metal-organic compounds
Bis(quinolinium) tetrabromidomanganate(II)
aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: kathrin.junge@catalysis.de
The title compound, (C9H8N)2[MnBr4], consists of two quinolinium cations and a [MnBr4]2− anion. The manganese(II) atom, which lies on a twofold rotation axis, is coordinated by four bromide ligands and exhibits a tetrahedral coordination geometry. The [MnBr4]2− anion and the quinolinium cations are linked by N—H⋯Br hydrogen bonds. π–π stacking interactions are observed between the quinolinium cations.
Keywords: crystal structure; quinolinium cation; manganese; hydrogen bond.
CCDC reference: 1951407
Structure description
The molecular structure of the title compound is shown in Fig. 1. The consists of one quinolinium cation and a half [MnBr4]2− anion with the MnII atom lying on a twofold rotation axis. The MnII atom exhibits a slightly distorted tetrahedral coordination geometry. The crystal structures of similar compounds with the general formula (QuinH)2[MX4] (without co-crystallized H2O; Quin = quinoline; M = Cu, X = Br (Butcher et al., 2010); M = Cu, X = Cl (Lamotte-Brasseur & Vermeire, 1973); M = Cd, X = Cl (Paulus & Göttlicher, 1969) have been reported. Several crystal structures of compounds with the general formula (QuinH)2[MX4]·2H2O have also been described by Landee et al. (2018) (M = Co, Mn, X = Cl; M = Co, Zn, X = Br), Butcher et al. (2010) (M = Cu, X = Br), Ye et al. (2014) (M = Co, X = Cl), Lynch & McClenaghan (2002) (M = Cu, X = Cl), Slabbert & Rademeyer (2016) (M = Hg, X = Cl; M = Cd, X = Br) and Valdés-Martínez et al. (2005) (M = Zn, X = Cl).
In the , Fig. 2). Additionally, π–π stacking occurs between two quinolinium cations [Cg1⋯Cg1 = 3.799 (1) Å with ring slippage of 1.7 Å and Cg1⋯Cg2 = 3.6368 (10) Å with ring slippage of 1.3 Å, where Cg1 is the centroid of the N1/C1–C4/C9 ring and Cg2 is the centroid of the C4–C9 benzene ring].
of the title compound, the anion is linked to the cations by N—H⋯Br hydrogen bonds (Table 1Synthesis and crystallization
A mixture containing MnBr2·4H2O (1 mmol) and quinoline (2 mmol) in dry toluene (20 mL) was stirred overnight at 60°C. The solvent was removed under vacuum giving a white solid that was then dissolved in dry EtOH (10 mL) and reacted with 1 eq of HBr (48 wt% in H2O) overnight. The solvent was removed under vacuum giving a white solid (yield: 73%). Colourless crystals suitable for X-ray were grown from a solution of EtOH layered with Et2O.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1951407
https://doi.org/10.1107/S2414314619012318/sj4208sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619012318/sj4208Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).(C9H8N)2[MnBr4] | F(000) = 1212 |
Mr = 634.91 | Dx = 1.995 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.4314 (6) Å | Cell parameters from 9902 reflections |
b = 9.1871 (3) Å | θ = 2.5–30.5° |
c = 13.2270 (4) Å | µ = 8.19 mm−1 |
β = 93.7501 (12)° | T = 150 K |
V = 2113.69 (12) Å3 | Prism, colourless |
Z = 4 | 0.44 × 0.42 × 0.17 mm |
Bruker APEXII CCD diffractometer | 2545 independent reflections |
Radiation source: fine-focus sealed tube | 2373 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.027 |
φ and ω scans | θmax = 28.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −22→22 |
Tmin = 0.12, Tmax = 0.34 | k = −10→12 |
17446 measured reflections | l = −17→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.016 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.041 | w = 1/[σ2(Fo2) + (0.0192P)2 + 1.7599P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.003 |
2545 reflections | Δρmax = 0.28 e Å−3 |
118 parameters | Δρmin = −0.45 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.59434 (2) | 0.56020 (2) | 0.16817 (2) | 0.02499 (5) | |
Br2 | 0.55967 (2) | 0.23982 (2) | 0.38636 (2) | 0.02340 (5) | |
C1 | 0.90430 (11) | 0.7807 (2) | 0.56459 (13) | 0.0302 (4) | |
H1B | 0.9547 | 0.7726 | 0.5418 | 0.036* | |
C2 | 0.87027 (11) | 0.66136 (19) | 0.60845 (13) | 0.0308 (4) | |
H2 | 0.8972 | 0.5717 | 0.6161 | 0.037* | |
C3 | 0.79790 (11) | 0.67462 (18) | 0.64031 (12) | 0.0282 (4) | |
H3 | 0.7741 | 0.5931 | 0.6694 | 0.034* | |
C4 | 0.75792 (9) | 0.80749 (17) | 0.63065 (11) | 0.0212 (3) | |
C5 | 0.68293 (10) | 0.8285 (2) | 0.66219 (13) | 0.0307 (4) | |
H5 | 0.6572 | 0.7507 | 0.6930 | 0.037* | |
C6 | 0.64737 (11) | 0.9590 (2) | 0.64878 (15) | 0.0365 (4) | |
H6 | 0.5969 | 0.9718 | 0.6703 | 0.044* | |
C7 | 0.68442 (11) | 1.0755 (2) | 0.60344 (15) | 0.0337 (4) | |
H7 | 0.6585 | 1.1660 | 0.5944 | 0.040* | |
C8 | 0.75718 (11) | 1.06050 (18) | 0.57222 (13) | 0.0276 (4) | |
H8 | 0.7821 | 1.1398 | 0.5420 | 0.033* | |
C9 | 0.79424 (9) | 0.92592 (16) | 0.58566 (11) | 0.0195 (3) | |
Mn1 | 0.5000 | 0.39954 (3) | 0.2500 | 0.01891 (7) | |
N1 | 0.86666 (8) | 0.90510 (16) | 0.55456 (10) | 0.0248 (3) | |
H1A | 0.8907 (15) | 0.975 (3) | 0.524 (2) | 0.059 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03363 (10) | 0.02137 (8) | 0.02065 (8) | −0.00760 (6) | 0.00703 (6) | −0.00080 (6) |
Br2 | 0.02595 (9) | 0.02263 (8) | 0.02159 (8) | 0.00227 (6) | 0.00134 (6) | 0.00346 (6) |
C1 | 0.0259 (9) | 0.0378 (9) | 0.0268 (8) | 0.0056 (7) | 0.0025 (7) | −0.0062 (7) |
C2 | 0.0416 (10) | 0.0227 (8) | 0.0268 (8) | 0.0084 (7) | −0.0068 (7) | −0.0050 (7) |
C3 | 0.0438 (11) | 0.0196 (8) | 0.0205 (7) | −0.0060 (7) | −0.0042 (7) | 0.0020 (6) |
C4 | 0.0273 (8) | 0.0217 (7) | 0.0145 (6) | −0.0064 (6) | 0.0004 (6) | −0.0019 (6) |
C5 | 0.0288 (9) | 0.0384 (10) | 0.0257 (8) | −0.0119 (8) | 0.0064 (7) | −0.0053 (7) |
C6 | 0.0241 (9) | 0.0514 (12) | 0.0343 (10) | −0.0012 (8) | 0.0034 (8) | −0.0167 (9) |
C7 | 0.0321 (10) | 0.0309 (9) | 0.0367 (10) | 0.0091 (7) | −0.0083 (8) | −0.0116 (8) |
C8 | 0.0323 (9) | 0.0203 (8) | 0.0294 (8) | −0.0009 (6) | −0.0048 (7) | 0.0005 (6) |
C9 | 0.0222 (8) | 0.0193 (7) | 0.0168 (7) | −0.0028 (6) | −0.0003 (6) | −0.0011 (5) |
Mn1 | 0.02264 (17) | 0.01714 (15) | 0.01725 (15) | 0.000 | 0.00363 (12) | 0.000 |
N1 | 0.0253 (7) | 0.0276 (7) | 0.0219 (7) | −0.0039 (6) | 0.0043 (6) | 0.0036 (6) |
Br1—Mn1 | 2.5073 (2) | C5—H5 | 0.9500 |
Br2—Mn1 | 2.4986 (2) | C6—C7 | 1.404 (3) |
C1—N1 | 1.320 (2) | C6—H6 | 0.9500 |
C1—C2 | 1.391 (3) | C7—C8 | 1.366 (3) |
C1—H1B | 0.9500 | C7—H7 | 0.9500 |
C2—C3 | 1.361 (3) | C8—C9 | 1.401 (2) |
C2—H2 | 0.9500 | C8—H8 | 0.9500 |
C3—C4 | 1.407 (2) | C9—N1 | 1.366 (2) |
C3—H3 | 0.9500 | Mn1—Br2i | 2.4986 (2) |
C4—C9 | 1.410 (2) | Mn1—Br1i | 2.5073 (2) |
C4—C5 | 1.411 (2) | N1—H1A | 0.88 (3) |
C5—C6 | 1.356 (3) | ||
N1—C1—C2 | 120.10 (17) | C8—C7—C6 | 120.94 (17) |
N1—C1—H1B | 119.9 | C8—C7—H7 | 119.5 |
C2—C1—H1B | 119.9 | C6—C7—H7 | 119.5 |
C3—C2—C1 | 119.18 (16) | C7—C8—C9 | 118.70 (16) |
C3—C2—H2 | 120.4 | C7—C8—H8 | 120.6 |
C1—C2—H2 | 120.4 | C9—C8—H8 | 120.6 |
C2—C3—C4 | 120.86 (16) | N1—C9—C8 | 120.85 (15) |
C2—C3—H3 | 119.6 | N1—C9—C4 | 117.91 (14) |
C4—C3—H3 | 119.6 | C8—C9—C4 | 121.23 (15) |
C3—C4—C9 | 118.32 (15) | Br2—Mn1—Br2i | 108.068 (14) |
C3—C4—C5 | 123.69 (16) | Br2—Mn1—Br1 | 113.799 (6) |
C9—C4—C5 | 117.98 (15) | Br2i—Mn1—Br1 | 106.734 (5) |
C6—C5—C4 | 120.45 (17) | Br2—Mn1—Br1i | 106.733 (5) |
C6—C5—H5 | 119.8 | Br2i—Mn1—Br1i | 113.798 (6) |
C4—C5—H5 | 119.8 | Br1—Mn1—Br1i | 107.877 (14) |
C5—C6—C7 | 120.70 (17) | C1—N1—C9 | 123.62 (15) |
C5—C6—H6 | 119.7 | C1—N1—H1A | 115.4 (18) |
C7—C6—H6 | 119.7 | C9—N1—H1A | 121.0 (17) |
N1—C1—C2—C3 | 0.2 (3) | C7—C8—C9—N1 | 179.22 (16) |
C1—C2—C3—C4 | −0.9 (2) | C7—C8—C9—C4 | −0.2 (2) |
C2—C3—C4—C9 | 1.0 (2) | C3—C4—C9—N1 | −0.5 (2) |
C2—C3—C4—C5 | −179.94 (16) | C5—C4—C9—N1 | −179.59 (14) |
C3—C4—C5—C6 | −178.77 (17) | C3—C4—C9—C8 | 178.94 (15) |
C9—C4—C5—C6 | 0.3 (2) | C5—C4—C9—C8 | −0.2 (2) |
C4—C5—C6—C7 | −0.1 (3) | C2—C1—N1—C9 | 0.3 (3) |
C5—C6—C7—C8 | −0.3 (3) | C8—C9—N1—C1 | −179.57 (16) |
C6—C7—C8—C9 | 0.4 (3) | C4—C9—N1—C1 | −0.2 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Br1ii | 0.88 (3) | 2.69 (3) | 3.3815 (14) | 137 (2) |
Symmetry code: (ii) −x+3/2, y+1/2, −z+1/2. |
References
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butcher, R. T., Turnbull, M. M., Landee, C. P., Shapiro, A., Xiao, F., Garrett, D., Robinson, W. T. & Twamley, B. (2010). Inorg. Chem. 49, 427–434. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lamotte-Brasseur, J. & Vermeire, M. (1973). Bull. Soc. Roy. Sci. Liege, 42, 583–585. CAS Google Scholar
Landee, C. P., Monroe, J. C., Kotarba, R., Polson, M., Wikaira, J. L. & Turnbull, M. M. (2018). J. Coord. Chem. 71, 3342–3363. Web of Science CSD CrossRef CAS Google Scholar
Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, m551–m553. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Paulus, H. & Göttlicher, S. (1969). Z. Kristallogr. 130, 267–276. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Slabbert, C. & Rademeyer, M. (2016). CrystEngComm, 18, 4555–4579. Web of Science CSD CrossRef CAS Google Scholar
Valdés-Martínez, J., Muñoz, O. & Toscano, R. A. (2005). Acta Cryst. E61, m1590–m1592. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, H.-Q., Li, D.-W., Mai, Q.-Y., Chen, X.-X., Chen, Q.-Y., Chen, Y., Zhou, J.-R. & Ni, C.-L. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1368–1372. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.