organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 5-(1-benzo­furan-2-yl)isoxazole-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 December 2017; accepted 19 December 2017; online 22 December 2017)

The title compound, C13H9NO4, is almost planar (r.m.s. deviation = 0.071 Å). In the crystal, weak C—H⋯O and C—H⋯N inter­actions connect the mol­ecules into ribbons propagating parallel to the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds containing a benzo­furan ring system show inter­esting pharmaceutical applications (Khanam & Shamsuzzaman, 2015[Khanam, H. & Shamsuzzaman (2015). Eur. J. Med. Chem. 97, 483-504.]; Dawood, 2013[Dawood, K. M. (2013). Expert Opin. Ther. Pat. 23, 1133-1156.]). As part of our studies in this area, we now describe the crystal structure of the title compound.

Apart from the methyl hydrogen atoms, the mol­ecule (Fig. 1[link]) is almost planar [dihedral angle between the ring systems = 0.27 (9)°; r.m.s. deviation for the non-hydrogen atoms = 0.071 Å]. In the crystal, weak C—H⋯O and extremely weak C—H⋯N inter­actions form ribbons running parallel to [100] (Table 1[link], Fig. 2[link]) with adjacent mol­ecules in the chain related by a-glide symmetry.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.47 3.248 (3) 142
C10—H10⋯N1i 0.93 2.69 3.600 (2) 165
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
Inter­molecular inter­actions forming a ribbon along the a-axis.

Synthesis and crystallization

The title compound was synthesized based on a literature procedure (Siddiqui et al., 2013[Siddiqui, N.-J., Idrees, M., Khati, N. T. & Dhonde, M. G. (2013). S. Afr. J. Chem. 66, 248-253.]) and recrystallized from di­methyl­formamide solution to yield colourless block-shaped crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H9NO4
Mr 243.21
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 11.5170 (6), 8.7431 (4), 22.2595 (13)
V3) 2241.4 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.29 × 0.24 × 0.20
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.993, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 7841, 2754, 1729
Rint 0.023
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.128, 1.04
No. of reflections 2754
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.18
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Methyl 5-(1-benzofuran-2-yl)isoxazole-3-carboxylate top
Crystal data top
C13H9NO4Dx = 1.441 Mg m3
Mr = 243.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2289 reflections
a = 11.5170 (6) Åθ = 4.7–27.2°
b = 8.7431 (4) ŵ = 0.11 mm1
c = 22.2595 (13) ÅT = 296 K
V = 2241.4 (2) Å3Block, colourless
Z = 80.29 × 0.24 × 0.20 mm
F(000) = 1008
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
1729 reflections with I > 2σ(I)
ω scansRint = 0.023
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
θmax = 29.5°, θmin = 3.5°
Tmin = 0.993, Tmax = 0.995h = 1511
7841 measured reflectionsk = 811
2754 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.7049P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2754 reflectionsΔρmax = 0.16 e Å3
164 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Methyl C—H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times Ueq(C), and were allowed to spin about the C—C bond. Aromatic C—H distances were set to 0.93 Å and their U(iso) set to 1.2 times the Ueq for the atoms to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67167 (18)0.3721 (2)0.65576 (8)0.0537 (5)
C20.7252 (2)0.2758 (3)0.69597 (10)0.0708 (6)
H20.80550.26380.69670.085*
C30.6540 (3)0.1981 (3)0.73512 (10)0.0758 (7)
H30.68660.13180.76310.091*
C40.5339 (2)0.2169 (3)0.73359 (11)0.0730 (6)
H40.48800.16250.76050.088*
C50.4817 (2)0.3140 (2)0.69324 (10)0.0655 (6)
H50.40150.32600.69270.079*
C60.55252 (17)0.3945 (2)0.65298 (9)0.0521 (5)
C70.53436 (16)0.5028 (2)0.60614 (9)0.0527 (5)
H70.46340.54160.59320.063*
C80.63964 (16)0.5379 (2)0.58428 (8)0.0490 (4)
C90.67308 (15)0.6425 (2)0.53750 (8)0.0480 (4)
C100.61160 (16)0.7336 (2)0.50057 (8)0.0501 (4)
H100.53140.74510.49880.060*
C110.69573 (15)0.8071 (2)0.46541 (8)0.0475 (4)
C120.67921 (17)0.9195 (2)0.41622 (9)0.0527 (5)
C130.5415 (2)1.0774 (3)0.36919 (10)0.0745 (6)
H13A0.57911.17240.37850.112*
H13B0.45891.09250.36820.112*
H13C0.56741.04160.33070.112*
N10.80140 (13)0.76549 (19)0.47946 (8)0.0568 (4)
O10.72689 (11)0.45958 (15)0.61324 (6)0.0565 (4)
O20.78819 (10)0.65920 (15)0.52603 (6)0.0570 (4)
O30.75434 (14)0.96214 (19)0.38300 (7)0.0768 (5)
O40.56996 (11)0.96551 (16)0.41459 (6)0.0610 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0607 (12)0.0534 (11)0.0471 (10)0.0046 (9)0.0011 (9)0.0067 (9)
C20.0727 (15)0.0787 (15)0.0612 (13)0.0129 (12)0.0069 (11)0.0009 (12)
C30.105 (2)0.0684 (14)0.0541 (12)0.0145 (14)0.0020 (13)0.0021 (11)
C40.0961 (19)0.0607 (13)0.0621 (13)0.0018 (13)0.0144 (13)0.0011 (11)
C50.0709 (14)0.0580 (11)0.0675 (13)0.0009 (11)0.0119 (11)0.0039 (11)
C60.0546 (12)0.0479 (10)0.0538 (11)0.0014 (9)0.0025 (9)0.0097 (9)
C70.0442 (10)0.0515 (10)0.0625 (12)0.0028 (8)0.0015 (9)0.0038 (9)
C80.0461 (10)0.0496 (10)0.0512 (10)0.0041 (8)0.0043 (8)0.0075 (9)
C90.0387 (9)0.0517 (10)0.0537 (10)0.0005 (8)0.0020 (8)0.0108 (9)
C100.0369 (9)0.0585 (11)0.0548 (10)0.0005 (8)0.0005 (8)0.0049 (9)
C110.0399 (10)0.0503 (10)0.0522 (10)0.0007 (8)0.0006 (8)0.0104 (9)
C120.0486 (11)0.0568 (11)0.0526 (11)0.0025 (9)0.0015 (9)0.0069 (9)
C130.0792 (16)0.0744 (14)0.0698 (14)0.0081 (12)0.0176 (12)0.0078 (12)
N10.0444 (9)0.0608 (10)0.0651 (10)0.0012 (8)0.0038 (8)0.0006 (9)
O10.0463 (8)0.0653 (8)0.0579 (8)0.0054 (6)0.0023 (6)0.0010 (7)
O20.0407 (7)0.0623 (8)0.0680 (9)0.0049 (6)0.0003 (6)0.0019 (7)
O30.0590 (9)0.0931 (12)0.0782 (10)0.0027 (8)0.0141 (8)0.0173 (9)
O40.0492 (8)0.0714 (9)0.0625 (8)0.0041 (7)0.0041 (6)0.0062 (7)
Geometric parameters (Å, º) top
C1—O11.373 (2)C8—C91.438 (3)
C1—C21.375 (3)C9—C101.346 (3)
C1—C61.388 (3)C9—O21.358 (2)
C2—C31.377 (3)C10—C111.402 (3)
C2—H20.9300C10—H100.9300
C3—C41.393 (4)C11—N11.308 (2)
C3—H30.9300C11—C121.483 (3)
C4—C51.375 (3)C12—O31.198 (2)
C4—H40.9300C12—O41.322 (2)
C5—C61.401 (3)C13—O41.444 (2)
C5—H50.9300C13—H13A0.9600
C6—C71.424 (3)C13—H13B0.9600
C7—C81.342 (3)C13—H13C0.9600
C7—H70.9300N1—O21.401 (2)
C8—O11.376 (2)
O1—C1—C2125.59 (19)O1—C8—C9117.38 (16)
O1—C1—C6110.40 (16)C10—C9—O2109.58 (16)
C2—C1—C6124.0 (2)C10—C9—C8132.65 (17)
C1—C2—C3116.5 (2)O2—C9—C8117.77 (16)
C1—C2—H2121.7C9—C10—C11104.40 (16)
C3—C2—H2121.7C9—C10—H10127.8
C2—C3—C4121.2 (2)C11—C10—H10127.8
C2—C3—H3119.4N1—C11—C10112.46 (17)
C4—C3—H3119.4N1—C11—C12118.69 (17)
C5—C4—C3121.6 (2)C10—C11—C12128.85 (17)
C5—C4—H4119.2O3—C12—O4125.17 (19)
C3—C4—H4119.2O3—C12—C11124.70 (19)
C4—C5—C6118.3 (2)O4—C12—C11110.13 (16)
C4—C5—H5120.9O4—C13—H13A109.5
C6—C5—H5120.9O4—C13—H13B109.5
C1—C6—C5118.43 (19)H13A—C13—H13B109.5
C1—C6—C7105.78 (17)O4—C13—H13C109.5
C5—C6—C7135.8 (2)H13A—C13—H13C109.5
C8—C7—C6106.55 (17)H13B—C13—H13C109.5
C8—C7—H7126.7C11—N1—O2105.10 (14)
C6—C7—H7126.7C1—O1—C8105.19 (14)
C7—C8—O1112.08 (17)C9—O2—N1108.46 (13)
C7—C8—C9130.53 (17)C12—O4—C13116.21 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.473.248 (3)142
C10—H10···N1i0.932.693.600 (2)165
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: kariukib@cf.ac.uk.

Funding information

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationDawood, K. M. (2013). Expert Opin. Ther. Pat. 23, 1133–1156.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhanam, H. & Shamsuzzaman (2015). Eur. J. Med. Chem. 97, 483–504.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, N.-J., Idrees, M., Khati, N. T. & Dhonde, M. G. (2013). S. Afr. J. Chem. 66, 248–253.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]