metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[tetra­aqua­(μ3-4-hy­dr­oxy­pyridine-2,6-di­carboxyl­ato)di-μ2-oxalato-dipraseodymium(III)] 4.29-hydrate]

crossmark logo

aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, bMaterials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand, and cOffice of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
*Correspondence e-mail: thammanoon.chuasaard@cmu.ac.th

Edited by M. Zeller, Purdue University, USA (Received 10 May 2025; accepted 22 May 2025; online 30 May 2025)

The coordination polymer of crystal formula [PrIII2(C7H2NO5)(C2O4)2(H2O)4]·4.29H2O or [PrIII2(HCAM)(ox)2(H2O)4]·4.29H2O was synthesized from praseodymium(III) nitrate in water using chelidamic acid (H3CAM) and oxalic acid (H2ox). There are two PrIII atoms in the asymmetric unit. One metal ion has nine-fold coordination from one pyridyl nitro­gen and eight oxygen atoms from one HCAM2−, two ox2−, and two coordinating water mol­ecules leading to the formation of a tricapped trigonal {PrIIINO8} prism. The other metal ion is coordinated by ten oxygen atoms from two HCAM2−, two ox2−, and two coordinating water mol­ecules, forming a bicapped square {PrIIIO10} unit. The HCAM2− linker has a μ2-κ2:κ1 chelating coordination mode via its carboxyl­ates and N-pyridyl donors, linking the {PrIIINO8} and {PrIIIO10} units into infinite chains. The μ2-κ1:κ1:κ1:κ1 bridging carboxyl­ates of the ox2− linkers connect adjacent chains into sheets in the ac plane. Adjacent layers further aggregate through inter­molecular hydrogen bonding, most of which involves the water mol­ecules of crystallization, and ππ inter­actions to form a tri-periodic supra­molecular framework. Some of the co-crystallizing water mol­ecules as well as one of the metal-coordinating water mol­ecules are disordered.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A coordination polymer (CP) is a metal coordination compound with repeating coordination entities consisting of metal ions or clusters - the nodes - that are connected through coordinating ligands into an infinite solid-state assembly with different periodcities. Lanthanide–CPs (LnIII–CPs) in which the metal nodes are lanthanide ions are of inter­est as they combine the characteristics of CPs such as an often high chemical and thermal stability and a capability to be tailor-made to include functional groups with the lanthanide's unique properties based on their various coordination geometries and characteristic optical and magnetic properties (Li et al., 2015[Li, B., Wen, H.-M., Cui, Y., Qian, G. & Chen, B. (2015). Prog. Polym. Sci. 48, 40-84.]; Bünzli, 2014[Bünzli, J. G. (2014). J. Coord. Chem. 67, 3706-3733.]). These merits can provide LnIII–CPs with fascinating structures and functions. Their well-known applications include catalysis (Zhang et al., 2021[Zhang, Y., Liu, S., Zhao, Z.-S., Wang, Z., Zhang, R., Liu, L. & Han, Z.-B. (2021). Inorg. Chem. Front. 8, 590-619.]), luminescent sensing (Wang et al., 2023[Wang, X., Jiang, Y., Tissot, A. & Serre, C. (2023). Coord. Chem. Rev. 497, 215454.]) and gas adsorption (Roy et al., 2014[Roy, S., Chakraborty, A. & Maji, T. K. (2014). Coord. Chem. Rev. 273-274, 139-164.]), to name just a few. All LnIII ions have a high oxophilicity, so organic polycarboxyl­ates are commonly employed as organic linkers in LnIII–CPs (Bünzli, 2014[Bünzli, J. G. (2014). J. Coord. Chem. 67, 3706-3733.]). The high coordination numbers and flexible coordination geometries of LnIII, as well as a lack of directionality of Ln—O bonds do, however, make it difficult to predict the exact nature of the resultant polymeric framework, which is also greatly affected by the choice of solvent used during synthesis, which is often incorporated into the coordination polymer structure (Bünzli, 2014[Bünzli, J. G. (2014). J. Coord. Chem. 67, 3706-3733.]; Patra & Pal, 2025[Patra, K. & Pal, H. (2025). RSC Sustainability 3, 629-660.]). Owing to their often labile nature, the solvent mol­ecules tend to exhibit disorder, even though they can consolidate the framework structure by promoting inter­molecular hydrogen-bonding inter­actions. The introduction of hydrogen-bond-promoting groups such as hydroxyl on an organic linker is therefore expected to support the framework structure of CPs by transfixing the solvent mol­ecules. Chelidamic acid (H3CAM) containing an –OH group on a pyridyl ring was selected to be the organic linker to bind with praseodymium(III) (PrIII) in this work. Oxalic acid (H2ox) was also used as another small organic linker to help prevent the coordination of labile solvent mol­ecules to the coordination sphere of PrIII and to provide the possibility of obtaining a new PrIII–CP structure with high dimensionality.

The asymmetric unit of the title compound, i.e. [PrIII2(HCAM)(ox)2(H2O)4]·4.29H2O, is made up of two PrIII ions (Pr1 and Pr2), one complete HCAM2− dianion, two ox2− dianions, four metal-coordinating water mol­ecules (two at each PrIII ion), and approximately four and a third co-crystallizing water mol­ecules (Fig. 1[link]a). One of the coordinating water mol­ecules is disordered over two sites (O15A and O15B). Two of the four crystallizing water mol­ecule are not disordered (O18 and O19), whilst O20 is hydrogen bonded to its own symmetry equivalent by inversion, inducing site disorder splitting to O20A and O20B, each of which exhibit 50% occupancy. The other co-crystallizing water mol­ecules are extensively disordered and were refined over three partially occupied sites (O21A, O21B and O21C), which share a total site occupancy of 1.294 water mol­ecules. The correlated disorder prevents their hydrogen atoms to be resolved.

[Figure 1]
Figure 1
A depiction of (a) an extended asymmetric unit of title compound drawn using 50% probability ellipsoids, (b) TPRS-{PrIIINO8} building unit of Pr1, (c) SAPRS-{PrIIIO10} building unit of Pr2, (d) coordination mode adopted by HCAM2−, and (e) coordination mode adopted by ox2−. [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1].

The Pr1 and Pr2 ions show two different coordination environments. Pr1 has a nine-fold coordination environment defined by one pyridyl nitro­gen atom of HCAM2− and eight oxygen atoms from one HCAM2−, two ox2−, and two coordinating water mol­ecules, leading to the formation of a tricapped trigonal–prismatic building unit, i.e. TPRS-{PrIIINO8} (Fig. 1[link]b). Pr2 is tenfold coordinated to oxygen atoms from two HCAM2−, two ox2−, and two coordinating water mol­ecules, forming a bicapped square anti­prism, i.e. SAPRS-{PrIIIO10} (Fig. 1[link]c). The Pr—O bond lengths are in the range of 2.478 (3)–2.550 (3) Å (Table 1[link]), which agrees well with those for other reported PrIII frameworks containing HCAM2− and ox2− (Chen et al., 2008[Chen, Z., Fang, M., Ren, P., Li, X., Zhao, B., Wei, S. & Cheng, P. (2008). Z. Anorg. Allg. Chem. 634, 382-386.]; Zou et al., 2009[Zou, J., Wen, Z., Peng, Q., Zeng, G., Xing, Q. & Chen, M. (2009). J. Coord. Chem. 62, 3324-3331.], 2010[Zou, J., Chen, M., Li, M., Xing, Q., Zhang, A. & Peng, Q. (2010). J. Coord. Chem. 63, 3576-3588.], 2011[Zou, J., Chen, M., Zhang, L., Xing, Q. & Xiong, Z. (2011). J. Chem. Crystallogr. 41, 1820-1833.]; Zhao et al., 2009[Zhao, X., Zhao, B., Wei, S. & Cheng, P. (2009). Inorg. Chem. 48, 11048-11057.]). The HCAM2− linker has a μ2-κ2:κ1 chelating coordination mode via both carboxyl­ate groups and the N-pyridyl donor, thus creating infinite chains made up from alternating and edge-sharing TPRS-{PrIIINO8} and SAPRS-{PrIIIO10} units that extend along [100]. The chains are connected to adjacent chains through bridging carboxyl­ates of the ox2− linkers that adopt the common μ2-κ1:κ1:κ1:κ1 mode of coordination (Fig. 1[link]e) along the c-axis, resulting in sheets in the ac plane. Neighboring sheets are connected to one another through both hydrogen-bonding inter­actions involving the coordinating and crystallizing water mol­ecules (Table 2[link], Fig. 2[link]a) and inter­molecular ππ inter­actions between the pyridyl rings of the HCAM2− ligands that protrude from the parallel sheets (Fig. 2[link]b), leading to formation of a tri-periodic supra­molecular network. The ππ inter­actions are slightly offset from each other (Banerjee et al., 2019[Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245-2252.]; Yao et al., 2018[Yao, Z., Wang, J. & Pei, J. (2018). Cryst. Growth Des. 18, 7-15.]) and have a centroid-to-centroid distance of ca 3.90 Å, an offset distance of ca 2.35 Å, and are exactly parallel (Fig. 2[link]c). The inter­planar stacking distance is 3.11 Å. The supra­molecular architecture established by these stabilizing inter­actions has an inter­layer distance between parallel sheets of ca 9.33 Å. Disregarding the co-crystallized not metal-coordinating water mol­ecules, the total potential solvent area volume within the inter­layer space is estimated to be ca 20% of the unit-cell volume, based on a calculation performed by PLATON software (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Table 1
Selected bond lengths (Å)

Pr1—O1 2.517 (3) Pr2—O1i 2.746 (3)
Pr1—O3 2.526 (3) Pr2—O2i 2.580 (3)
Pr1—O6 2.503 (3) Pr2—O3ii 2.772 (3)
Pr1—O8 2.535 (3) Pr2—O4ii 2.608 (3)
Pr1—O10 2.532 (3) Pr2—O7 2.478 (3)
Pr1—O12 2.520 (3) Pr2—O9 2.538 (3)
Pr1—O14 2.510 (3) Pr2—O11iii 2.519 (3)
Pr1—O15A 2.523 (16) Pr2—O13iii 2.550 (3)
Pr1—O15B 2.501 (16) Pr2—O16 2.496 (4)
Pr1—N1 2.555 (4) Pr2—O17 2.487 (3)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x, y-1, z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O13iv 0.82 1.81 2.626 (4) 170
O14—H14A⋯O11v 0.82 (2) 1.92 (2) 2.735 (4) 173 (5)
O14—H14B⋯O18 0.83 (2) 1.93 (2) 2.755 (5) 175 (5)
O15A—H15A⋯O19vi 0.83 (2) 2.16 (4) 2.81 (3) 135 (3)
O15A—H15A⋯O21A 0.83 (2) 2.26 (2) 2.89 (2) 134 (4)
O15A—H15B⋯O21B 0.84 (2) 2.02 (9) 2.71 (3) 138 (11)
O15B—H15C⋯O21C 0.84 (2) 2.15 (6) 2.93 (3) 155 (10)
O15B—H15D⋯O7ii 0.86 (2) 1.96 (4) 2.75 (2) 152 (5)
O16—H16A⋯O8i 0.86 (2) 1.85 (2) 2.705 (4) 179 (5)
O16—H16B⋯O20Avii 0.83 (2) 2.17 (4) 2.96 (3) 159 (6)
O16—H16B⋯O20B 0.83 (2) 2.12 (3) 2.94 (2) 172 (5)
O17—H17A⋯O12ii 0.83 (2) 2.33 (4) 2.922 (4) 129 (4)
O17—H17A⋯O15Aii 0.83 (2) 2.13 (3) 2.892 (19) 153 (5)
O17—H17A⋯O15Bii 0.83 (2) 2.15 (3) 2.865 (18) 144 (4)
O17—H17B⋯O5vii 0.83 (2) 2.09 (2) 2.914 (4) 171 (5)
O18—H18A⋯O4viii 0.85 (2) 2.10 (2) 2.951 (6) 177 (6)
O18—H18B⋯O2v 0.85 (2) 2.21 (3) 3.011 (6) 156 (7)
O19—H19A⋯O18vi 0.83 (2) 2.56 (7) 3.161 (8) 130 (7)
O19—H19B⋯O9 0.83 (2) 2.15 (2) 2.904 (7) 151 (5)
O20A—H20A⋯O20B 0.87 2.17 2.901 (14) 141
O20A—H20B⋯O19ix 0.85 2.13 2.87 (3) 146
O20B—H20C⋯O19i 0.85 2.13 2.87 (2) 145
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iv) [x, y-1, z]; (v) [-x, -y+2, -z]; (vi) [-x, -y+2, -z+1]; (vii) [-x+1, -y, -z+1]; (viii) [x-1, y+1, z]; (ix) [x+1, y-1, z].
[Figure 2]
Figure 2
Views of (a) hydrogen-bonding inter­actions in the crystal structure of title compound (only hydrogen atoms involving the hydrogen bonding inter­actions are shown), (b) inter­layer ππ inter­action, and (c) displaced ππ stacking geometry.

Synthesis and crystallization

All chemicals used in this work were obtained commercially and used without purification: Pr6O11 (TJTM, 99.99%), chelidamic acid (H3CAM; C7H5NO5, Macklin, 98%), oxalic acid (H2ox·2H2O; C2H2O4·2H2O, Fluka Chemika, ≥99%), nitric acid (HNO3, RCI Labscan, 65%). PrIII(NO3)3·6H2O was prepared by dissolving Pr6O11 in small amount of concentrated solution of nitric acid followed by slow crystallization.

To synthesize the title compound, a mixture of PrIII(NO3)3·6H2O (43.5 mg, 0.100 mmol), H3CAM (20.5 mg, 0.100 mmol) and oxalic acid (12.6 mg, 0.100 mmol) was prepared in 10.0 ml of deionized water. The mixture was then transferred to a Teflon lined autoclave and heated at 130°C for 5 d under autogenous pressure. After cooling down to room temperature, brown block-shaped crystals (34% yield based on PrIII) were obtained, collected and washed with deionized water. The crystals were characterized using FT–IR spectroscopy (PerkinElmer/Frontier FT–IR instrument; ATR mode; cm−1): 3675–2814(br), 1647(m), 1562(s), 1443(m), 1396(m), 1354(m), 1305(m), 1251(w), 1121(w), 1027(m), 750(m), 486(m).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Pr2(C7H3NO5)(C2O4)2(H2O)4]·4.29H2O
Mr 785.78
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 9.9236 (3), 10.3042 (4), 12.9748 (5)
α, β, γ (°) 66.684 (4), 80.942 (3), 66.660 (3)
V3) 1118.69 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.41
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer SuperNova, Single source at offset/far, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.768, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18710, 4715, 3799
Rint 0.088
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.05
No. of reflections 4715
No. of parameters 399
No. of restraints 71
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.47, −1.78
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The oxygen atom of a coordinating water mol­ecule (O15) shows site disorder splitting to two sites of O15A and O15B with site occupancies of 0.45 (4) and 0.55 (4), respectively. A SIMU command with an effective standard deviation of 0.01 Å2 was used to restrain O15A and O15B to have similar Uij components. An oxygen atom of a crystallizing water mol­ecule (O20) is hydrogen bonded to its symmetry-equivalent counterpart which across a nearby inversion center (0.5 0 0.5), inducing disorder and splitting into two sites (O20A and O20B). As O20A and O20B are too close to be compatible with each other, one of them was moved across the inversion center. A SIMU (s = 0.01, st = 0.01, dmax = 3) together with a ISOR (s = 0.01, st = 0.02) command were applied to O20A and O20B to restrain their Uij components to approximate isotropic behavior. The region where O21A, O21B and O21C of water mol­ecules of crystallization were placed originally contained several large electron densities, with O21B being in hydrogen-bonding distance to its own counterpart by inversion. The large number of permutations prevented an exact disorder modeling or placement of hydrogen atoms. However, the total number of site occupancies in this region was estimated to be about one and a third (1.294). A SIMU (s = 0.01, st = 0.02, dmax = 2) command was applied to O21A, O21B and O21C to restrain to have similar Uij components.

The carbon-bound hydrogen atoms were positioned geometrically and refined isotropically using a riding model (AFIX 43). The C—H bond lengths in the pyridyl ring of HCAM2− were constrained to 0.93 Å [Uiso(H) = 1.2Uiso(C)]. A hydrogen atom of an –OH group of HCAM2− was positioned geometrically and refined isotropically with allowing a rotation with a tetra­hedral C—O—H angle (AFIX 147) to best fit the experimental electron density. The O—H bond length of this –OH group was set to be 0.82 Å [Uiso(H) = 1.5Uiso(O)]. The hydrogen atoms of water mol­ecules (both coordinating and crystallizing water) were refined isotropically, and the O—H bond lengths and H⋯H distances were restrained to 0.84 (2) Å and 1.36 (2) Å, respectively, [Uiso(H) = 1.5Uiso(O)]. There were some hydrogen atoms of water mol­ecules that were additionally restrained based on hydrogen-bonding considerations, i.e. H19B⋯O9 and H20A⋯O20B distances were restrained to 2.15 (2) Å, and the H15A⋯O21A distance was restrained to 2.25 (2) Å. The hydrogen atoms of O20A and O20B were initially refined in the same manner while a damping factor was applied. In the final refinement cycles, the damping factor was removed and the hydrogen atoms were constrained to ride on their carrying oxygen atoms (AFIX 3).

Structural data


Computing details top

Poly[[tetraaqua(µ3-4-hydroxypyridine-2,6-dicarboxylato)di-µ2-oxalato-dipraseodymium(III)] 4.29-hydrate] top
Crystal data top
[Pr2(C7H3NO5)(C2O4)2(H2O)4]·4.29H2OZ = 2
Mr = 785.78F(000) = 757
Triclinic, P1Dx = 2.333 Mg m3
a = 9.9236 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3042 (4) ÅCell parameters from 11399 reflections
c = 12.9748 (5) Åθ = 2.3–27.2°
α = 66.684 (4)°µ = 4.41 mm1
β = 80.942 (3)°T = 298 K
γ = 66.660 (3)°Block, clear brownish colourless
V = 1118.69 (8) Å30.2 × 0.2 × 0.1 mm
Data collection top
SuperNova, Single source at offset/far, HyPix3000
diffractometer
4715 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3799 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.088
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1212
Tmin = 0.768, Tmax = 1.000k = 1212
18710 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0364P)2]
where P = (Fo2 + 2Fc2)/3
4715 reflections(Δ/σ)max < 0.001
399 parametersΔρmax = 1.47 e Å3
71 restraintsΔρmin = 1.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pr10.23196 (2)0.77685 (3)0.25657 (2)0.01644 (9)
Pr20.23512 (2)0.29264 (3)0.76177 (2)0.01623 (9)
O10.0556 (3)0.6667 (3)0.2380 (3)0.0213 (7)
O20.0132 (3)0.5827 (4)0.1307 (3)0.0307 (8)
O30.5023 (3)0.6898 (3)0.2099 (3)0.0216 (7)
O40.7077 (3)0.5102 (4)0.1918 (3)0.0289 (8)
O50.4995 (3)0.2189 (4)0.0567 (3)0.0259 (8)
H50.4338920.2127450.0296810.039*
O60.3619 (3)0.5268 (4)0.4061 (3)0.0304 (8)
O70.3719 (3)0.3733 (4)0.5863 (3)0.0252 (8)
O80.0950 (3)0.7142 (3)0.4408 (3)0.0256 (8)
O90.0969 (3)0.5504 (4)0.6168 (3)0.0275 (8)
O100.1736 (3)0.8820 (3)0.0496 (2)0.0213 (7)
O110.1805 (3)1.0576 (3)0.1203 (2)0.0216 (7)
O120.2910 (3)1.0092 (3)0.1385 (3)0.0242 (7)
O130.3127 (3)1.1706 (3)0.0329 (2)0.0234 (7)
O140.0079 (4)0.9973 (4)0.2305 (3)0.0302 (8)
H14A0.066 (5)0.983 (6)0.201 (4)0.045*
H14B0.016 (5)1.088 (3)0.200 (4)0.045*
O15A0.298 (3)0.894 (3)0.3700 (17)0.028 (4)0.45 (4)
H15A0.234 (5)0.956 (5)0.395 (3)0.043*0.45 (4)
H15B0.369 (8)0.842 (8)0.415 (8)0.043*0.45 (4)
O15B0.342 (2)0.828 (3)0.3904 (16)0.042 (4)0.55 (4)
H15C0.293 (5)0.859 (12)0.440 (6)0.064*0.55 (4)
H15D0.427 (5)0.767 (8)0.420 (6)0.064*0.55 (4)
O160.1824 (4)0.2134 (5)0.6187 (3)0.0400 (10)
H16A0.094 (3)0.236 (6)0.601 (4)0.060*
H16B0.233 (5)0.209 (7)0.562 (3)0.060*
O170.4416 (3)0.0634 (4)0.7485 (3)0.0304 (9)
H17A0.522 (3)0.073 (5)0.736 (4)0.046*
H17B0.454 (5)0.020 (3)0.800 (3)0.046*
O180.0349 (5)1.2962 (5)0.1190 (4)0.0638 (13)
H18A0.109 (5)1.355 (6)0.143 (5)0.096*
H18B0.017 (7)1.350 (6)0.053 (3)0.096*
O190.1396 (7)0.7992 (7)0.6626 (6)0.106 (2)
H19A0.150 (8)0.811 (12)0.724 (5)0.159*
H19B0.055 (4)0.743 (7)0.655 (8)0.159*
O20A0.599 (3)0.1133 (16)0.544 (2)0.126 (6)0.5
H20A0.5168750.0377980.5425620.189*0.5
H20B0.6619950.0982010.5700620.189*0.5
O20B0.389 (3)0.1898 (16)0.4318 (19)0.112 (5)0.5
H20C0.2992450.2270020.4113830.168*0.5
H20D0.4029740.2553350.4475410.168*0.5
O21A0.1227 (19)0.9358 (19)0.5629 (13)0.131 (6)0.488 (17)
O21C0.214 (3)0.838 (3)0.608 (2)0.108 (6)0.253 (13)
O21B0.3984 (11)0.7322 (11)0.5831 (8)0.097 (5)0.553 (15)
N10.3350 (4)0.5635 (4)0.1792 (3)0.0188 (8)
C10.0848 (5)0.5939 (5)0.1735 (4)0.0228 (11)
C20.2449 (4)0.5154 (5)0.1506 (4)0.0171 (10)
C30.2935 (5)0.4015 (5)0.1089 (4)0.0218 (10)
H30.2268670.3730020.0883730.026*
C40.4425 (5)0.3294 (5)0.0978 (4)0.0194 (10)
C50.5398 (5)0.3766 (5)0.1287 (4)0.0237 (11)
H5A0.6408850.3289700.1239110.028*
C60.4805 (4)0.4958 (5)0.1664 (4)0.0181 (10)
C70.5711 (5)0.5680 (5)0.1928 (4)0.0193 (10)
C90.1529 (5)0.5941 (5)0.5226 (4)0.0193 (10)
C80.3103 (5)0.4884 (5)0.5036 (4)0.0202 (10)
C110.2745 (5)1.0625 (5)0.0363 (4)0.0195 (10)
C100.2019 (5)0.9932 (5)0.0159 (4)0.0177 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01715 (16)0.01723 (16)0.01250 (17)0.00734 (12)0.00045 (11)0.00222 (12)
Pr20.01536 (16)0.01812 (15)0.01234 (16)0.00743 (12)0.00053 (11)0.00168 (12)
O10.0189 (16)0.0243 (18)0.0231 (19)0.0089 (14)0.0049 (13)0.0122 (15)
O20.0163 (17)0.043 (2)0.045 (2)0.0117 (16)0.0039 (15)0.0283 (18)
O30.0233 (18)0.0244 (18)0.0215 (19)0.0128 (15)0.0024 (14)0.0097 (15)
O40.0166 (18)0.032 (2)0.042 (2)0.0098 (15)0.0002 (15)0.0170 (18)
O50.0178 (17)0.0267 (18)0.038 (2)0.0046 (15)0.0057 (15)0.0177 (16)
O60.0258 (19)0.034 (2)0.0159 (19)0.0058 (16)0.0034 (14)0.0006 (16)
O70.0206 (17)0.0287 (19)0.0137 (18)0.0078 (15)0.0005 (13)0.0034 (15)
O80.0241 (18)0.0224 (18)0.0198 (19)0.0068 (15)0.0003 (14)0.0008 (15)
O90.0251 (18)0.033 (2)0.0153 (19)0.0090 (15)0.0067 (14)0.0035 (15)
O100.0301 (18)0.0207 (17)0.0138 (18)0.0158 (15)0.0012 (13)0.0001 (14)
O110.0257 (18)0.0258 (18)0.0132 (18)0.0136 (15)0.0039 (13)0.0016 (14)
O120.0335 (19)0.0266 (18)0.0133 (19)0.0168 (15)0.0052 (14)0.0004 (15)
O130.0284 (18)0.0259 (18)0.0181 (19)0.0177 (15)0.0024 (14)0.0017 (15)
O140.027 (2)0.0250 (19)0.040 (2)0.0093 (16)0.0066 (16)0.0112 (18)
O15A0.029 (9)0.042 (9)0.023 (7)0.012 (7)0.004 (5)0.023 (7)
O15B0.028 (7)0.060 (11)0.046 (7)0.016 (7)0.000 (5)0.027 (8)
O160.026 (2)0.069 (3)0.039 (3)0.019 (2)0.0060 (18)0.034 (2)
O170.0188 (18)0.0220 (19)0.041 (2)0.0083 (15)0.0046 (16)0.0036 (16)
O180.075 (4)0.036 (3)0.070 (4)0.012 (2)0.003 (3)0.019 (2)
O190.098 (4)0.087 (4)0.116 (5)0.008 (4)0.010 (4)0.049 (4)
O20A0.125 (7)0.110 (13)0.150 (10)0.017 (11)0.032 (7)0.069 (11)
O20B0.124 (7)0.097 (12)0.131 (10)0.017 (10)0.027 (7)0.071 (11)
O21A0.160 (12)0.094 (10)0.119 (10)0.013 (8)0.012 (8)0.048 (8)
O21C0.145 (11)0.082 (9)0.089 (9)0.011 (8)0.020 (8)0.047 (8)
O21B0.115 (8)0.081 (7)0.063 (7)0.006 (6)0.017 (5)0.019 (5)
N10.015 (2)0.021 (2)0.019 (2)0.0091 (17)0.0012 (16)0.0049 (17)
C10.019 (3)0.018 (2)0.029 (3)0.009 (2)0.001 (2)0.004 (2)
C20.014 (2)0.023 (2)0.014 (2)0.0065 (19)0.0006 (18)0.007 (2)
C30.023 (3)0.028 (3)0.022 (3)0.014 (2)0.001 (2)0.011 (2)
C40.024 (3)0.014 (2)0.017 (3)0.007 (2)0.0011 (19)0.002 (2)
C50.015 (2)0.026 (3)0.027 (3)0.005 (2)0.005 (2)0.007 (2)
C60.018 (2)0.017 (2)0.018 (3)0.0061 (19)0.0011 (19)0.005 (2)
C70.018 (3)0.023 (3)0.016 (3)0.011 (2)0.0003 (19)0.002 (2)
C90.016 (2)0.023 (3)0.017 (3)0.006 (2)0.0000 (19)0.007 (2)
C80.016 (2)0.024 (3)0.020 (3)0.008 (2)0.001 (2)0.007 (2)
C110.015 (2)0.023 (3)0.019 (3)0.008 (2)0.0031 (19)0.004 (2)
C100.015 (2)0.020 (2)0.019 (3)0.0051 (19)0.0039 (18)0.007 (2)
Geometric parameters (Å, º) top
Pr1—O12.517 (3)O11—C101.260 (5)
Pr1—O32.526 (3)O12—C111.227 (5)
Pr1—O62.503 (3)O13—C111.275 (5)
Pr1—O82.535 (3)O14—H14A0.821 (19)
Pr1—O102.532 (3)O14—H14B0.832 (19)
Pr1—O122.520 (3)O15A—H15A0.830 (19)
Pr1—O142.510 (3)O15A—H15B0.84 (2)
Pr1—O15A2.523 (16)O15B—H15C0.84 (2)
Pr1—O15B2.501 (16)O15B—H15D0.86 (2)
Pr1—N12.555 (4)O16—H16A0.856 (19)
Pr2—O1i2.746 (3)O16—H16B0.826 (19)
Pr2—O2i2.580 (3)O17—H17A0.826 (18)
Pr2—O3ii2.772 (3)O17—H17B0.832 (19)
Pr2—O4ii2.608 (3)O18—H18A0.85 (2)
Pr2—O72.478 (3)O18—H18B0.85 (2)
Pr2—O92.538 (3)O19—H19A0.83 (2)
Pr2—O11iii2.519 (3)O19—H19B0.831 (19)
Pr2—O13iii2.550 (3)O20A—H20A0.8688
Pr2—O162.496 (4)O20A—H20B0.8471
Pr2—O172.487 (3)O20B—H20C0.8540
Pr2—C1i3.025 (4)O20B—H20D0.8435
Pr2—C7ii3.054 (4)N1—C21.336 (5)
O1—C11.263 (5)N1—C61.348 (5)
O2—C11.256 (5)C1—C21.513 (6)
O3—C71.259 (5)C2—C31.370 (6)
O4—C71.247 (5)C3—H30.9300
O5—H50.8200C3—C41.381 (6)
O5—C41.333 (5)C4—C51.407 (6)
O6—C81.256 (5)C5—H5A0.9300
O7—C81.248 (5)C5—C61.381 (6)
O8—C91.256 (5)C6—C71.519 (6)
O9—C91.247 (5)C9—C81.559 (7)
O10—C101.235 (5)C11—C101.559 (6)
O1—Pr1—O3125.52 (9)O16—Pr2—O979.58 (12)
O1—Pr1—O871.98 (10)O16—Pr2—O11iii77.00 (11)
O1—Pr1—O1073.53 (9)O16—Pr2—O13iii137.51 (12)
O1—Pr1—O12134.40 (10)O16—Pr2—C1i92.58 (12)
O1—Pr1—O15A144.9 (4)O16—Pr2—C7ii142.54 (11)
O1—Pr1—N163.08 (10)O17—Pr2—O1i123.96 (10)
O3—Pr1—O8131.86 (10)O17—Pr2—O2i150.18 (10)
O3—Pr1—O1089.35 (9)O17—Pr2—O3ii70.95 (10)
O3—Pr1—N162.46 (10)O17—Pr2—O4ii119.01 (10)
O6—Pr1—O188.21 (10)O17—Pr2—O9133.08 (10)
O6—Pr1—O371.33 (10)O17—Pr2—O11iii70.13 (10)
O6—Pr1—O864.40 (10)O17—Pr2—O13iii82.94 (11)
O6—Pr1—O10138.63 (11)O17—Pr2—O1669.13 (12)
O6—Pr1—O12135.43 (9)O17—Pr2—C1i142.91 (10)
O6—Pr1—O14138.35 (11)O17—Pr2—C7ii95.28 (11)
O6—Pr1—O15A85.8 (7)C1i—Pr2—C7ii116.61 (12)
O6—Pr1—N168.80 (11)Pr1—O1—Pr2i144.80 (13)
O8—Pr1—N1114.36 (10)C1—O1—Pr1120.3 (3)
O10—Pr1—O8137.05 (9)C1—O1—Pr2i90.1 (2)
O10—Pr1—N169.83 (10)C1—O2—Pr2i98.1 (3)
O12—Pr1—O372.10 (10)Pr1—O3—Pr2ii143.18 (13)
O12—Pr1—O8131.56 (10)C7—O3—Pr1123.1 (3)
O12—Pr1—O1064.34 (9)C7—O3—Pr2ii90.4 (2)
O12—Pr1—O15A66.4 (5)C7—O4—Pr2ii98.6 (3)
O12—Pr1—N1114.05 (10)C4—O5—H5109.5
O14—Pr1—O178.28 (10)C8—O6—Pr1121.4 (3)
O14—Pr1—O3146.68 (10)C8—O7—Pr2121.3 (3)
O14—Pr1—O873.95 (10)C9—O8—Pr1120.6 (3)
O14—Pr1—O1074.65 (11)C9—O9—Pr2119.4 (3)
O14—Pr1—O1274.62 (10)C10—O10—Pr1120.7 (3)
O14—Pr1—O15A83.6 (6)C10—O11—Pr2iv123.2 (3)
O14—Pr1—N1133.09 (11)C11—O12—Pr1120.1 (3)
O15A—Pr1—O384.8 (5)C11—O13—Pr2iv121.0 (3)
O15A—Pr1—O874.3 (4)Pr1—O14—H14A108 (4)
O15A—Pr1—O10129.7 (6)Pr1—O14—H14B124 (3)
O15A—Pr1—N1143.2 (6)H14A—O14—H14B110 (5)
O15B—Pr1—O1144.6 (4)Pr1—O15A—H15A122 (3)
O15B—Pr1—O376.7 (5)Pr1—O15A—H15B121 (3)
O15B—Pr1—O672.4 (7)H15A—O15A—H15B109 (3)
O15B—Pr1—O872.9 (4)Pr1—O15B—H15C123 (3)
O15B—Pr1—O10139.4 (5)Pr1—O15B—H15D121 (3)
O15B—Pr1—O1275.1 (6)H15C—O15B—H15D105 (3)
O15B—Pr1—O1496.5 (6)Pr2—O16—H16A121 (3)
O15B—Pr1—N1130.4 (6)Pr2—O16—H16B124 (3)
O1i—Pr2—O3ii164.06 (9)H16A—O16—H16B107 (6)
O1i—Pr2—C1i24.67 (10)Pr2—O17—H17A114 (4)
O1i—Pr2—C7ii140.12 (11)Pr2—O17—H17B119 (3)
O2i—Pr2—O1i48.86 (9)H17A—O17—H17B107 (3)
O2i—Pr2—O3ii115.62 (9)H18A—O18—H18B106 (3)
O2i—Pr2—O4ii72.16 (9)H19A—O19—H19B112 (4)
O2i—Pr2—C1i24.28 (11)H20A—O20A—H20B105.4
O2i—Pr2—C7ii93.86 (11)H20C—O20B—H20D107.1
O3ii—Pr2—C1i139.57 (11)C2—N1—Pr1120.4 (3)
O3ii—Pr2—C7ii24.35 (10)C2—N1—C6118.0 (4)
O4ii—Pr2—O1i116.38 (9)C6—N1—Pr1121.6 (3)
O4ii—Pr2—O3ii48.16 (9)O1—C1—Pr2i65.2 (2)
O4ii—Pr2—C1i93.52 (11)O1—C1—C2117.6 (4)
O4ii—Pr2—C7ii23.81 (11)O2—C1—Pr2i57.6 (2)
O7—Pr2—O1i122.36 (9)O2—C1—O1122.4 (4)
O7—Pr2—O2i137.91 (11)O2—C1—C2120.0 (4)
O7—Pr2—O3ii64.97 (9)C2—C1—Pr2i172.1 (3)
O7—Pr2—O4ii84.16 (10)N1—C2—C1113.6 (4)
O7—Pr2—O964.76 (10)N1—C2—C3123.1 (4)
O7—Pr2—O11iii136.21 (10)C3—C2—C1123.2 (4)
O7—Pr2—O13iii131.51 (9)C2—C3—H3120.4
O7—Pr2—O1669.72 (11)C2—C3—C4119.2 (4)
O7—Pr2—O1771.87 (10)C4—C3—H3120.4
O7—Pr2—C1i133.16 (11)O5—C4—C3123.3 (4)
O7—Pr2—C7ii73.09 (11)O5—C4—C5117.9 (4)
O9—Pr2—O1i70.34 (9)C3—C4—C5118.8 (4)
O9—Pr2—O2i75.37 (10)C4—C5—H5A121.1
O9—Pr2—O3ii104.33 (9)C6—C5—C4117.9 (4)
O9—Pr2—O4ii74.22 (10)C6—C5—H5A121.1
O9—Pr2—O13iii140.30 (10)N1—C6—C5123.0 (4)
O9—Pr2—C1i69.61 (11)N1—C6—C7113.3 (4)
O9—Pr2—C7ii88.79 (11)C5—C6—C7123.7 (4)
O11iii—Pr2—O1i66.23 (9)O3—C7—Pr2ii65.2 (2)
O11iii—Pr2—O2i82.52 (10)O3—C7—C6117.1 (4)
O11iii—Pr2—O3ii119.82 (9)O4—C7—Pr2ii57.6 (2)
O11iii—Pr2—O4ii133.81 (10)O4—C7—O3122.8 (4)
O11iii—Pr2—O9135.73 (9)O4—C7—C6120.0 (4)
O11iii—Pr2—O13iii63.37 (9)C6—C7—Pr2ii177.2 (3)
O11iii—Pr2—C1i74.49 (10)O8—C9—C8116.4 (4)
O11iii—Pr2—C7ii131.07 (11)O9—C9—O8126.7 (4)
O13iii—Pr2—O1i106.12 (9)O9—C9—C8116.9 (4)
O13iii—Pr2—O2i74.10 (10)O6—C8—C9116.7 (4)
O13iii—Pr2—O3ii67.88 (9)O7—C8—O6126.5 (4)
O13iii—Pr2—O4ii72.69 (10)O7—C8—C9116.8 (4)
O13iii—Pr2—C1i91.14 (12)O12—C11—O13125.7 (4)
O13iii—Pr2—C7ii68.71 (10)O12—C11—C10118.3 (4)
O16—Pr2—O1i68.24 (10)O13—C11—C10115.9 (4)
O16—Pr2—O2i116.84 (10)O10—C10—O11128.1 (4)
O16—Pr2—O3ii126.51 (10)O10—C10—C11116.3 (4)
O16—Pr2—O4ii149.02 (12)O11—C10—C11115.6 (4)
Pr1—O1—C1—Pr2i161.4 (3)Pr2iv—O11—C10—C113.7 (5)
Pr1—O1—C1—O2154.6 (3)Pr2iv—O13—C11—O12170.6 (4)
Pr1—O1—C1—C226.9 (5)Pr2iv—O13—C11—C109.8 (5)
Pr1—O3—C7—Pr2ii163.8 (3)O1—C1—C2—N115.8 (6)
Pr1—O3—C7—O4165.4 (3)O1—C1—C2—C3161.7 (4)
Pr1—O3—C7—C617.9 (5)O2—C1—C2—N1165.7 (4)
Pr1—O6—C8—O7173.3 (3)O2—C1—C2—C316.9 (6)
Pr1—O6—C8—C97.5 (5)O5—C4—C5—C6177.0 (4)
Pr1—O8—C9—O9179.6 (3)O8—C9—C8—O64.7 (6)
Pr1—O8—C9—C80.3 (5)O8—C9—C8—O7176.0 (4)
Pr1—O10—C10—O11179.5 (3)O9—C9—C8—O6174.6 (4)
Pr1—O10—C10—C110.1 (5)O9—C9—C8—O74.6 (6)
Pr1—O12—C11—O13173.4 (3)O12—C11—C10—O104.2 (7)
Pr1—O12—C11—C106.1 (6)O12—C11—C10—O11176.3 (4)
Pr1—N1—C2—C12.4 (5)O13—C11—C10—O10175.3 (4)
Pr1—N1—C2—C3179.9 (3)O13—C11—C10—O114.1 (6)
Pr1—N1—C6—C5177.6 (3)N1—C2—C3—C41.5 (7)
Pr1—N1—C6—C74.8 (5)N1—C6—C7—O38.1 (6)
Pr2i—O1—C1—O26.8 (4)N1—C6—C7—O4175.1 (4)
Pr2i—O1—C1—C2171.7 (3)C1—C2—C3—C4175.7 (4)
Pr2i—O2—C1—O17.3 (5)C2—N1—C6—C52.1 (6)
Pr2i—O2—C1—C2171.2 (3)C2—N1—C6—C7175.5 (4)
Pr2ii—O3—C7—O41.6 (4)C2—C3—C4—O5179.1 (4)
Pr2ii—O3—C7—C6178.3 (3)C2—C3—C4—C50.6 (6)
Pr2ii—O4—C7—O31.7 (5)C3—C4—C5—C61.5 (6)
Pr2ii—O4—C7—C6178.3 (3)C4—C5—C6—N13.0 (7)
Pr2—O7—C8—O6168.6 (3)C4—C5—C6—C7174.4 (4)
Pr2—O7—C8—C910.6 (5)C5—C6—C7—O3169.5 (4)
Pr2—O9—C9—O8175.9 (3)C5—C6—C7—O47.3 (7)
Pr2—O9—C9—C83.3 (5)C6—N1—C2—C1177.3 (4)
Pr2iv—O11—C10—O10176.9 (3)C6—N1—C2—C30.2 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z+1; (iv) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O13v0.821.812.626 (4)170
O14—H14A···O11vi0.82 (2)1.92 (2)2.735 (4)173 (5)
O14—H14B···O180.83 (2)1.93 (2)2.755 (5)175 (5)
O15A—H15A···O19vii0.83 (2)2.16 (4)2.81 (3)135 (3)
O15A—H15A···O21A0.83 (2)2.26 (2)2.89 (2)134 (4)
O15A—H15B···O21B0.84 (2)2.02 (9)2.71 (3)138 (11)
O15B—H15C···O21C0.84 (2)2.15 (6)2.93 (3)155 (10)
O15B—H15D···O7ii0.86 (2)1.96 (4)2.75 (2)152 (5)
O16—H16A···O8i0.86 (2)1.85 (2)2.705 (4)179 (5)
O16—H16B···O20Aviii0.83 (2)2.17 (4)2.96 (3)159 (6)
O16—H16B···O20B0.83 (2)2.12 (3)2.94 (2)172 (5)
O17—H17A···O12ii0.83 (2)2.33 (4)2.922 (4)129 (4)
O17—H17A···O15Aii0.83 (2)2.13 (3)2.892 (19)153 (5)
O17—H17A···O15Bii0.83 (2)2.15 (3)2.865 (18)144 (4)
O17—H17B···O5viii0.83 (2)2.09 (2)2.914 (4)171 (5)
O18—H18A···O4ix0.85 (2)2.10 (2)2.951 (6)177 (6)
O18—H18B···O2vi0.85 (2)2.21 (3)3.011 (6)156 (7)
O19—H19A···O18vii0.83 (2)2.56 (7)3.161 (8)130 (7)
O19—H19B···O90.83 (2)2.15 (2)2.904 (7)151 (5)
O20A—H20A···O20B0.872.172.901 (14)141
O20A—H20B···O19x0.852.132.87 (3)146
O20B—H20C···O19i0.852.132.87 (2)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (v) x, y1, z; (vi) x, y+2, z; (vii) x, y+2, z+1; (viii) x+1, y, z+1; (ix) x1, y+1, z; (x) x+1, y1, z.
 

Acknowledgements

AK is thankful to Chiang Mai University for a Presidential Scholarship. TC thanks Chiang Mai University for the support under the Proactive Researcher Scheme.

Funding information

Funding for this research was provided by: the National Research Council of Thailand (NRCT) and Chiang Mai University (Contract Number N42A670317), (award to A. Rujiwatra).

References

First citationBanerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252.  Web of Science CrossRef CAS Google Scholar
First citationBünzli, J. G. (2014). J. Coord. Chem. 67, 3706–3733.  Google Scholar
First citationChen, Z., Fang, M., Ren, P., Li, X., Zhao, B., Wei, S. & Cheng, P. (2008). Z. Anorg. Allg. Chem. 634, 382–386.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, B., Wen, H.-M., Cui, Y., Qian, G. & Chen, B. (2015). Prog. Polym. Sci. 48, 40–84.  Web of Science CrossRef Google Scholar
First citationPatra, K. & Pal, H. (2025). RSC Sustainability 3, 629–660.  CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRoy, S., Chakraborty, A. & Maji, T. K. (2014). Coord. Chem. Rev. 273–274, 139–164.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X., Jiang, Y., Tissot, A. & Serre, C. (2023). Coord. Chem. Rev. 497, 215454.  CrossRef Google Scholar
First citationYao, Z., Wang, J. & Pei, J. (2018). Cryst. Growth Des. 18, 7–15.  CrossRef CAS Google Scholar
First citationZhang, Y., Liu, S., Zhao, Z.-S., Wang, Z., Zhang, R., Liu, L. & Han, Z.-B. (2021). Inorg. Chem. Front. 8, 590–619.  CrossRef CAS Google Scholar
First citationZhao, X., Zhao, B., Wei, S. & Cheng, P. (2009). Inorg. Chem. 48, 11048–11057.  CrossRef PubMed CAS Google Scholar
First citationZou, J., Chen, M., Li, M., Xing, Q., Zhang, A. & Peng, Q. (2010). J. Coord. Chem. 63, 3576–3588.  CrossRef CAS Google Scholar
First citationZou, J., Chen, M., Zhang, L., Xing, Q. & Xiong, Z. (2011). J. Chem. Crystallogr. 41, 1820–1833.  CrossRef CAS Google Scholar
First citationZou, J., Wen, Z., Peng, Q., Zeng, G., Xing, Q. & Chen, M. (2009). J. Coord. Chem. 62, 3324–3331.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146