232 (5)C2—H20.9800
Cd1—O52.259 (4)C2—C31.411 (11)
Cd1—O6ii2.335 (5)C3—H3A0.9600
O1—Cd1iii2.607 (5)C3—H3B0.9600
O1—C11.221 (7)C3—H3C0.9600
O2—Cd1iii2.333 (5)C4—C51.488 (10)
O2—C11.264 (7)C5—H50.9800
O3—H30.868 (13)C5—C61.440 (12)
O3—C21.438 (8)C6—H6A0.9600
O4—Cd1iv2.232 (5)C6—H6B0.9600
O4—C41.244 (8)C6—H6C0.9600
O5—C41.252 (7)
O1—Cd1—O1i147.17 (16)C5—O6—H6109 (3)
O2i—Cd1—O1i51.48 (14)O1—C1—O2120.7 (5)
O2i—Cd1—O195.71 (16)O1—C1—C2122.7 (5)
O2i—Cd1—O383.72 (18)O2—C1—C2116.6 (5)
O2i—Cd1—O6ii113.78 (18)O3—C2—C1108.4 (5)
O3—Cd1—O1i104.37 (15)O3—C2—H2108.1
O3—Cd1—O168.10 (14)C1—C2—H2108.1
O4ii—Cd1—O181.1 (2)C3—C2—O3112.3 (7)
O4ii—Cd1—O1i131.71 (18)C3—C2—C1111.7 (7)
O4ii—Cd1—O2i176.8 (2)C3—C2—H2108.1
O4ii—Cd1—O394.8 (2)C2—C3—H3A109.5
O4ii—Cd1—O591.90 (19)C2—C3—H3B109.5
O4ii—Cd1—O6ii68.90 (17)C2—C3—H3C109.5
O5—Cd1—O177.72 (15)H3A—C3—H3B109.5
O5—Cd1—O1i97.42 (15)H3A—C3—H3C109.5
O5—Cd1—O2i87.63 (19)H3B—C3—H3C109.5
O5—Cd1—O3143.58 (16)O4—C4—O5122.5 (8)
O5—Cd1—O6ii128.6 (2)O4—C4—C5119.0 (6)
O6ii—Cd1—O1139.13 (16)O5—C4—C5118.5 (6)
O6ii—Cd1—O1i68.43 (15)O6—C5—C4109.5 (5)
O6ii—Cd1—O386.9 (2)O6—C5—H5107.7
Cd1—O1—Cd1iii151.79 (19)O6—C5—C6109.2 (7)
C1—O1—Cd1iii87.9 (4)C4—C5—H5107.7
C1—O1—Cd1119.9 (4)C6—C5—C4114.8 (7)
C1—O2—Cd1iii99.9 (4)C6—C5—H5107.7
Cd1—O3—H3123 (2)C5—C6—H6A109.5
C2—O3—Cd1120.1 (4)C5—C6—H6B109.5
C2—O3—H3104 (2)C5—C6—H6C109.5
C4—O4—Cd1iv123.7 (5)H6A—C6—H6B109.5
C4—O5—Cd1139.6 (5)H6A—C6—H6C109.5
Cd1iv—O6—H692 (8)H6B—C6—H6C109.5
C5—O6—Cd1iv117.4 (3)
Cd1—O1—C1—O2175.5 (4)Cd1—O5—C4—C519.2 (10)
Cd1iii—O1—C1—O20.4 (6)Cd1iv—O6—C5—C413.4 (8)
Cd1iii—O1—C1—C2178.1 (5)Cd1iv—O6—C5—C6113.0 (7)
Cd1—O1—C1—C26.7 (8)O1—C1—C2—O30.2 (9)
Cd1iii—O2—C1—O10.5 (6)O1—C1—C2—C3124.1 (8)
Cd1iii—O2—C1—C2178.3 (5)O2—C1—C2—O3177.6 (6)
Cd1—O3—C2—C17.1 (7)O2—C1—C2—C358.1 (9)
Cd1—O3—C2—C3116.8 (7)O4—C4—C5—O66.9 (9)
Cd1iv—O4—C4—O5175.6 (5)O4—C4—C5—C6116.2 (8)
Cd1iv—O4—C4—C53.4 (9)O5—C4—C5—O6174.0 (6)
Cd1—O5—C4—O4161.7 (6)O5—C4—C5—C662.8 (9)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1, y, z1/2; (iv) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2v0.87 (1)1.81 (2)2.657 (6)163 (5)
C5—H5···O4vi0.982.223.021 (8)139
O6—H6···O5vi0.85 (1)2.11 (9)2.747 (7)132 (11)
Symmetry codes: (v) x, y+1, z+1/2; (vi) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Shaanxi University of Science and Technology for supporting this work.

Funding information

Funding for this research was provided by: the National Science Foundation of China (No. 21601116), the NSF of Shaanxi Province (Nos. 2017JQ2008, 17JK0113), the China Postdoctoral Science Foundation (2016M592736), and the College students' innovation and entrepreneurship training program (No. 201710708017).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFurukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.  Web of Science CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, Z., Zhou, Y. L., Zeng, M. H. & Kurmoo, M. (2015). Dalton Trans. 44, 5258–5275.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZeng, M. H., Wang, Q. X., Tan, Y. X., Hu, S., Zhao, H. X., Long, L. S. & Kurmoo, M. (2010). J. Am. Chem. Soc. 132, 2561–2563.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds