

metal-organic compounds
Poly[[tetraaqua(μ3-4-hydroxypyridine-2,6-dicarboxylato)di-μ2-oxalato-dipraseodymium(III)] 4.29-hydrate]
aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, bMaterials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand, and cOffice of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
*Correspondence e-mail: thammanoon.chuasaard@cmu.ac.th
The coordination polymer of crystal formula [PrIII2(C7H2NO5)(C2O4)2(H2O)4]·4.29H2O or [PrIII2(HCAM)(ox)2(H2O)4]·4.29H2O was synthesized from praseodymium(III) nitrate in water using chelidamic acid (H3CAM) and oxalic acid (H2ox). There are two PrIII atoms in the One metal ion has nine-fold coordination from one pyridyl nitrogen and eight oxygen atoms from one HCAM2−, two ox2−, and two coordinating water molecules leading to the formation of a tricapped trigonal {PrIIINO8} prism. The other metal ion is coordinated by ten oxygen atoms from two HCAM2−, two ox2−, and two coordinating water molecules, forming a bicapped square {PrIIIO10} unit. The HCAM2− linker has a μ2-κ2:κ1 chelating coordination mode via its carboxylates and N-pyridyl donors, linking the {PrIIINO8} and {PrIIIO10} units into infinite chains. The μ2-κ1:κ1:κ1:κ1 bridging carboxylates of the ox2− linkers connect adjacent chains into sheets in the ac plane. Adjacent layers further aggregate through intermolecular hydrogen bonding, most of which involves the water molecules of crystallization, and π–π interactions to form a tri-periodic supramolecular framework. Some of the co-crystallizing water molecules as well as one of the metal-coordinating water molecules are disordered.
CCDC reference: 2448088
![[Scheme 3D1]](zl4083scheme3D1.gif)
![[Scheme 1]](zl4083scheme1.gif)
Structure description
A coordination polymer (CP) is a metal coordination compound with repeating coordination entities consisting of metal ions or clusters - the nodes - that are connected through coordinating ligands into an infinite solid-state assembly with different periodcities. Lanthanide–CPs (LnIII–CPs) in which the metal nodes are lanthanide ions are of interest as they combine the characteristics of CPs such as an often high chemical and thermal stability and a capability to be tailor-made to include functional groups with the lanthanide's unique properties based on their various coordination geometries and characteristic optical and magnetic properties (Li et al., 2015; Bünzli, 2014
). These merits can provide LnIII–CPs with fascinating structures and functions. Their well-known applications include catalysis (Zhang et al., 2021
), luminescent sensing (Wang et al., 2023
) and gas adsorption (Roy et al., 2014
), to name just a few. All LnIII ions have a high oxophilicity, so organic polycarboxylates are commonly employed as organic linkers in LnIII–CPs (Bünzli, 2014
). The high coordination numbers and flexible coordination geometries of LnIII, as well as a lack of directionality of Ln—O bonds do, however, make it difficult to predict the exact nature of the resultant polymeric framework, which is also greatly affected by the choice of solvent used during synthesis, which is often incorporated into the coordination polymer structure (Bünzli, 2014
; Patra & Pal, 2025
). Owing to their often labile nature, the solvent molecules tend to exhibit disorder, even though they can consolidate the framework structure by promoting intermolecular hydrogen-bonding interactions. The introduction of hydrogen-bond-promoting groups such as hydroxyl on an organic linker is therefore expected to support the framework structure of CPs by transfixing the solvent molecules. Chelidamic acid (H3CAM) containing an –OH group on a pyridyl ring was selected to be the organic linker to bind with praseodymium(III) (PrIII) in this work. Oxalic acid (H2ox) was also used as another small organic linker to help prevent the coordination of labile solvent molecules to the coordination sphere of PrIII and to provide the possibility of obtaining a new PrIII–CP structure with high dimensionality.
The i.e. [PrIII2(HCAM)(ox)2(H2O)4]·4.29H2O, is made up of two PrIII ions (Pr1 and Pr2), one complete HCAM2− dianion, two ox2− dianions, four metal-coordinating water molecules (two at each PrIII ion), and approximately four and a third co-crystallizing water molecules (Fig. 1a). One of the coordinating water molecules is disordered over two sites (O15A and O15B). Two of the four crystallizing water molecule are not disordered (O18 and O19), whilst O20 is hydrogen bonded to its own symmetry equivalent by inversion, inducing site disorder splitting to O20A and O20B, each of which exhibit 50% occupancy. The other co-crystallizing water molecules are extensively disordered and were refined over three partially occupied sites (O21A, O21B and O21C), which share a total site occupancy of 1.294 water molecules. The correlated disorder prevents their hydrogen atoms to be resolved.
![]() | Figure 1 A depiction of (a) an extended of title compound drawn using 50% probability ellipsoids, (b) TPRS-{PrIIINO8} building unit of Pr1, (c) SAPRS-{PrIIIO10} building unit of Pr2, (d) coordination mode adopted by HCAM2−, and (e) coordination mode adopted by ox2−. [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1]. |
The Pr1 and Pr2 ions show two different coordination environments. Pr1 has a nine-fold coordination environment defined by one pyridyl nitrogen atom of HCAM2− and eight oxygen atoms from one HCAM2−, two ox2−, and two coordinating water molecules, leading to the formation of a tricapped trigonal–prismatic building unit, i.e. TPRS-{PrIIINO8} (Fig. 1b). Pr2 is tenfold coordinated to oxygen atoms from two HCAM2−, two ox2−, and two coordinating water molecules, forming a bicapped square antiprism, i.e. SAPRS-{PrIIIO10} (Fig. 1
c). The Pr—O bond lengths are in the range of 2.478 (3)–2.550 (3) Å (Table 1
), which agrees well with those for other reported PrIII frameworks containing HCAM2− and ox2− (Chen et al., 2008
; Zou et al., 2009
, 2010
, 2011
; Zhao et al., 2009
). The HCAM2− linker has a μ2-κ2:κ1 chelating coordination mode via both carboxylate groups and the N-pyridyl donor, thus creating infinite chains made up from alternating and edge-sharing TPRS-{PrIIINO8} and SAPRS-{PrIIIO10} units that extend along [100]. The chains are connected to adjacent chains through bridging carboxylates of the ox2− linkers that adopt the common μ2-κ1:κ1:κ1:κ1 mode of coordination (Fig. 1
e) along the c-axis, resulting in sheets in the ac plane. Neighboring sheets are connected to one another through both hydrogen-bonding interactions involving the coordinating and crystallizing water molecules (Table 2
, Fig. 2
a) and intermolecular π–π interactions between the pyridyl rings of the HCAM2− ligands that protrude from the parallel sheets (Fig. 2
b), leading to formation of a tri-periodic supramolecular network. The π–π interactions are slightly offset from each other (Banerjee et al., 2019
; Yao et al., 2018
) and have a centroid-to-centroid distance of ca 3.90 Å, an offset distance of ca 2.35 Å, and are exactly parallel (Fig. 2
c). The interplanar stacking distance is 3.11 Å. The supramolecular architecture established by these stabilizing interactions has an interlayer distance between parallel sheets of ca 9.33 Å. Disregarding the co-crystallized not metal-coordinating water molecules, the total potential solvent area volume within the interlayer space is estimated to be ca 20% of the unit-cell volume, based on a calculation performed by PLATON software (Spek, 2020
).
|
|
![]() | Figure 2 Views of (a) hydrogen-bonding interactions in the of title compound (only hydrogen atoms involving the hydrogen bonding interactions are shown), (b) interlayer π–π interaction, and (c) displaced π–π stacking geometry. |
Synthesis and crystallization
All chemicals used in this work were obtained commercially and used without purification: Pr6O11 (TJTM, 99.99%), chelidamic acid (H3CAM; C7H5NO5, Macklin, 98%), oxalic acid (H2ox·2H2O; C2H2O4·2H2O, Fluka Chemika, ≥99%), nitric acid (HNO3, RCI Labscan, 65%). PrIII(NO3)3·6H2O was prepared by dissolving Pr6O11 in small amount of concentrated solution of nitric acid followed by slow crystallization.
To synthesize the title compound, a mixture of PrIII(NO3)3·6H2O (43.5 mg, 0.100 mmol), H3CAM (20.5 mg, 0.100 mmol) and oxalic acid (12.6 mg, 0.100 mmol) was prepared in 10.0 ml of deionized water. The mixture was then transferred to a Teflon lined autoclave and heated at 130°C for 5 d under autogenous pressure. After cooling down to room temperature, brown block-shaped crystals (34% yield based on PrIII) were obtained, collected and washed with deionized water. The crystals were characterized using FT–IR spectroscopy (PerkinElmer/Frontier FT–IR instrument; ATR mode; cm−1): 3675–2814(br), 1647(m), 1562(s), 1443(m), 1396(m), 1354(m), 1305(m), 1251(w), 1121(w), 1027(m), 750(m), 486(m).
Refinement
Crystal data, data collection and structure .
|
The oxygen atom of a coordinating water molecule (O15) shows site disorder splitting to two sites of O15A and O15B with site occupancies of 0.45 (4) and 0.55 (4), respectively. A SIMU command with an effective standard deviation of 0.01 Å2 was used to restrain O15A and O15B to have similar Uij components. An oxygen atom of a crystallizing water molecule (O20) is hydrogen bonded to its symmetry-equivalent counterpart which across a nearby inversion center (0.5 0 0.5), inducing disorder and splitting into two sites (O20A and O20B). As O20A and O20B are too close to be compatible with each other, one of them was moved across the inversion center. A SIMU (s = 0.01, st = 0.01, dmax = 3) together with a ISOR (s = 0.01, st = 0.02) command were applied to O20A and O20B to restrain their Uij components to approximate isotropic behavior. The region where O21A, O21B and O21C of water molecules of crystallization were placed originally contained several large electron densities, with O21B being in hydrogen-bonding distance to its own counterpart by inversion. The large number of permutations prevented an exact disorder modeling or placement of hydrogen atoms. However, the total number of site occupancies in this region was estimated to be about one and a third (1.294). A SIMU (s = 0.01, st = 0.02, dmax = 2) command was applied to O21A, O21B and O21C to restrain to have similar Uij components.
The carbon-bound hydrogen atoms were positioned geometrically and refined isotropically using a riding model (AFIX 43). The C—H bond lengths in the pyridyl ring of HCAM2− were constrained to 0.93 Å [Uiso(H) = 1.2Uiso(C)]. A hydrogen atom of an –OH group of HCAM2− was positioned geometrically and refined isotropically with allowing a rotation with a tetrahedral C—O—H angle (AFIX 147) to best fit the experimental electron density. The O—H bond length of this –OH group was set to be 0.82 Å [Uiso(H) = 1.5Uiso(O)]. The hydrogen atoms of water molecules (both coordinating and crystallizing water) were refined isotropically, and the O—H bond lengths and H⋯H distances were restrained to 0.84 (2) Å and 1.36 (2) Å, respectively, [Uiso(H) = 1.5Uiso(O)]. There were some hydrogen atoms of water molecules that were additionally restrained based on hydrogen-bonding considerations, i.e. H19B⋯O9 and H20A⋯O20B distances were restrained to 2.15 (2) Å, and the H15A⋯O21A distance was restrained to 2.25 (2) Å. The hydrogen atoms of O20A and O20B were initially refined in the same manner while a damping factor was applied. In the final cycles, the damping factor was removed and the hydrogen atoms were constrained to ride on their carrying oxygen atoms (AFIX 3).
Structural data
CCDC reference: 2448088
https://doi.org/10.1107/S2414314625004560/zl4083sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314625004560/zl4083Isup2.hkl
[Pr2(C7H3NO5)(C2O4)2(H2O)4]·4.29H2O | Z = 2 |
Mr = 785.78 | F(000) = 757 |
Triclinic, P1 | Dx = 2.333 Mg m−3 |
a = 9.9236 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.3042 (4) Å | Cell parameters from 11399 reflections |
c = 12.9748 (5) Å | θ = 2.3–27.2° |
α = 66.684 (4)° | µ = 4.41 mm−1 |
β = 80.942 (3)° | T = 298 K |
γ = 66.660 (3)° | Block, clear brownish colourless |
V = 1118.69 (8) Å3 | 0.2 × 0.2 × 0.1 mm |
SuperNova, Single source at offset/far, HyPix3000 diffractometer | 4715 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 3799 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.088 |
ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −12→12 |
Tmin = 0.768, Tmax = 1.000 | k = −12→12 |
18710 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: mixed |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0364P)2] where P = (Fo2 + 2Fc2)/3 |
4715 reflections | (Δ/σ)max < 0.001 |
399 parameters | Δρmax = 1.47 e Å−3 |
71 restraints | Δρmin = −1.78 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pr1 | 0.23196 (2) | 0.77685 (3) | 0.25657 (2) | 0.01644 (9) | |
Pr2 | 0.23512 (2) | 0.29264 (3) | 0.76177 (2) | 0.01623 (9) | |
O1 | 0.0556 (3) | 0.6667 (3) | 0.2380 (3) | 0.0213 (7) | |
O2 | −0.0132 (3) | 0.5827 (4) | 0.1307 (3) | 0.0307 (8) | |
O3 | 0.5023 (3) | 0.6898 (3) | 0.2099 (3) | 0.0216 (7) | |
O4 | 0.7077 (3) | 0.5102 (4) | 0.1918 (3) | 0.0289 (8) | |
O5 | 0.4995 (3) | 0.2189 (4) | 0.0567 (3) | 0.0259 (8) | |
H5 | 0.433892 | 0.212745 | 0.029681 | 0.039* | |
O6 | 0.3619 (3) | 0.5268 (4) | 0.4061 (3) | 0.0304 (8) | |
O7 | 0.3719 (3) | 0.3733 (4) | 0.5863 (3) | 0.0252 (8) | |
O8 | 0.0950 (3) | 0.7142 (3) | 0.4408 (3) | 0.0256 (8) | |
O9 | 0.0969 (3) | 0.5504 (4) | 0.6168 (3) | 0.0275 (8) | |
O10 | 0.1736 (3) | 0.8820 (3) | 0.0496 (2) | 0.0213 (7) | |
O11 | 0.1805 (3) | 1.0576 (3) | −0.1203 (2) | 0.0216 (7) | |
O12 | 0.2910 (3) | 1.0092 (3) | 0.1385 (3) | 0.0242 (7) | |
O13 | 0.3127 (3) | 1.1706 (3) | −0.0329 (2) | 0.0234 (7) | |
O14 | −0.0079 (4) | 0.9973 (4) | 0.2305 (3) | 0.0302 (8) | |
H14A | −0.066 (5) | 0.983 (6) | 0.201 (4) | 0.045* | |
H14B | −0.016 (5) | 1.088 (3) | 0.200 (4) | 0.045* | |
O15A | 0.298 (3) | 0.894 (3) | 0.3700 (17) | 0.028 (4) | 0.45 (4) |
H15A | 0.234 (5) | 0.956 (5) | 0.395 (3) | 0.043* | 0.45 (4) |
H15B | 0.369 (8) | 0.842 (8) | 0.415 (8) | 0.043* | 0.45 (4) |
O15B | 0.342 (2) | 0.828 (3) | 0.3904 (16) | 0.042 (4) | 0.55 (4) |
H15C | 0.293 (5) | 0.859 (12) | 0.440 (6) | 0.064* | 0.55 (4) |
H15D | 0.427 (5) | 0.767 (8) | 0.420 (6) | 0.064* | 0.55 (4) |
O16 | 0.1824 (4) | 0.2134 (5) | 0.6187 (3) | 0.0400 (10) | |
H16A | 0.094 (3) | 0.236 (6) | 0.601 (4) | 0.060* | |
H16B | 0.233 (5) | 0.209 (7) | 0.562 (3) | 0.060* | |
O17 | 0.4416 (3) | 0.0634 (4) | 0.7485 (3) | 0.0304 (9) | |
H17A | 0.522 (3) | 0.073 (5) | 0.736 (4) | 0.046* | |
H17B | 0.454 (5) | −0.020 (3) | 0.800 (3) | 0.046* | |
O18 | −0.0349 (5) | 1.2962 (5) | 0.1190 (4) | 0.0638 (13) | |
H18A | −0.109 (5) | 1.355 (6) | 0.143 (5) | 0.096* | |
H18B | −0.017 (7) | 1.350 (6) | 0.053 (3) | 0.096* | |
O19 | −0.1396 (7) | 0.7992 (7) | 0.6626 (6) | 0.106 (2) | |
H19A | −0.150 (8) | 0.811 (12) | 0.724 (5) | 0.159* | |
H19B | −0.055 (4) | 0.743 (7) | 0.655 (8) | 0.159* | |
O20A | 0.599 (3) | −0.1133 (16) | 0.544 (2) | 0.126 (6) | 0.5 |
H20A | 0.516875 | −0.037798 | 0.542562 | 0.189* | 0.5 |
H20B | 0.661995 | −0.098201 | 0.570062 | 0.189* | 0.5 |
O20B | 0.389 (3) | 0.1898 (16) | 0.4318 (19) | 0.112 (5) | 0.5 |
H20C | 0.299245 | 0.227002 | 0.411383 | 0.168* | 0.5 |
H20D | 0.402974 | 0.255335 | 0.447541 | 0.168* | 0.5 |
O21A | 0.1227 (19) | 0.9358 (19) | 0.5629 (13) | 0.131 (6) | 0.488 (17) |
O21C | 0.214 (3) | 0.838 (3) | 0.608 (2) | 0.108 (6) | 0.253 (13) |
O21B | 0.3984 (11) | 0.7322 (11) | 0.5831 (8) | 0.097 (5) | 0.553 (15) |
N1 | 0.3350 (4) | 0.5635 (4) | 0.1792 (3) | 0.0188 (8) | |
C1 | 0.0848 (5) | 0.5939 (5) | 0.1735 (4) | 0.0228 (11) | |
C2 | 0.2449 (4) | 0.5154 (5) | 0.1506 (4) | 0.0171 (10) | |
C3 | 0.2935 (5) | 0.4015 (5) | 0.1089 (4) | 0.0218 (10) | |
H3 | 0.226867 | 0.373002 | 0.088373 | 0.026* | |
C4 | 0.4425 (5) | 0.3294 (5) | 0.0978 (4) | 0.0194 (10) | |
C5 | 0.5398 (5) | 0.3766 (5) | 0.1287 (4) | 0.0237 (11) | |
H5A | 0.640885 | 0.328970 | 0.123911 | 0.028* | |
C6 | 0.4805 (4) | 0.4958 (5) | 0.1664 (4) | 0.0181 (10) | |
C7 | 0.5711 (5) | 0.5680 (5) | 0.1928 (4) | 0.0193 (10) | |
C9 | 0.1529 (5) | 0.5941 (5) | 0.5226 (4) | 0.0193 (10) | |
C8 | 0.3103 (5) | 0.4884 (5) | 0.5036 (4) | 0.0202 (10) | |
C11 | 0.2745 (5) | 1.0625 (5) | 0.0363 (4) | 0.0195 (10) | |
C10 | 0.2019 (5) | 0.9932 (5) | −0.0159 (4) | 0.0177 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pr1 | 0.01715 (16) | 0.01723 (16) | 0.01250 (17) | −0.00734 (12) | 0.00045 (11) | −0.00222 (12) |
Pr2 | 0.01536 (16) | 0.01812 (15) | 0.01234 (16) | −0.00743 (12) | 0.00053 (11) | −0.00168 (12) |
O1 | 0.0189 (16) | 0.0243 (18) | 0.0231 (19) | −0.0089 (14) | 0.0049 (13) | −0.0122 (15) |
O2 | 0.0163 (17) | 0.043 (2) | 0.045 (2) | −0.0117 (16) | 0.0039 (15) | −0.0283 (18) |
O3 | 0.0233 (18) | 0.0244 (18) | 0.0215 (19) | −0.0128 (15) | 0.0024 (14) | −0.0097 (15) |
O4 | 0.0166 (18) | 0.032 (2) | 0.042 (2) | −0.0098 (15) | 0.0002 (15) | −0.0170 (18) |
O5 | 0.0178 (17) | 0.0267 (18) | 0.038 (2) | −0.0046 (15) | −0.0057 (15) | −0.0177 (16) |
O6 | 0.0258 (19) | 0.034 (2) | 0.0159 (19) | −0.0058 (16) | 0.0034 (14) | −0.0006 (16) |
O7 | 0.0206 (17) | 0.0287 (19) | 0.0137 (18) | −0.0078 (15) | −0.0005 (13) | 0.0034 (15) |
O8 | 0.0241 (18) | 0.0224 (18) | 0.0198 (19) | −0.0068 (15) | 0.0003 (14) | 0.0008 (15) |
O9 | 0.0251 (18) | 0.033 (2) | 0.0153 (19) | −0.0090 (15) | 0.0067 (14) | −0.0035 (15) |
O10 | 0.0301 (18) | 0.0207 (17) | 0.0138 (18) | −0.0158 (15) | −0.0012 (13) | −0.0001 (14) |
O11 | 0.0257 (18) | 0.0258 (18) | 0.0132 (18) | −0.0136 (15) | −0.0039 (13) | −0.0016 (14) |
O12 | 0.0335 (19) | 0.0266 (18) | 0.0133 (19) | −0.0168 (15) | −0.0052 (14) | −0.0004 (15) |
O13 | 0.0284 (18) | 0.0259 (18) | 0.0181 (19) | −0.0177 (15) | −0.0024 (14) | −0.0017 (15) |
O14 | 0.027 (2) | 0.0250 (19) | 0.040 (2) | −0.0093 (16) | −0.0066 (16) | −0.0112 (18) |
O15A | 0.029 (9) | 0.042 (9) | 0.023 (7) | −0.012 (7) | 0.004 (5) | −0.023 (7) |
O15B | 0.028 (7) | 0.060 (11) | 0.046 (7) | −0.016 (7) | 0.000 (5) | −0.027 (8) |
O16 | 0.026 (2) | 0.069 (3) | 0.039 (3) | −0.019 (2) | 0.0060 (18) | −0.034 (2) |
O17 | 0.0188 (18) | 0.0220 (19) | 0.041 (2) | −0.0083 (15) | 0.0046 (16) | −0.0036 (16) |
O18 | 0.075 (4) | 0.036 (3) | 0.070 (4) | −0.012 (2) | 0.003 (3) | −0.019 (2) |
O19 | 0.098 (4) | 0.087 (4) | 0.116 (5) | −0.008 (4) | 0.010 (4) | −0.049 (4) |
O20A | 0.125 (7) | 0.110 (13) | 0.150 (10) | −0.017 (11) | −0.032 (7) | −0.069 (11) |
O20B | 0.124 (7) | 0.097 (12) | 0.131 (10) | −0.017 (10) | −0.027 (7) | −0.071 (11) |
O21A | 0.160 (12) | 0.094 (10) | 0.119 (10) | −0.013 (8) | −0.012 (8) | −0.048 (8) |
O21C | 0.145 (11) | 0.082 (9) | 0.089 (9) | −0.011 (8) | −0.020 (8) | −0.047 (8) |
O21B | 0.115 (8) | 0.081 (7) | 0.063 (7) | −0.006 (6) | −0.017 (5) | −0.019 (5) |
N1 | 0.015 (2) | 0.021 (2) | 0.019 (2) | −0.0091 (17) | 0.0012 (16) | −0.0049 (17) |
C1 | 0.019 (3) | 0.018 (2) | 0.029 (3) | −0.009 (2) | 0.001 (2) | −0.004 (2) |
C2 | 0.014 (2) | 0.023 (2) | 0.014 (2) | −0.0065 (19) | −0.0006 (18) | −0.007 (2) |
C3 | 0.023 (3) | 0.028 (3) | 0.022 (3) | −0.014 (2) | −0.001 (2) | −0.011 (2) |
C4 | 0.024 (3) | 0.014 (2) | 0.017 (3) | −0.007 (2) | −0.0011 (19) | −0.002 (2) |
C5 | 0.015 (2) | 0.026 (3) | 0.027 (3) | −0.005 (2) | −0.005 (2) | −0.007 (2) |
C6 | 0.018 (2) | 0.017 (2) | 0.018 (3) | −0.0061 (19) | −0.0011 (19) | −0.005 (2) |
C7 | 0.018 (3) | 0.023 (3) | 0.016 (3) | −0.011 (2) | −0.0003 (19) | −0.002 (2) |
C9 | 0.016 (2) | 0.023 (3) | 0.017 (3) | −0.006 (2) | 0.0000 (19) | −0.007 (2) |
C8 | 0.016 (2) | 0.024 (3) | 0.020 (3) | −0.008 (2) | 0.001 (2) | −0.007 (2) |
C11 | 0.015 (2) | 0.023 (3) | 0.019 (3) | −0.008 (2) | −0.0031 (19) | −0.004 (2) |
C10 | 0.015 (2) | 0.020 (2) | 0.019 (3) | −0.0051 (19) | −0.0039 (18) | −0.007 (2) |
Pr1—O1 | 2.517 (3) | O11—C10 | 1.260 (5) |
Pr1—O3 | 2.526 (3) | O12—C11 | 1.227 (5) |
Pr1—O6 | 2.503 (3) | O13—C11 | 1.275 (5) |
Pr1—O8 | 2.535 (3) | O14—H14A | 0.821 (19) |
Pr1—O10 | 2.532 (3) | O14—H14B | 0.832 (19) |
Pr1—O12 | 2.520 (3) | O15A—H15A | 0.830 (19) |
Pr1—O14 | 2.510 (3) | O15A—H15B | 0.84 (2) |
Pr1—O15A | 2.523 (16) | O15B—H15C | 0.84 (2) |
Pr1—O15B | 2.501 (16) | O15B—H15D | 0.86 (2) |
Pr1—N1 | 2.555 (4) | O16—H16A | 0.856 (19) |
Pr2—O1i | 2.746 (3) | O16—H16B | 0.826 (19) |
Pr2—O2i | 2.580 (3) | O17—H17A | 0.826 (18) |
Pr2—O3ii | 2.772 (3) | O17—H17B | 0.832 (19) |
Pr2—O4ii | 2.608 (3) | O18—H18A | 0.85 (2) |
Pr2—O7 | 2.478 (3) | O18—H18B | 0.85 (2) |
Pr2—O9 | 2.538 (3) | O19—H19A | 0.83 (2) |
Pr2—O11iii | 2.519 (3) | O19—H19B | 0.831 (19) |
Pr2—O13iii | 2.550 (3) | O20A—H20A | 0.8688 |
Pr2—O16 | 2.496 (4) | O20A—H20B | 0.8471 |
Pr2—O17 | 2.487 (3) | O20B—H20C | 0.8540 |
Pr2—C1i | 3.025 (4) | O20B—H20D | 0.8435 |
Pr2—C7ii | 3.054 (4) | N1—C2 | 1.336 (5) |
O1—C1 | 1.263 (5) | N1—C6 | 1.348 (5) |
O2—C1 | 1.256 (5) | C1—C2 | 1.513 (6) |
O3—C7 | 1.259 (5) | C2—C3 | 1.370 (6) |
O4—C7 | 1.247 (5) | C3—H3 | 0.9300 |
O5—H5 | 0.8200 | C3—C4 | 1.381 (6) |
O5—C4 | 1.333 (5) | C4—C5 | 1.407 (6) |
O6—C8 | 1.256 (5) | C5—H5A | 0.9300 |
O7—C8 | 1.248 (5) | C5—C6 | 1.381 (6) |
O8—C9 | 1.256 (5) | C6—C7 | 1.519 (6) |
O9—C9 | 1.247 (5) | C9—C8 | 1.559 (7) |
O10—C10 | 1.235 (5) | C11—C10 | 1.559 (6) |
O1—Pr1—O3 | 125.52 (9) | O16—Pr2—O9 | 79.58 (12) |
O1—Pr1—O8 | 71.98 (10) | O16—Pr2—O11iii | 77.00 (11) |
O1—Pr1—O10 | 73.53 (9) | O16—Pr2—O13iii | 137.51 (12) |
O1—Pr1—O12 | 134.40 (10) | O16—Pr2—C1i | 92.58 (12) |
O1—Pr1—O15A | 144.9 (4) | O16—Pr2—C7ii | 142.54 (11) |
O1—Pr1—N1 | 63.08 (10) | O17—Pr2—O1i | 123.96 (10) |
O3—Pr1—O8 | 131.86 (10) | O17—Pr2—O2i | 150.18 (10) |
O3—Pr1—O10 | 89.35 (9) | O17—Pr2—O3ii | 70.95 (10) |
O3—Pr1—N1 | 62.46 (10) | O17—Pr2—O4ii | 119.01 (10) |
O6—Pr1—O1 | 88.21 (10) | O17—Pr2—O9 | 133.08 (10) |
O6—Pr1—O3 | 71.33 (10) | O17—Pr2—O11iii | 70.13 (10) |
O6—Pr1—O8 | 64.40 (10) | O17—Pr2—O13iii | 82.94 (11) |
O6—Pr1—O10 | 138.63 (11) | O17—Pr2—O16 | 69.13 (12) |
O6—Pr1—O12 | 135.43 (9) | O17—Pr2—C1i | 142.91 (10) |
O6—Pr1—O14 | 138.35 (11) | O17—Pr2—C7ii | 95.28 (11) |
O6—Pr1—O15A | 85.8 (7) | C1i—Pr2—C7ii | 116.61 (12) |
O6—Pr1—N1 | 68.80 (11) | Pr1—O1—Pr2i | 144.80 (13) |
O8—Pr1—N1 | 114.36 (10) | C1—O1—Pr1 | 120.3 (3) |
O10—Pr1—O8 | 137.05 (9) | C1—O1—Pr2i | 90.1 (2) |
O10—Pr1—N1 | 69.83 (10) | C1—O2—Pr2i | 98.1 (3) |
O12—Pr1—O3 | 72.10 (10) | Pr1—O3—Pr2ii | 143.18 (13) |
O12—Pr1—O8 | 131.56 (10) | C7—O3—Pr1 | 123.1 (3) |
O12—Pr1—O10 | 64.34 (9) | C7—O3—Pr2ii | 90.4 (2) |
O12—Pr1—O15A | 66.4 (5) | C7—O4—Pr2ii | 98.6 (3) |
O12—Pr1—N1 | 114.05 (10) | C4—O5—H5 | 109.5 |
O14—Pr1—O1 | 78.28 (10) | C8—O6—Pr1 | 121.4 (3) |
O14—Pr1—O3 | 146.68 (10) | C8—O7—Pr2 | 121.3 (3) |
O14—Pr1—O8 | 73.95 (10) | C9—O8—Pr1 | 120.6 (3) |
O14—Pr1—O10 | 74.65 (11) | C9—O9—Pr2 | 119.4 (3) |
O14—Pr1—O12 | 74.62 (10) | C10—O10—Pr1 | 120.7 (3) |
O14—Pr1—O15A | 83.6 (6) | C10—O11—Pr2iv | 123.2 (3) |
O14—Pr1—N1 | 133.09 (11) | C11—O12—Pr1 | 120.1 (3) |
O15A—Pr1—O3 | 84.8 (5) | C11—O13—Pr2iv | 121.0 (3) |
O15A—Pr1—O8 | 74.3 (4) | Pr1—O14—H14A | 108 (4) |
O15A—Pr1—O10 | 129.7 (6) | Pr1—O14—H14B | 124 (3) |
O15A—Pr1—N1 | 143.2 (6) | H14A—O14—H14B | 110 (5) |
O15B—Pr1—O1 | 144.6 (4) | Pr1—O15A—H15A | 122 (3) |
O15B—Pr1—O3 | 76.7 (5) | Pr1—O15A—H15B | 121 (3) |
O15B—Pr1—O6 | 72.4 (7) | H15A—O15A—H15B | 109 (3) |
O15B—Pr1—O8 | 72.9 (4) | Pr1—O15B—H15C | 123 (3) |
O15B—Pr1—O10 | 139.4 (5) | Pr1—O15B—H15D | 121 (3) |
O15B—Pr1—O12 | 75.1 (6) | H15C—O15B—H15D | 105 (3) |
O15B—Pr1—O14 | 96.5 (6) | Pr2—O16—H16A | 121 (3) |
O15B—Pr1—N1 | 130.4 (6) | Pr2—O16—H16B | 124 (3) |
O1i—Pr2—O3ii | 164.06 (9) | H16A—O16—H16B | 107 (6) |
O1i—Pr2—C1i | 24.67 (10) | Pr2—O17—H17A | 114 (4) |
O1i—Pr2—C7ii | 140.12 (11) | Pr2—O17—H17B | 119 (3) |
O2i—Pr2—O1i | 48.86 (9) | H17A—O17—H17B | 107 (3) |
O2i—Pr2—O3ii | 115.62 (9) | H18A—O18—H18B | 106 (3) |
O2i—Pr2—O4ii | 72.16 (9) | H19A—O19—H19B | 112 (4) |
O2i—Pr2—C1i | 24.28 (11) | H20A—O20A—H20B | 105.4 |
O2i—Pr2—C7ii | 93.86 (11) | H20C—O20B—H20D | 107.1 |
O3ii—Pr2—C1i | 139.57 (11) | C2—N1—Pr1 | 120.4 (3) |
O3ii—Pr2—C7ii | 24.35 (10) | C2—N1—C6 | 118.0 (4) |
O4ii—Pr2—O1i | 116.38 (9) | C6—N1—Pr1 | 121.6 (3) |
O4ii—Pr2—O3ii | 48.16 (9) | O1—C1—Pr2i | 65.2 (2) |
O4ii—Pr2—C1i | 93.52 (11) | O1—C1—C2 | 117.6 (4) |
O4ii—Pr2—C7ii | 23.81 (11) | O2—C1—Pr2i | 57.6 (2) |
O7—Pr2—O1i | 122.36 (9) | O2—C1—O1 | 122.4 (4) |
O7—Pr2—O2i | 137.91 (11) | O2—C1—C2 | 120.0 (4) |
O7—Pr2—O3ii | 64.97 (9) | C2—C1—Pr2i | 172.1 (3) |
O7—Pr2—O4ii | 84.16 (10) | N1—C2—C1 | 113.6 (4) |
O7—Pr2—O9 | 64.76 (10) | N1—C2—C3 | 123.1 (4) |
O7—Pr2—O11iii | 136.21 (10) | C3—C2—C1 | 123.2 (4) |
O7—Pr2—O13iii | 131.51 (9) | C2—C3—H3 | 120.4 |
O7—Pr2—O16 | 69.72 (11) | C2—C3—C4 | 119.2 (4) |
O7—Pr2—O17 | 71.87 (10) | C4—C3—H3 | 120.4 |
O7—Pr2—C1i | 133.16 (11) | O5—C4—C3 | 123.3 (4) |
O7—Pr2—C7ii | 73.09 (11) | O5—C4—C5 | 117.9 (4) |
O9—Pr2—O1i | 70.34 (9) | C3—C4—C5 | 118.8 (4) |
O9—Pr2—O2i | 75.37 (10) | C4—C5—H5A | 121.1 |
O9—Pr2—O3ii | 104.33 (9) | C6—C5—C4 | 117.9 (4) |
O9—Pr2—O4ii | 74.22 (10) | C6—C5—H5A | 121.1 |
O9—Pr2—O13iii | 140.30 (10) | N1—C6—C5 | 123.0 (4) |
O9—Pr2—C1i | 69.61 (11) | N1—C6—C7 | 113.3 (4) |
O9—Pr2—C7ii | 88.79 (11) | C5—C6—C7 | 123.7 (4) |
O11iii—Pr2—O1i | 66.23 (9) | O3—C7—Pr2ii | 65.2 (2) |
O11iii—Pr2—O2i | 82.52 (10) | O3—C7—C6 | 117.1 (4) |
O11iii—Pr2—O3ii | 119.82 (9) | O4—C7—Pr2ii | 57.6 (2) |
O11iii—Pr2—O4ii | 133.81 (10) | O4—C7—O3 | 122.8 (4) |
O11iii—Pr2—O9 | 135.73 (9) | O4—C7—C6 | 120.0 (4) |
O11iii—Pr2—O13iii | 63.37 (9) | C6—C7—Pr2ii | 177.2 (3) |
O11iii—Pr2—C1i | 74.49 (10) | O8—C9—C8 | 116.4 (4) |
O11iii—Pr2—C7ii | 131.07 (11) | O9—C9—O8 | 126.7 (4) |
O13iii—Pr2—O1i | 106.12 (9) | O9—C9—C8 | 116.9 (4) |
O13iii—Pr2—O2i | 74.10 (10) | O6—C8—C9 | 116.7 (4) |
O13iii—Pr2—O3ii | 67.88 (9) | O7—C8—O6 | 126.5 (4) |
O13iii—Pr2—O4ii | 72.69 (10) | O7—C8—C9 | 116.8 (4) |
O13iii—Pr2—C1i | 91.14 (12) | O12—C11—O13 | 125.7 (4) |
O13iii—Pr2—C7ii | 68.71 (10) | O12—C11—C10 | 118.3 (4) |
O16—Pr2—O1i | 68.24 (10) | O13—C11—C10 | 115.9 (4) |
O16—Pr2—O2i | 116.84 (10) | O10—C10—O11 | 128.1 (4) |
O16—Pr2—O3ii | 126.51 (10) | O10—C10—C11 | 116.3 (4) |
O16—Pr2—O4ii | 149.02 (12) | O11—C10—C11 | 115.6 (4) |
Pr1—O1—C1—Pr2i | −161.4 (3) | Pr2iv—O11—C10—C11 | −3.7 (5) |
Pr1—O1—C1—O2 | −154.6 (3) | Pr2iv—O13—C11—O12 | −170.6 (4) |
Pr1—O1—C1—C2 | 26.9 (5) | Pr2iv—O13—C11—C10 | 9.8 (5) |
Pr1—O3—C7—Pr2ii | −163.8 (3) | O1—C1—C2—N1 | −15.8 (6) |
Pr1—O3—C7—O4 | −165.4 (3) | O1—C1—C2—C3 | 161.7 (4) |
Pr1—O3—C7—C6 | 17.9 (5) | O2—C1—C2—N1 | 165.7 (4) |
Pr1—O6—C8—O7 | −173.3 (3) | O2—C1—C2—C3 | −16.9 (6) |
Pr1—O6—C8—C9 | 7.5 (5) | O5—C4—C5—C6 | 177.0 (4) |
Pr1—O8—C9—O9 | −179.6 (3) | O8—C9—C8—O6 | −4.7 (6) |
Pr1—O8—C9—C8 | −0.3 (5) | O8—C9—C8—O7 | 176.0 (4) |
Pr1—O10—C10—O11 | 179.5 (3) | O9—C9—C8—O6 | 174.6 (4) |
Pr1—O10—C10—C11 | 0.1 (5) | O9—C9—C8—O7 | −4.6 (6) |
Pr1—O12—C11—O13 | −173.4 (3) | O12—C11—C10—O10 | −4.2 (7) |
Pr1—O12—C11—C10 | 6.1 (6) | O12—C11—C10—O11 | 176.3 (4) |
Pr1—N1—C2—C1 | −2.4 (5) | O13—C11—C10—O10 | 175.3 (4) |
Pr1—N1—C2—C3 | −179.9 (3) | O13—C11—C10—O11 | −4.1 (6) |
Pr1—N1—C6—C5 | 177.6 (3) | N1—C2—C3—C4 | 1.5 (7) |
Pr1—N1—C6—C7 | −4.8 (5) | N1—C6—C7—O3 | −8.1 (6) |
Pr2i—O1—C1—O2 | 6.8 (4) | N1—C6—C7—O4 | 175.1 (4) |
Pr2i—O1—C1—C2 | −171.7 (3) | C1—C2—C3—C4 | −175.7 (4) |
Pr2i—O2—C1—O1 | −7.3 (5) | C2—N1—C6—C5 | −2.1 (6) |
Pr2i—O2—C1—C2 | 171.2 (3) | C2—N1—C6—C7 | 175.5 (4) |
Pr2ii—O3—C7—O4 | −1.6 (4) | C2—C3—C4—O5 | −179.1 (4) |
Pr2ii—O3—C7—C6 | −178.3 (3) | C2—C3—C4—C5 | −0.6 (6) |
Pr2ii—O4—C7—O3 | 1.7 (5) | C3—C4—C5—C6 | −1.5 (6) |
Pr2ii—O4—C7—C6 | 178.3 (3) | C4—C5—C6—N1 | 3.0 (7) |
Pr2—O7—C8—O6 | −168.6 (3) | C4—C5—C6—C7 | −174.4 (4) |
Pr2—O7—C8—C9 | 10.6 (5) | C5—C6—C7—O3 | 169.5 (4) |
Pr2—O9—C9—O8 | 175.9 (3) | C5—C6—C7—O4 | −7.3 (7) |
Pr2—O9—C9—C8 | −3.3 (5) | C6—N1—C2—C1 | 177.3 (4) |
Pr2iv—O11—C10—O10 | 176.9 (3) | C6—N1—C2—C3 | −0.2 (6) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z+1; (iv) x, y+1, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O13v | 0.82 | 1.81 | 2.626 (4) | 170 |
O14—H14A···O11vi | 0.82 (2) | 1.92 (2) | 2.735 (4) | 173 (5) |
O14—H14B···O18 | 0.83 (2) | 1.93 (2) | 2.755 (5) | 175 (5) |
O15A—H15A···O19vii | 0.83 (2) | 2.16 (4) | 2.81 (3) | 135 (3) |
O15A—H15A···O21A | 0.83 (2) | 2.26 (2) | 2.89 (2) | 134 (4) |
O15A—H15B···O21B | 0.84 (2) | 2.02 (9) | 2.71 (3) | 138 (11) |
O15B—H15C···O21C | 0.84 (2) | 2.15 (6) | 2.93 (3) | 155 (10) |
O15B—H15D···O7ii | 0.86 (2) | 1.96 (4) | 2.75 (2) | 152 (5) |
O16—H16A···O8i | 0.86 (2) | 1.85 (2) | 2.705 (4) | 179 (5) |
O16—H16B···O20Aviii | 0.83 (2) | 2.17 (4) | 2.96 (3) | 159 (6) |
O16—H16B···O20B | 0.83 (2) | 2.12 (3) | 2.94 (2) | 172 (5) |
O17—H17A···O12ii | 0.83 (2) | 2.33 (4) | 2.922 (4) | 129 (4) |
O17—H17A···O15Aii | 0.83 (2) | 2.13 (3) | 2.892 (19) | 153 (5) |
O17—H17A···O15Bii | 0.83 (2) | 2.15 (3) | 2.865 (18) | 144 (4) |
O17—H17B···O5viii | 0.83 (2) | 2.09 (2) | 2.914 (4) | 171 (5) |
O18—H18A···O4ix | 0.85 (2) | 2.10 (2) | 2.951 (6) | 177 (6) |
O18—H18B···O2vi | 0.85 (2) | 2.21 (3) | 3.011 (6) | 156 (7) |
O19—H19A···O18vii | 0.83 (2) | 2.56 (7) | 3.161 (8) | 130 (7) |
O19—H19B···O9 | 0.83 (2) | 2.15 (2) | 2.904 (7) | 151 (5) |
O20A—H20A···O20B | 0.87 | 2.17 | 2.901 (14) | 141 |
O20A—H20B···O19x | 0.85 | 2.13 | 2.87 (3) | 146 |
O20B—H20C···O19i | 0.85 | 2.13 | 2.87 (2) | 145 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (v) x, y−1, z; (vi) −x, −y+2, −z; (vii) −x, −y+2, −z+1; (viii) −x+1, −y, −z+1; (ix) x−1, y+1, z; (x) x+1, y−1, z. |
Acknowledgements
AK is thankful to Chiang Mai University for a Presidential Scholarship. TC thanks Chiang Mai University for the support under the Proactive Researcher Scheme.
Funding information
Funding for this research was provided by: the National Research Council of Thailand (NRCT) and Chiang Mai University (Contract Number N42A670317), (award to A. Rujiwatra).
References
Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252. Web of Science CrossRef CAS Google Scholar
Bünzli, J. G. (2014). J. Coord. Chem. 67, 3706–3733. Google Scholar
Chen, Z., Fang, M., Ren, P., Li, X., Zhao, B., Wei, S. & Cheng, P. (2008). Z. Anorg. Allg. Chem. 634, 382–386. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Li, B., Wen, H.-M., Cui, Y., Qian, G. & Chen, B. (2015). Prog. Polym. Sci. 48, 40–84. Web of Science CrossRef Google Scholar
Patra, K. & Pal, H. (2025). RSC Sustainability 3, 629–660. CrossRef CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Roy, S., Chakraborty, A. & Maji, T. K. (2014). Coord. Chem. Rev. 273–274, 139–164. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Wang, X., Jiang, Y., Tissot, A. & Serre, C. (2023). Coord. Chem. Rev. 497, 215454. CrossRef Google Scholar
Yao, Z., Wang, J. & Pei, J. (2018). Cryst. Growth Des. 18, 7–15. CrossRef CAS Google Scholar
Zhang, Y., Liu, S., Zhao, Z.-S., Wang, Z., Zhang, R., Liu, L. & Han, Z.-B. (2021). Inorg. Chem. Front. 8, 590–619. CrossRef CAS Google Scholar
Zhao, X., Zhao, B., Wei, S. & Cheng, P. (2009). Inorg. Chem. 48, 11048–11057. CrossRef PubMed CAS Google Scholar
Zou, J., Chen, M., Li, M., Xing, Q., Zhang, A. & Peng, Q. (2010). J. Coord. Chem. 63, 3576–3588. CrossRef CAS Google Scholar
Zou, J., Chen, M., Zhang, L., Xing, Q. & Xiong, Z. (2011). J. Chem. Crystallogr. 41, 1820–1833. CrossRef CAS Google Scholar
Zou, J., Wen, Z., Peng, Q., Zeng, G., Xing, Q. & Chen, M. (2009). J. Coord. Chem. 62, 3324–3331. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.