organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(4-Bromo­phen­yl)but-2-en-1-one

crossmark logo

aLeibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 April 2025; accepted 8 May 2025; online 13 May 2025)

The title compound, C10H9BrO, consists of a para-substituted bromo­phenyl core and an unsaturated carbonyl side chain. The angle between the plane through the carbon atoms of the aryl ring and the plane through the carbon atoms of the unsaturated side chain is 29.12 (16)°. The cohesion in the crystal is ensured by ππ stacking and C—H⋯O inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The structures of α,β-unsaturated carbonyl compounds are a common motif in a variety of natural products or bulk chemicals. These compounds are versatile synthetic inter­mediates for multiple organic transformation reactions, such as Michael addition, Diels–Alder reaction or Heck reaction (Ponec, 1997[Ponec, V. (1997). Appl. Catal. Gen. 149, 27-48.]; Engel & Dudley, 2009[Engel, D. A. & Dudley, G. B. (2009). Org. Biomol. Chem. 7, 4149-4158.]; Desimoni et al., 2018[Desimoni, G., Faita, G. & Quadrelli, P. (2018). Chem. Rev. 118, 2080-2248.]). The title compound, C10H9BrO, was received in low yield in high purity in a Friedel–Crafts acyl­ation. It can be designated as a suitable building block in the ongoing efforts to synthesize feasible new ligands for Cu-based complexes (Sonneck et al., 2015[Sonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). Crystals 5, 466-474.], 2016[Sonneck, M., Spannenberg, A., Wohlrab, S. & Peppel, T. (2016). Crystals 6, 66.]).

The mol­ecular structure of the title compound consists of a para-substituted bromo­phenyl core and an unsaturated carbonyl side chain (Fig. 1[link]). The angle between the plane defined by the aryl ring (C5–C10) and the plane through the carbon atoms of the unsaturated side chain (C1–C4) is 29.12 (16)°. Carbonyl oxygen atom O1 is 0.246 (4) Å out of the latter plane. In the crystal, weak ππ stacking inter­actions between adjacent mol­ecules are observed, with a centroid(C5–C10)-to-centroid(C5–C10)' distance of 3.724 (1) Å [ring slippage = 1.31 Å; symmetry code: (') 1 − x, 2 − y, 2 − z]. Additionally, weak inter­molecular C—H⋯O inter­actions are present in the crystal packing (Table 1[link], Fig. 2[link]). All bond lengths and angles are in expected ranges and the C=O bond length is 1.2278 (17) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.56 3.5094 (18) 177
C1—H1C⋯O1ii 0.98 2.58 3.555 (2) 172
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram (ball-and-stick representation) for the title compound in a view along [100].

Synthesis and crystallization

The title compound, C10H9BrO, was obtained as colorless crystals in low yield from the Friedel–Crafts acyl­ation of bromo­benzene and crotonyl chloride in CS2. AlCl3 (61.2 g, 459.2 mmol, 1.20 eq.) was added to a stirred solution of bromo­benzene (81.1 g, 516.6 mmol, 1.35 eq.) in 150 ml of CS2 at room temperature. Crotonyl chloride (40.0 g, 382.7 mmol, 1.00 eq.) was added dropwise to the thoroughly stirred suspension and afterwards the solution was heated under reflux for 24 h. The resulting red solution was poured onto a mixture of ice and concentrated hydro­chloric acid (500 g: 50 g) and extracted 3× with 150 ml portions of ethyl acetate. The volume of the combined organic phases was reduced to 150 ml and extracted twice with 100 ml portions of brine. The organic phase was dried with Na2SO4 and the solvent was removed completely under diminished pressure. The resulting raw product was distilled under reduced pressure to give an orange-colored distillate. After storing the distillate for several days at 243 K, colorless single crystals of the product were obtained in low yield (9.5 g, 11%).

Analytical data for C10H9BrO: mp. 323 K, elemental analysis % (calculated): C 53.40 (53.36), H 3.95 (4.03); Br 35.42 (35.50). 1H NMR (300 MHz, MeOD): δ (p.p.m.) = 8.75–8.67 (m, 2H, ArH); 8.56–8.48 (m, 2H, ArH); 8.01–7.81 (m, 2H); 2.87 (d, 3J = 6.0 Hz, 3H, –Me); 13C NMR (75 MHz, MeOD): δ (p.p.m.) = 191.15 (CO); 147.25 (CH); 137.84 (C); 132.98, 132.98, 141.29, 131.29 (CH), 128.78 (C), 127.97 (CH), 18.67 (CH3).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H9BrO
Mr 225.08
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 5.5734 (9), 8.1618 (13), 10.6194 (16)
α, β, γ (°) 98.577 (2), 96.441 (2), 102.546 (2)
V3) 461.00 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.41
Crystal size (mm) 0.36 × 0.23 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.63, 0.85
No. of measured, independent and observed [I > 2σ(I)] reflections 12194, 2232, 2077
Rint 0.027
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.05
No. of reflections 2232
No. of parameters 110
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

(E)-1-(4-Bromophenyl)but-2-en-1-one top
Crystal data top
C10H9BrOZ = 2
Mr = 225.08F(000) = 224
Triclinic, P1Dx = 1.622 Mg m3
a = 5.5734 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1618 (13) ÅCell parameters from 7348 reflections
c = 10.6194 (16) Åθ = 2.6–28.6°
α = 98.577 (2)°µ = 4.41 mm1
β = 96.441 (2)°T = 150 K
γ = 102.546 (2)°Plate, colourless
V = 461.00 (13) Å30.36 × 0.23 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2232 independent reflections
Radiation source: fine-focus sealed tube2077 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.027
φ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.63, Tmax = 0.85k = 1010
12194 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.1552P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2232 reflectionsΔρmax = 0.32 e Å3
110 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.46488 (3)1.00661 (2)1.33348 (2)0.03862 (7)
C10.1030 (3)0.2949 (2)0.52287 (17)0.0397 (4)
H1A0.0472640.3282310.5459300.060*
H1B0.0860270.1733320.5249230.060*
H1C0.1258130.3161430.4360600.060*
C20.3226 (3)0.39689 (19)0.61669 (15)0.0308 (3)
H20.4807790.3775960.6035230.037*
C30.3146 (3)0.51246 (19)0.71713 (14)0.0274 (3)
H30.1589320.5346680.7322730.033*
C40.5417 (3)0.60755 (18)0.80609 (14)0.0253 (3)
C50.5149 (2)0.70343 (17)0.93299 (13)0.0230 (3)
C60.7179 (3)0.82873 (19)1.00146 (15)0.0284 (3)
H60.8677580.8520420.9656470.034*
C70.7057 (3)0.91961 (19)1.12013 (15)0.0304 (3)
H70.8439081.0062291.1652420.037*
C80.4872 (3)0.88158 (18)1.17190 (13)0.0260 (3)
C90.2838 (3)0.75609 (19)1.10791 (14)0.0276 (3)
H90.1369750.7299381.1459790.033*
C100.2970 (2)0.66900 (18)0.98747 (14)0.0257 (3)
H100.1564620.5850510.9415600.031*
O10.75060 (19)0.60866 (15)0.77924 (11)0.0348 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05075 (11)0.03740 (10)0.02638 (9)0.01081 (7)0.00651 (7)0.00052 (6)
C10.0426 (9)0.0367 (9)0.0352 (8)0.0058 (7)0.0048 (7)0.0022 (7)
C20.0319 (7)0.0300 (7)0.0329 (8)0.0098 (6)0.0087 (6)0.0068 (6)
C30.0246 (7)0.0318 (7)0.0276 (7)0.0090 (6)0.0066 (5)0.0061 (6)
C40.0243 (6)0.0268 (7)0.0282 (7)0.0091 (5)0.0071 (5)0.0086 (5)
C50.0212 (6)0.0244 (6)0.0259 (6)0.0074 (5)0.0045 (5)0.0085 (5)
C60.0207 (6)0.0317 (7)0.0326 (7)0.0035 (5)0.0053 (5)0.0083 (6)
C70.0256 (7)0.0310 (7)0.0302 (7)0.0001 (6)0.0005 (5)0.0044 (6)
C80.0310 (7)0.0265 (7)0.0219 (6)0.0093 (6)0.0032 (5)0.0059 (5)
C90.0249 (6)0.0307 (7)0.0291 (7)0.0063 (6)0.0082 (5)0.0083 (6)
C100.0210 (6)0.0261 (7)0.0287 (7)0.0027 (5)0.0049 (5)0.0047 (5)
O10.0239 (5)0.0467 (7)0.0360 (6)0.0114 (5)0.0098 (4)0.0063 (5)
Geometric parameters (Å, º) top
Br1—C81.8925 (14)C5—C61.395 (2)
C1—C21.490 (2)C5—C101.3951 (18)
C1—H1A0.9800C6—C71.380 (2)
C1—H1B0.9800C6—H60.9500
C1—H1C0.9800C7—C81.385 (2)
C2—C31.326 (2)C7—H70.9500
C2—H20.9500C8—C91.382 (2)
C3—C41.478 (2)C9—C101.385 (2)
C3—H30.9500C9—H90.9500
C4—O11.2278 (17)C10—H100.9500
C4—C51.4940 (19)
C2—C1—H1A109.5C10—C5—C4122.52 (13)
C2—C1—H1B109.5C7—C6—C5121.43 (13)
H1A—C1—H1B109.5C7—C6—H6119.3
C2—C1—H1C109.5C5—C6—H6119.3
H1A—C1—H1C109.5C6—C7—C8118.46 (14)
H1B—C1—H1C109.5C6—C7—H7120.8
C3—C2—C1125.10 (14)C8—C7—H7120.8
C3—C2—H2117.4C9—C8—C7121.73 (13)
C1—C2—H2117.4C9—C8—Br1119.11 (11)
C2—C3—C4121.66 (13)C7—C8—Br1119.16 (11)
C2—C3—H3119.2C8—C9—C10119.06 (13)
C4—C3—H3119.2C8—C9—H9120.5
O1—C4—C3122.00 (13)C10—C9—H9120.5
O1—C4—C5119.30 (13)C9—C10—C5120.62 (13)
C3—C4—C5118.69 (12)C9—C10—H10119.7
C6—C5—C10118.67 (13)C5—C10—H10119.7
C6—C5—C4118.78 (12)
C1—C2—C3—C4179.68 (14)C5—C6—C7—C81.2 (2)
C2—C3—C4—O113.9 (2)C6—C7—C8—C90.0 (2)
C2—C3—C4—C5165.45 (14)C6—C7—C8—Br1179.19 (11)
O1—C4—C5—C617.9 (2)C7—C8—C9—C101.6 (2)
C3—C4—C5—C6162.71 (13)Br1—C8—C9—C10177.61 (10)
O1—C4—C5—C10160.10 (14)C8—C9—C10—C52.0 (2)
C3—C4—C5—C1019.2 (2)C6—C5—C10—C90.8 (2)
C10—C5—C6—C70.8 (2)C4—C5—C10—C9177.24 (13)
C4—C5—C6—C7178.94 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.563.5094 (18)177
C1—H1C···O1ii0.982.583.555 (2)172
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
 

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesimoni, G., Faita, G. & Quadrelli, P. (2018). Chem. Rev. 118, 2080–2248.  CrossRef PubMed Google Scholar
First citationEngel, D. A. & Dudley, G. B. (2009). Org. Biomol. Chem. 7, 4149–4158.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPonec, V. (1997). Appl. Catal. Gen. 149, 27–48.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). Crystals 5, 466–474.  CrossRef Google Scholar
First citationSonneck, M., Spannenberg, A., Wohlrab, S. & Peppel, T. (2016). Crystals 6, 66.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146