metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(quinolinium) tetra­bromido­manganate(II)

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: kathrin.junge@catalysis.de

Edited by J. Simpson, University of Otago, New Zealand (Received 26 August 2019; accepted 4 September 2019; online 10 September 2019)

The title compound, (C9H8N)2[MnBr4], consists of two quinolinium cations and a [MnBr4]2− anion. The manganese(II) atom, which lies on a twofold rotation axis, is coordinated by four bromide ligands and exhibits a tetra­hedral coordination geometry. The [MnBr4]2− anion and the quinolinium cations are linked by N—H⋯Br hydrogen bonds. ππ stacking inter­actions are observed between the quinolinium cations.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The asymmetric unit consists of one quinolinium cation and a half [MnBr4]2− anion with the MnII atom lying on a twofold rotation axis. The MnII atom exhibits a slightly distorted tetra­hedral coordination geometry. The crystal structures of similar compounds with the general formula (QuinH)2[MX4] (without co-crystallized H2O; Quin = quinoline; M = Cu, X = Br (Butcher et al., 2010[Butcher, R. T., Turnbull, M. M., Landee, C. P., Shapiro, A., Xiao, F., Garrett, D., Robinson, W. T. & Twamley, B. (2010). Inorg. Chem. 49, 427-434.]); M = Cu, X = Cl (Lamotte-Brasseur & Vermeire, 1973[Lamotte-Brasseur, J. & Vermeire, M. (1973). Bull. Soc. Roy. Sci. Liege, 42, 583-585.]); M = Cd, X = Cl (Paulus & Göttlicher, 1969[Paulus, H. & Göttlicher, S. (1969). Z. Kristallogr. 130, 267-276.]) have been reported. Several crystal structures of compounds with the general formula (QuinH)2[MX4]·2H2O have also been described by Landee et al. (2018[Landee, C. P., Monroe, J. C., Kotarba, R., Polson, M., Wikaira, J. L. & Turnbull, M. M. (2018). J. Coord. Chem. 71, 3342-3363.]) (M = Co, Mn, X = Cl; M = Co, Zn, X = Br), Butcher et al. (2010[Butcher, R. T., Turnbull, M. M., Landee, C. P., Shapiro, A., Xiao, F., Garrett, D., Robinson, W. T. & Twamley, B. (2010). Inorg. Chem. 49, 427-434.]) (M = Cu, X = Br), Ye et al. (2014[Ye, H.-Q., Li, D.-W., Mai, Q.-Y., Chen, X.-X., Chen, Q.-Y., Chen, Y., Zhou, J.-R. & Ni, C.-L. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1368-1372.]) (M = Co, X = Cl), Lynch & McClenaghan (2002[Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, m551-m553.]) (M = Cu, X = Cl), Slabbert & Rademeyer (2016[Slabbert, C. & Rademeyer, M. (2016). CrystEngComm, 18, 4555-4579.]) (M = Hg, X = Cl; M = Cd, X = Br) and Valdés-Martínez et al. (2005[Valdés-Martínez, J., Muñoz, O. & Toscano, R. A. (2005). Acta Cryst. E61, m1590-m1592.]) (M = Zn, X = Cl).

[Figure 1]
Figure 1
The mol­ecular entities of the title compound with atom labelling and displacement ellipsoids drawn at the 30% probability level.

In the crystal structure of the title compound, the anion is linked to the cations by N—H⋯Br hydrogen bonds (Table 1[link], Fig. 2[link]). Additionally, ππ stacking occurs between two quinolinium cations [Cg1⋯Cg1 = 3.799 (1) Å with ring slippage of 1.7 Å and Cg1⋯Cg2 = 3.6368 (10) Å with ring slippage of 1.3 Å, where Cg1 is the centroid of the N1/C1–C4/C9 ring and Cg2 is the centroid of the C4–C9 benzene ring].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.88 (3) 2.69 (3) 3.3815 (14) 137 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
ORTEP representation of the title compound showing the inter­molecular hydrogen bonds as dotted lines. Displacement ellipsoids correspond to 30% probability.

Synthesis and crystallization

A mixture containing MnBr2·4H2O (1 mmol) and quinoline (2 mmol) in dry toluene (20 mL) was stirred overnight at 60°C. The solvent was removed under vacuum giving a white solid that was then dissolved in dry EtOH (10 mL) and reacted with 1 eq of HBr (48 wt% in H2O) overnight. The solvent was removed under vacuum giving a white solid (yield: 73%). Colourless crystals suitable for X-ray diffraction analysis were grown from a solution of EtOH layered with Et2O.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C9H8N)2[MnBr4]
Mr 634.91
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 17.4314 (6), 9.1871 (3), 13.2270 (4)
β (°) 93.7501 (12)
V3) 2113.69 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.19
Crystal size (mm) 0.44 × 0.42 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.12, 0.34
No. of measured, independent and observed [I > 2σ(I)] reflections 17446, 2545, 2373
Rint 0.027
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.05
No. of reflections 2545
No. of parameters 118
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.45
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(quinolinium) tetrabromidomanganate(II) top
Crystal data top
(C9H8N)2[MnBr4]F(000) = 1212
Mr = 634.91Dx = 1.995 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.4314 (6) ÅCell parameters from 9902 reflections
b = 9.1871 (3) Åθ = 2.5–30.5°
c = 13.2270 (4) ŵ = 8.19 mm1
β = 93.7501 (12)°T = 150 K
V = 2113.69 (12) Å3Prism, colourless
Z = 40.44 × 0.42 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2545 independent reflections
Radiation source: fine-focus sealed tube2373 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.027
φ and ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2222
Tmin = 0.12, Tmax = 0.34k = 1012
17446 measured reflectionsl = 1714
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0192P)2 + 1.7599P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
2545 reflectionsΔρmax = 0.28 e Å3
118 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.59434 (2)0.56020 (2)0.16817 (2)0.02499 (5)
Br20.55967 (2)0.23982 (2)0.38636 (2)0.02340 (5)
C10.90430 (11)0.7807 (2)0.56459 (13)0.0302 (4)
H1B0.95470.77260.54180.036*
C20.87027 (11)0.66136 (19)0.60845 (13)0.0308 (4)
H20.89720.57170.61610.037*
C30.79790 (11)0.67462 (18)0.64031 (12)0.0282 (4)
H30.77410.59310.66940.034*
C40.75792 (9)0.80749 (17)0.63065 (11)0.0212 (3)
C50.68293 (10)0.8285 (2)0.66219 (13)0.0307 (4)
H50.65720.75070.69300.037*
C60.64737 (11)0.9590 (2)0.64878 (15)0.0365 (4)
H60.59690.97180.67030.044*
C70.68442 (11)1.0755 (2)0.60344 (15)0.0337 (4)
H70.65851.16600.59440.040*
C80.75718 (11)1.06050 (18)0.57222 (13)0.0276 (4)
H80.78211.13980.54200.033*
C90.79424 (9)0.92592 (16)0.58566 (11)0.0195 (3)
Mn10.50000.39954 (3)0.25000.01891 (7)
N10.86666 (8)0.90510 (16)0.55456 (10)0.0248 (3)
H1A0.8907 (15)0.975 (3)0.524 (2)0.059 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03363 (10)0.02137 (8)0.02065 (8)0.00760 (6)0.00703 (6)0.00080 (6)
Br20.02595 (9)0.02263 (8)0.02159 (8)0.00227 (6)0.00134 (6)0.00346 (6)
C10.0259 (9)0.0378 (9)0.0268 (8)0.0056 (7)0.0025 (7)0.0062 (7)
C20.0416 (10)0.0227 (8)0.0268 (8)0.0084 (7)0.0068 (7)0.0050 (7)
C30.0438 (11)0.0196 (8)0.0205 (7)0.0060 (7)0.0042 (7)0.0020 (6)
C40.0273 (8)0.0217 (7)0.0145 (6)0.0064 (6)0.0004 (6)0.0019 (6)
C50.0288 (9)0.0384 (10)0.0257 (8)0.0119 (8)0.0064 (7)0.0053 (7)
C60.0241 (9)0.0514 (12)0.0343 (10)0.0012 (8)0.0034 (8)0.0167 (9)
C70.0321 (10)0.0309 (9)0.0367 (10)0.0091 (7)0.0083 (8)0.0116 (8)
C80.0323 (9)0.0203 (8)0.0294 (8)0.0009 (6)0.0048 (7)0.0005 (6)
C90.0222 (8)0.0193 (7)0.0168 (7)0.0028 (6)0.0003 (6)0.0011 (5)
Mn10.02264 (17)0.01714 (15)0.01725 (15)0.0000.00363 (12)0.000
N10.0253 (7)0.0276 (7)0.0219 (7)0.0039 (6)0.0043 (6)0.0036 (6)
Geometric parameters (Å, º) top
Br1—Mn12.5073 (2)C5—H50.9500
Br2—Mn12.4986 (2)C6—C71.404 (3)
C1—N11.320 (2)C6—H60.9500
C1—C21.391 (3)C7—C81.366 (3)
C1—H1B0.9500C7—H70.9500
C2—C31.361 (3)C8—C91.401 (2)
C2—H20.9500C8—H80.9500
C3—C41.407 (2)C9—N11.366 (2)
C3—H30.9500Mn1—Br2i2.4986 (2)
C4—C91.410 (2)Mn1—Br1i2.5073 (2)
C4—C51.411 (2)N1—H1A0.88 (3)
C5—C61.356 (3)
N1—C1—C2120.10 (17)C8—C7—C6120.94 (17)
N1—C1—H1B119.9C8—C7—H7119.5
C2—C1—H1B119.9C6—C7—H7119.5
C3—C2—C1119.18 (16)C7—C8—C9118.70 (16)
C3—C2—H2120.4C7—C8—H8120.6
C1—C2—H2120.4C9—C8—H8120.6
C2—C3—C4120.86 (16)N1—C9—C8120.85 (15)
C2—C3—H3119.6N1—C9—C4117.91 (14)
C4—C3—H3119.6C8—C9—C4121.23 (15)
C3—C4—C9118.32 (15)Br2—Mn1—Br2i108.068 (14)
C3—C4—C5123.69 (16)Br2—Mn1—Br1113.799 (6)
C9—C4—C5117.98 (15)Br2i—Mn1—Br1106.734 (5)
C6—C5—C4120.45 (17)Br2—Mn1—Br1i106.733 (5)
C6—C5—H5119.8Br2i—Mn1—Br1i113.798 (6)
C4—C5—H5119.8Br1—Mn1—Br1i107.877 (14)
C5—C6—C7120.70 (17)C1—N1—C9123.62 (15)
C5—C6—H6119.7C1—N1—H1A115.4 (18)
C7—C6—H6119.7C9—N1—H1A121.0 (17)
N1—C1—C2—C30.2 (3)C7—C8—C9—N1179.22 (16)
C1—C2—C3—C40.9 (2)C7—C8—C9—C40.2 (2)
C2—C3—C4—C91.0 (2)C3—C4—C9—N10.5 (2)
C2—C3—C4—C5179.94 (16)C5—C4—C9—N1179.59 (14)
C3—C4—C5—C6178.77 (17)C3—C4—C9—C8178.94 (15)
C9—C4—C5—C60.3 (2)C5—C4—C9—C80.2 (2)
C4—C5—C6—C70.1 (3)C2—C1—N1—C90.3 (3)
C5—C6—C7—C80.3 (3)C8—C9—N1—C1179.57 (16)
C6—C7—C8—C90.4 (3)C4—C9—N1—C10.2 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1ii0.88 (3)2.69 (3)3.3815 (14)137 (2)
Symmetry code: (ii) x+3/2, y+1/2, z+1/2.
 

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. T., Turnbull, M. M., Landee, C. P., Shapiro, A., Xiao, F., Garrett, D., Robinson, W. T. & Twamley, B. (2010). Inorg. Chem. 49, 427–434.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLamotte-Brasseur, J. & Vermeire, M. (1973). Bull. Soc. Roy. Sci. Liege, 42, 583–585.  CAS Google Scholar
First citationLandee, C. P., Monroe, J. C., Kotarba, R., Polson, M., Wikaira, J. L. & Turnbull, M. M. (2018). J. Coord. Chem. 71, 3342–3363.  Web of Science CSD CrossRef CAS Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, m551–m553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaulus, H. & Göttlicher, S. (1969). Z. Kristallogr. 130, 267–276.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlabbert, C. & Rademeyer, M. (2016). CrystEngComm, 18, 4555–4579.  Web of Science CSD CrossRef CAS Google Scholar
First citationValdés-Martínez, J., Muñoz, O. & Toscano, R. A. (2005). Acta Cryst. E61, m1590–m1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Q., Li, D.-W., Mai, Q.-Y., Chen, X.-X., Chen, Q.-Y., Chen, Y., Zhou, J.-R. & Ni, C.-L. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1368–1372.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds