metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-4-ferrocenyl-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile monohydrate

crossmark logo

aSchool of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville, Durban, 4000, South Africa, and bMultimedia University of Kenya, PO Box 15653-00503, Nairobi, Kenya
*Correspondence e-mail: 224171425@stu.ukzn.ac.za

Edited by M. Zeller, Purdue University, USA (Received 9 May 2025; accepted 24 May 2025; online 30 May 2025)

In the title hydrate, [Fe(C5H5)(C15H13N2O2)]·H2O, the pendent ferrocenyl substituent is significantly rotated against the chromene backbone, with a torsion angle of 56.8 (2)°. Rotational disorder is observed in one of the Cp rings of the ferrocenyl substituents. The crystal packing is consolidated by a network of O—H⋯N, O—H⋯O, N—H⋯O and N—H⋯π hydrogen bonds, prominently involving a solvent water mol­ecule. The water mol­ecule functions as both a hydrogen-bond donor and acceptor, bridging adjacent mol­ecules, leading to the formation of a layer with a distinctive hydrogen-bonded motif propagating parallel to the bc plane

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recent pharmacological investigations have highlighted 2-amino-4H-pyran carbo­nitrile derivatives as promising anti­cancer agents, driven by their unique mol­ecular architecture and versatility (Mansouri et al., 2011[Mansouri, K., Khodarahmi, R., Foroumadi, A., Mostafaie, A. & Mohammadi Motlagh, H. (2011). Med. Chem. Res. 20, 920-929.]; Wang et al., 2014[Wang, D.-C., Xie, Y.-M., Fan, C., Yao, S. & Song, H. (2014). Chin. Chem. Lett. 25, 1011-1013.], 2025[Wang, B., Sun, L., Zhang, P., Zhang, S., Zhao, J., Qu, J. & Zhou, Y. (2025). J. Org. Chem. 90, 1755-1767.]). These compounds belong to the heterocyclic pyran family, renowned for diverse pharmacological applications ranging from anti­microbial to anti­tumor activities (Fouda, 2016[Fouda, A. M. (2016). Med. Chem. Res. 25, 1229-1238.]; Kathrotiya & Patel, 2012[Kathrotiya, H. G. & Patel, M. P. (2012). Med. Chem. Res. 21, 3406-3416.]; Veena et al., 2022[Veena, V. K., Choudhury, A. R. & Harikrishnan, A. (2022). J. Biomol. Struct. Dyn. 40, 7018-7026.]). Aryl-substituted 4H-chromene-3-carbo­nitriles exhibit strong DNA-binding affinities via hydrogen-bonding inter­actions at their amino groups, suggesting a mechanistic link to their biological activity (Zamisa et al., 2022[Zamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814-5834.]). Building upon the above findings, our recent work (Nyapola et al., 2025[Nyapola, C., Zamisa, S., Omondi, B. & Njogu, E. (2025). IUCrData 10, x250337.]) continues to expand the exploration of 4H-pyran derivatives for enhanced pharmacokinetic properties.

The mol­ecule of the title compound consists of a tetra­hydro­chromene moiety with ferrocenyl, cyano, amino, and oxo substituents, as shown in Fig. 1[link]. The compound crystallizes in a centrosymmetric space group with one mol­ecule in the asymmetric unit. The pendent ferrocenyl substituent is significantly rotated against the chromene backbone, with a C1—C9—C11—C12 torsion angle of 56.8 (2)°. This is notably larger compared to the torsion angle of the pendant p-tolyl substituent in the closely related compound 2-amino-7,7-dimethyl-5-oxo-4-(p-tol­yl)-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile (CSD ref code BOZMAI; Veeranagaiah et al., 2025[Veeranagaiah, N. S., Borah, B., Dhuri, S. N., pallepogu, R. & Chowhan, L. R. (2025). J. Mol. Struct. 1321, 140229.]), where the torsion angle is 39.42 (14)°. The crystal structure of the title compound is consolidated by O—H⋯N, O—H⋯O, N—H⋯O and N—H⋯π hydrogen bonds (Table 1[link]). The solvent water mol­ecule serves as a trifunctional hydrogen-bonding group, donating both of its hydrogen atoms to form O3—H3C⋯O1 and O3—H3D⋯N2 hydrogen bonds, thereby bridging two adjacent mol­ecules. Simultaneously, the oxygen atom of the water mol­ecule acts as a hydrogen-bond acceptor, participating in an N1—H1A⋯O3 inter­action, where the amine group donates one of its H atoms. The second amine H atom does not form a classical hydrogen bond but appears to form an N1—H1Bπ inter­action towards the Cp ring C16–C20 at symmetry position x, 1 + y, z. Together, these inter­actions generate a supra­molecular layer structure featuring a characteristic hydrogen-bonded ring described by an R44(16) graph-set motif, which extends parallel to the crystallographic bc plane (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the Cp rings C16–C20 and C16A–C20A, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3C⋯O1 0.84 (1) 2.01 (1) 2.842 (2) 175 (3)
O3—H3D⋯N2i 0.83 (1) 2.28 (2) 3.011 (3) 147 (3)
N1—H1A⋯O3ii 0.86 (1) 2.01 (1) 2.859 (3) 168 (3)
N1—H1BCg1iii 0.86 (2) 2.86 (2) 3.696 (7) 164 (3)
N1—H1BCg2iii 0.84 (2) 2.86 (2) 3.677 (7) 165 (3)
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [x, y, z+1]; (iii) [x, y+1, z].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The minor disordered part of the Cp ring is given in a faint color.
[Figure 2]
Figure 2
Hydrogen bonds in the crystal structure of the title compound. Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) x, y, z + 1; (iii) 2 − x, 1 − y, -z.

Synthesis and crystallization

The title compound was synthesized via a one-pot reaction involving 1,3-cyclo­hexa­nedione (0.015 mmol), malono­nitrile (0.015 mmol), and ferrocene carboxaldehyde (0.015 mmol). Two drops of tri­ethyl­amine catalysed the reaction. Following the established synthetic procedure (Nyapola et al., 2025[Nyapola, C., Zamisa, S., Omondi, B. & Njogu, E. (2025). IUCrData 10, x250337.]), the reaction mixture was placed in a 35 ml snap-on microwave vessel and subjected to microwave irradiation at 100°C for 10 min. The reaction mixture was filtered off under vacuum and recrystallized from ethanol, yielding a light-green-coloured solid. Slow evaporation from acetone solution yielded single crystals.

Refinement

Crystallographic data and structure refinement details are summarized in Table 2[link]. The unsubstituted cyclo­penta­dienyl ring of the ferrocenyl substituent was refined as disordered over two positions. PART 1 and 2 instructions were used to model the disorder, and the major component site occupancy refined to a value of 0.515 (18). All disordered C—C bond lengths and C—C—C bond angles were restrained to be similar to each other (SADI restraints, e.s.d. 0.02 Å) and Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar (SIMU restraint, e.s.d. 0.01 Å2). Amine and water H-atom positions were refined and restrained to target values of 0.84 (1) and 0.86 (1) Å, respectively. Uiso(H) values were set to a multiple of Ueq(C/N/O) with 1.5 for water, and 1.2 for C—H, CH2, and NH2 units, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C15H13N2O2)]·H2O
Mr 392.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.2440 (4), 10.3415 (4), 11.0093 (5)
α, β, γ (°) 65.358 (3), 66.714 (2), 81.236 (2)
V3) 878.59 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.22 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.456, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11443, 3810, 3248
Rint 0.047
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.06
No. of reflections 3810
No. of parameters 293
No. of restraints 244
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

2-Amino-4-ferrocenyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile monohydrate top
Crystal data top
[Fe(C5H5)(C15H13N2O2)]·H2OZ = 2
Mr = 392.23F(000) = 408
Triclinic, P1Dx = 1.483 Mg m3
a = 9.2440 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3415 (4) ÅCell parameters from 6839 reflections
c = 11.0093 (5) Åθ = 2.4–28.0°
α = 65.358 (3)°µ = 0.88 mm1
β = 66.714 (2)°T = 296 K
γ = 81.236 (2)°Plate, orange
V = 878.59 (7) Å30.22 × 0.14 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
3810 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs3248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 7.9 pixels mm-1θmax = 27.1°, θmin = 2.2°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1311
Tmin = 0.456, Tmax = 0.746l = 1414
11443 measured reflections
Refinement top
Refinement on F2244 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.1516P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3810 reflectionsΔρmax = 0.61 e Å3
293 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.58891 (3)0.41552 (3)0.75251 (3)0.03599 (12)
O20.74860 (18)0.98235 (15)0.59337 (16)0.0436 (3)
O10.82245 (19)0.74235 (17)0.29140 (17)0.0501 (4)
O30.9227 (3)0.7383 (2)0.0134 (2)0.0618 (5)
H3C0.894 (4)0.745 (4)0.093 (2)0.093*
H3D0.957 (4)0.6563 (18)0.025 (4)0.093*
N10.8318 (3)0.9127 (2)0.7752 (2)0.0525 (5)
H1A0.855 (3)0.850 (2)0.846 (2)0.063*
H1B0.815 (3)1.0006 (13)0.763 (3)0.063*
C10.7747 (2)0.8501 (2)0.4537 (2)0.0336 (4)
C110.6289 (2)0.63133 (19)0.6557 (2)0.0322 (4)
C80.8416 (2)0.7457 (2)0.6690 (2)0.0344 (4)
N20.9740 (3)0.5523 (2)0.8274 (2)0.0586 (5)
C90.7864 (2)0.71153 (19)0.5728 (2)0.0318 (4)
H90.8655310.6524330.5301850.038*
C70.8102 (2)0.8726 (2)0.6821 (2)0.0371 (4)
C60.7517 (2)0.9735 (2)0.4709 (2)0.0363 (4)
C100.9149 (2)0.6389 (2)0.7575 (2)0.0393 (4)
C20.7964 (2)0.8522 (2)0.3127 (2)0.0377 (4)
C120.5419 (2)0.5887 (2)0.5956 (2)0.0379 (4)
H120.5734720.6020150.4997790.046*
C150.5366 (2)0.5903 (2)0.8046 (2)0.0388 (4)
H150.5637340.6053220.8706460.047*
C50.7248 (3)1.1141 (2)0.3676 (3)0.0494 (5)
H5A0.8194171.1726020.3202170.059*
H5B0.6404411.1619580.4190660.059*
C140.3966 (2)0.5228 (2)0.8357 (2)0.0440 (5)
H140.3168930.4852540.9257170.053*
C130.3984 (2)0.5222 (2)0.7081 (2)0.0428 (5)
H130.3199110.4849740.6984230.051*
C30.7901 (3)0.9940 (3)0.1965 (2)0.0522 (6)
H3A0.7542880.9799390.1310110.063*
H3B0.8953231.0353900.1422290.063*
C40.6816 (3)1.0967 (3)0.2555 (3)0.0583 (6)
H4A0.5737771.0617830.2985000.070*
H4B0.6880901.1884960.1773360.070*
C160.5873 (12)0.2176 (11)0.9122 (10)0.0564 (19)0.515 (18)
H160.5180520.1842671.0076190.068*0.515 (18)
C170.7345 (12)0.2865 (13)0.8579 (11)0.0566 (17)0.515 (18)
H170.7780680.3080420.9104460.068*0.515 (18)
C180.8026 (16)0.316 (2)0.7094 (13)0.063 (3)0.515 (18)
H180.9006060.3593440.6479590.076*0.515 (18)
C190.7011 (16)0.2712 (12)0.6684 (11)0.0587 (19)0.515 (18)
H190.7187880.2799580.5760790.070*0.515 (18)
C200.5634 (12)0.2083 (9)0.7957 (16)0.0575 (18)0.515 (18)
H200.4759800.1692450.8007420.069*0.515 (18)
C16A0.6964 (16)0.2675 (15)0.8739 (11)0.060 (2)0.485 (18)
H16A0.7093390.2703380.9523860.072*0.485 (18)
C17A0.8021 (17)0.325 (2)0.7307 (14)0.0545 (18)0.485 (18)
H17A0.8959990.3726510.6979400.065*0.485 (18)
C18A0.7412 (13)0.2961 (13)0.6448 (11)0.0548 (19)0.485 (18)
H18A0.7890770.3207840.5461140.066*0.485 (18)
C19A0.5953 (12)0.2240 (10)0.7346 (16)0.0526 (16)0.485 (18)
H19A0.5294150.1942510.7052550.063*0.485 (18)
C20A0.5664 (13)0.2048 (11)0.8792 (13)0.065 (3)0.485 (18)
H20A0.4792240.1598730.9607540.079*0.485 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.04054 (18)0.02748 (17)0.0401 (2)0.00073 (11)0.01778 (13)0.01079 (13)
O20.0592 (9)0.0333 (7)0.0486 (9)0.0113 (6)0.0298 (7)0.0200 (7)
O10.0649 (10)0.0500 (9)0.0412 (9)0.0029 (7)0.0219 (8)0.0219 (7)
O30.0961 (14)0.0488 (10)0.0463 (10)0.0071 (9)0.0346 (10)0.0183 (9)
N10.0752 (13)0.0449 (11)0.0582 (13)0.0106 (10)0.0415 (11)0.0269 (10)
C10.0327 (9)0.0323 (10)0.0345 (10)0.0002 (7)0.0145 (8)0.0097 (8)
C110.0360 (9)0.0273 (9)0.0350 (10)0.0038 (7)0.0168 (8)0.0115 (8)
C80.0346 (9)0.0322 (10)0.0386 (11)0.0012 (7)0.0176 (8)0.0124 (8)
N20.0692 (13)0.0527 (12)0.0652 (14)0.0163 (10)0.0432 (12)0.0214 (11)
C90.0355 (9)0.0271 (9)0.0341 (10)0.0020 (7)0.0142 (8)0.0123 (8)
C70.0385 (10)0.0359 (10)0.0405 (11)0.0009 (8)0.0188 (9)0.0145 (9)
C60.0364 (10)0.0345 (10)0.0372 (11)0.0019 (8)0.0158 (8)0.0117 (9)
C100.0402 (10)0.0394 (11)0.0437 (12)0.0015 (8)0.0192 (9)0.0180 (9)
C20.0357 (10)0.0404 (11)0.0361 (11)0.0020 (8)0.0145 (8)0.0123 (9)
C120.0436 (11)0.0345 (10)0.0406 (11)0.0020 (8)0.0223 (9)0.0133 (9)
C150.0445 (11)0.0368 (11)0.0385 (11)0.0011 (8)0.0145 (9)0.0189 (9)
C50.0621 (14)0.0311 (11)0.0523 (14)0.0066 (9)0.0264 (11)0.0110 (10)
C140.0380 (11)0.0407 (11)0.0470 (13)0.0012 (8)0.0079 (9)0.0180 (10)
C130.0399 (11)0.0357 (11)0.0557 (13)0.0004 (8)0.0241 (10)0.0144 (10)
C30.0651 (15)0.0489 (13)0.0381 (12)0.0041 (11)0.0230 (11)0.0077 (10)
C40.0714 (16)0.0488 (14)0.0525 (15)0.0096 (12)0.0359 (13)0.0084 (12)
C160.071 (3)0.032 (3)0.061 (3)0.003 (2)0.034 (3)0.004 (2)
C170.051 (3)0.036 (3)0.073 (3)0.000 (2)0.036 (3)0.000 (3)
C180.056 (3)0.046 (3)0.073 (4)0.021 (3)0.020 (3)0.019 (3)
C190.072 (4)0.034 (3)0.071 (3)0.008 (3)0.025 (3)0.026 (3)
C200.074 (3)0.031 (2)0.072 (4)0.002 (2)0.035 (3)0.016 (3)
C16A0.068 (4)0.046 (4)0.060 (3)0.008 (3)0.036 (3)0.006 (3)
C17A0.057 (3)0.039 (3)0.073 (4)0.011 (3)0.031 (3)0.024 (3)
C18A0.057 (4)0.036 (3)0.070 (3)0.006 (3)0.017 (3)0.027 (3)
C19A0.067 (4)0.028 (3)0.068 (4)0.004 (2)0.028 (3)0.023 (3)
C20A0.075 (4)0.032 (3)0.067 (4)0.002 (3)0.023 (4)0.000 (3)
Geometric parameters (Å, º) top
Fe1—C112.0518 (18)C12—C131.426 (3)
Fe1—C122.039 (2)C15—H150.9300
Fe1—C152.0518 (19)C15—C141.416 (3)
Fe1—C142.047 (2)C5—H5A0.9700
Fe1—C132.049 (2)C5—H5B0.9700
Fe1—C182.057 (18)C5—C41.521 (3)
Fe1—C192.021 (11)C14—H140.9300
Fe1—C202.022 (8)C14—C131.402 (3)
Fe1—C16A1.999 (12)C13—H130.9300
Fe1—C17A2.019 (19)C3—H3A0.9700
Fe1—C19A2.060 (8)C3—H3B0.9700
Fe1—C20A2.028 (10)C3—C41.513 (4)
O2—C71.373 (2)C4—H4A0.9700
O2—C61.378 (2)C4—H4B0.9700
O1—C21.224 (3)C16—H160.9300
O3—H3C0.836 (10)C16—C171.419 (8)
O3—H3D0.833 (10)C16—C201.427 (9)
N1—H1A0.864 (10)C17—H170.9300
N1—H1B0.859 (10)C17—C181.411 (10)
N1—C71.345 (3)C18—H180.9300
C1—C91.511 (3)C18—C191.394 (10)
C1—C61.341 (3)C19—H190.9300
C1—C21.475 (3)C19—C201.445 (9)
C11—C91.526 (3)C20—H200.9300
C11—C121.432 (3)C16A—H16A0.9300
C11—C151.421 (3)C16A—C17A1.404 (10)
C8—C91.517 (3)C16A—C20A1.421 (10)
C8—C71.354 (3)C17A—H17A0.9300
C8—C101.423 (3)C17A—C18A1.414 (11)
N2—C101.141 (3)C18A—H18A0.9300
C9—H90.9800C18A—C19A1.411 (8)
C6—C51.484 (3)C19A—H19A0.9300
C2—C31.503 (3)C19A—C20A1.436 (9)
C12—H120.9300C20A—H20A0.9300
C11—Fe1—C1540.53 (8)C11—C15—H15125.7
C11—Fe1—C18108.4 (4)C14—C15—Fe169.60 (12)
C11—Fe1—C19A149.3 (4)C14—C15—C11108.63 (18)
C12—Fe1—C1140.99 (7)C14—C15—H15125.7
C12—Fe1—C1568.07 (8)C6—C5—H5A109.5
C12—Fe1—C1468.04 (9)C6—C5—H5B109.5
C12—Fe1—C1340.85 (8)C6—C5—C4110.68 (19)
C12—Fe1—C18120.9 (4)H5A—C5—H5B108.1
C12—Fe1—C19A115.5 (4)C4—C5—H5A109.5
C15—Fe1—C18126.8 (4)C4—C5—H5B109.5
C15—Fe1—C19A167.7 (4)Fe1—C14—H14125.8
C14—Fe1—C1168.43 (8)C15—C14—Fe169.98 (11)
C14—Fe1—C1540.43 (8)C15—C14—H14125.7
C14—Fe1—C1340.03 (9)C13—C14—Fe170.07 (12)
C14—Fe1—C18163.5 (4)C13—C14—C15108.56 (19)
C14—Fe1—C19A128.5 (3)C13—C14—H14125.7
C13—Fe1—C1168.80 (8)Fe1—C13—H13126.4
C13—Fe1—C1567.83 (8)C12—C13—Fe169.19 (11)
C13—Fe1—C18155.4 (4)C12—C13—H13126.1
C13—Fe1—C19A106.7 (3)C14—C13—Fe169.90 (12)
C19—Fe1—C11126.5 (3)C14—C13—C12107.83 (18)
C19—Fe1—C12108.5 (3)C14—C13—H13126.1
C19—Fe1—C15163.6 (4)C2—C3—H3A109.1
C19—Fe1—C14154.8 (4)C2—C3—H3B109.1
C19—Fe1—C13120.8 (3)C2—C3—C4112.59 (19)
C19—Fe1—C1840.0 (3)H3A—C3—H3B107.8
C19—Fe1—C2041.9 (3)C4—C3—H3A109.1
C20—Fe1—C11165.3 (4)C4—C3—H3B109.1
C20—Fe1—C12127.3 (3)C5—C4—H4A109.4
C20—Fe1—C15152.9 (4)C5—C4—H4B109.4
C20—Fe1—C14118.9 (3)C3—C4—C5111.34 (19)
C20—Fe1—C13107.9 (2)C3—C4—H4A109.4
C20—Fe1—C1868.3 (5)C3—C4—H4B109.4
C16A—Fe1—C11127.9 (4)H4A—C4—H4B108.0
C16A—Fe1—C12163.9 (4)Fe1—C16—H16127.2
C16A—Fe1—C15111.2 (4)C17—C16—Fe170.6 (6)
C16A—Fe1—C14122.6 (3)C17—C16—H16125.8
C16A—Fe1—C13154.9 (4)C17—C16—C20108.4 (8)
C16A—Fe1—C17A40.9 (4)C20—C16—Fe167.9 (5)
C16A—Fe1—C19A68.8 (4)C20—C16—H16125.8
C16A—Fe1—C20A41.3 (3)Fe1—C17—H17126.7
C17A—Fe1—C11106.4 (4)C16—C17—Fe169.4 (6)
C17A—Fe1—C12124.5 (4)C16—C17—H17126.4
C17A—Fe1—C15120.3 (4)C18—C17—Fe169.1 (9)
C17A—Fe1—C14155.7 (4)C18—C17—C16107.3 (9)
C17A—Fe1—C13162.3 (4)C18—C17—H17126.4
C17A—Fe1—C19A68.3 (5)Fe1—C18—H18126.9
C17A—Fe1—C20A69.1 (5)C17—C18—Fe171.1 (8)
C20A—Fe1—C11167.6 (5)C17—C18—H18125.0
C20A—Fe1—C12151.1 (5)C19—C18—Fe168.6 (8)
C20A—Fe1—C15130.8 (4)C19—C18—C17109.9 (9)
C20A—Fe1—C14110.6 (3)C19—C18—H18125.0
C20A—Fe1—C13119.0 (4)Fe1—C19—H19124.8
C20A—Fe1—C19A41.1 (3)C18—C19—Fe171.4 (9)
C7—O2—C6118.44 (15)C18—C19—H19126.3
H3C—O3—H3D107 (3)C18—C19—C20107.5 (8)
H1A—N1—H1B124 (3)C20—C19—Fe169.1 (5)
C7—N1—H1A119.5 (18)C20—C19—H19126.3
C7—N1—H1B116.5 (18)Fe1—C20—H20124.8
C6—C1—C9121.33 (18)C16—C20—Fe171.2 (5)
C6—C1—C2118.66 (18)C16—C20—C19106.9 (7)
C2—C1—C9119.94 (17)C16—C20—H20126.6
C9—C11—Fe1128.27 (12)C19—C20—Fe169.0 (5)
C12—C11—Fe169.01 (11)C19—C20—H20126.6
C12—C11—C9126.04 (17)Fe1—C16A—H16A125.2
C15—C11—Fe169.74 (11)C17A—C16A—Fe170.3 (9)
C15—C11—C9127.20 (17)C17A—C16A—H16A125.6
C15—C11—C12106.71 (17)C17A—C16A—C20A108.7 (9)
C7—C8—C9121.12 (17)C20A—C16A—Fe170.4 (6)
C7—C8—C10118.85 (18)C20A—C16A—H16A125.6
C10—C8—C9119.78 (16)Fe1—C17A—H17A125.2
C1—C9—C11110.74 (14)C16A—C17A—Fe168.8 (8)
C1—C9—C8107.86 (15)C16A—C17A—H17A125.9
C1—C9—H9108.7C16A—C17A—C18A108.2 (9)
C11—C9—H9108.7C18A—C17A—Fe171.7 (8)
C8—C9—C11112.10 (16)C18A—C17A—H17A125.9
C8—C9—H9108.7Fe1—C18A—H18A128.2
N1—C7—O2110.17 (17)C17A—C18A—Fe167.9 (9)
N1—C7—C8128.57 (19)C17A—C18A—H18A125.9
C8—C7—O2121.25 (17)C19A—C18A—Fe169.7 (5)
O2—C6—C5111.49 (17)C19A—C18A—C17A108.3 (8)
C1—C6—O2121.98 (18)C19A—C18A—H18A125.9
C1—C6—C5126.52 (19)Fe1—C19A—H19A126.9
N2—C10—C8179.2 (2)C18A—C19A—Fe170.4 (5)
O1—C2—C1120.63 (18)C18A—C19A—H19A126.0
O1—C2—C3121.81 (19)C18A—C19A—C20A107.9 (8)
C1—C2—C3117.53 (18)C20A—C19A—Fe168.2 (5)
Fe1—C12—H12125.8C20A—C19A—H19A126.0
C11—C12—Fe170.00 (11)Fe1—C20A—H20A126.1
C11—C12—H12125.9C16A—C20A—Fe168.3 (6)
C13—C12—Fe169.96 (12)C16A—C20A—C19A106.9 (8)
C13—C12—C11108.27 (18)C16A—C20A—H20A126.6
C13—C12—H12125.9C19A—C20A—Fe170.7 (5)
Fe1—C15—H15126.6C19A—C20A—H20A126.6
C11—C15—Fe169.73 (11)
Fe1—C11—C9—C1147.34 (14)C6—C1—C2—O1177.79 (19)
Fe1—C11—C9—C892.15 (18)C6—C1—C2—C30.4 (3)
Fe1—C11—C12—C1359.72 (14)C6—C5—C4—C346.1 (3)
Fe1—C11—C15—C1458.89 (14)C10—C8—C9—C1158.07 (17)
Fe1—C12—C13—C1459.45 (15)C10—C8—C9—C1179.8 (2)
Fe1—C15—C14—C1359.66 (15)C10—C8—C7—O2175.93 (18)
Fe1—C14—C13—C1259.00 (14)C10—C8—C7—N13.7 (3)
Fe1—C16—C17—C1858.9 (11)C2—C1—C9—C1185.2 (2)
Fe1—C16—C20—C1960.1 (6)C2—C1—C9—C8151.80 (16)
Fe1—C17—C18—C1957.7 (12)C2—C1—C6—O2172.39 (17)
Fe1—C18—C19—C2060.0 (7)C2—C1—C6—C58.5 (3)
Fe1—C19—C20—C1661.5 (7)C2—C3—C4—C554.5 (3)
Fe1—C16A—C17A—C18A61.2 (13)C12—C11—C9—C156.8 (2)
Fe1—C16A—C20A—C19A60.4 (7)C12—C11—C9—C8177.28 (17)
Fe1—C17A—C18A—C19A58.0 (8)C12—C11—C15—Fe159.38 (13)
Fe1—C18A—C19A—C20A58.1 (7)C12—C11—C15—C140.5 (2)
Fe1—C19A—C20A—C16A58.9 (8)C15—C11—C9—C1120.1 (2)
O2—C6—C5—C4163.64 (19)C15—C11—C9—C80.4 (3)
O1—C2—C3—C4150.8 (2)C15—C11—C12—Fe159.84 (13)
C1—C6—C5—C415.6 (3)C15—C11—C12—C130.1 (2)
C1—C2—C3—C431.0 (3)C15—C14—C13—Fe159.60 (15)
C11—C12—C13—Fe159.74 (13)C15—C14—C13—C120.6 (2)
C11—C12—C13—C140.3 (2)C16—C17—C18—Fe159.1 (8)
C11—C15—C14—Fe158.97 (14)C16—C17—C18—C191.4 (18)
C11—C15—C14—C130.7 (2)C17—C16—C20—Fe159.2 (8)
C9—C1—C6—O24.7 (3)C17—C16—C20—C190.9 (11)
C9—C1—C6—C5174.49 (19)C17—C18—C19—Fe159.2 (12)
C9—C1—C2—O10.7 (3)C17—C18—C19—C200.8 (17)
C9—C1—C2—C3177.52 (18)C18—C19—C20—Fe161.4 (10)
C9—C11—C12—Fe1122.77 (17)C18—C19—C20—C160.1 (13)
C9—C11—C12—C13177.51 (17)C20—C16—C17—Fe157.5 (7)
C9—C11—C15—Fe1123.27 (18)C20—C16—C17—C181.4 (14)
C9—C11—C15—C14177.84 (17)C16A—C17A—C18A—Fe159.4 (12)
C9—C8—C7—O29.9 (3)C16A—C17A—C18A—C19A1.3 (18)
C9—C8—C7—N1170.5 (2)C17A—C16A—C20A—Fe160.1 (12)
C7—O2—C6—C117.1 (3)C17A—C16A—C20A—C19A0.3 (15)
C7—O2—C6—C5163.63 (18)C17A—C18A—C19A—Fe156.9 (11)
C7—C8—C9—C127.8 (2)C17A—C18A—C19A—C20A1.1 (14)
C7—C8—C9—C1194.4 (2)C18A—C19A—C20A—Fe159.4 (7)
C6—O2—C7—N1165.39 (18)C18A—C19A—C20A—C16A0.5 (11)
C6—O2—C7—C814.3 (3)C20A—C16A—C17A—Fe160.2 (9)
C6—C1—C9—C1197.8 (2)C20A—C16A—C17A—C18A1.0 (19)
C6—C1—C9—C825.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the Cp rings C16–C20 and C16A–C20A, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3C···O10.84 (1)2.01 (1)2.842 (2)175 (3)
O3—H3D···N2i0.83 (1)2.28 (2)3.011 (3)147 (3)
N1—H1A···O3ii0.86 (1)2.01 (1)2.859 (3)168 (3)
N1—H1B···Cg1iii0.86 (2)2.86 (2)3.696 (7)164 (3)
N1—H1B···Cg2iii0.84 (2)2.86 (2)3.677 (7)165 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors would like to thank the University of KwaZulu Natal for the research facilities.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFouda, A. M. (2016). Med. Chem. Res. 25, 1229–1238.  Web of Science CrossRef CAS Google Scholar
First citationKathrotiya, H. G. & Patel, M. P. (2012). Med. Chem. Res. 21, 3406–3416.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMansouri, K., Khodarahmi, R., Foroumadi, A., Mostafaie, A. & Mohammadi Motlagh, H. (2011). Med. Chem. Res. 20, 920–929.  Web of Science CrossRef CAS Google Scholar
First citationNyapola, C., Zamisa, S., Omondi, B. & Njogu, E. (2025). IUCrData 10, x250337.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVeena, V. K., Choudhury, A. R. & Harikrishnan, A. (2022). J. Biomol. Struct. Dyn. 40, 7018–7026.  CrossRef CAS PubMed Google Scholar
First citationVeeranagaiah, N. S., Borah, B., Dhuri, S. N., pallepogu, R. & Chowhan, L. R. (2025). J. Mol. Struct. 1321, 140229.  CrossRef Google Scholar
First citationWang, B., Sun, L., Zhang, P., Zhang, S., Zhao, J., Qu, J. & Zhou, Y. (2025). J. Org. Chem. 90, 1755–1767.  CrossRef CAS PubMed Google Scholar
First citationWang, D.-C., Xie, Y.-M., Fan, C., Yao, S. & Song, H. (2014). Chin. Chem. Lett. 25, 1011–1013.  CrossRef Google Scholar
First citationZamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814–5834.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146