organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

tert-Butyl [(4-fluoro-3-isopropoxyisoxazol-5-yl)meth­yl](phenyl­sulfon­yl)carbamate

crossmark logo

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: abdfatah@uitm.edu.my

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 28 April 2025; accepted 29 April 2025; online 2 May 2025)

The title compound, C18H23FN2O6S, a new derivative of a fluoro­isoxazole containing sulfonamide functionality has been structurally characterized. The C—S—N—Cipr and C—S—N—Ccarb (ipr = 3-isopropoxyisoxazole, carb = carbamate) torsion angles are 111.1 (3)° and −70.0 (4)°, respectively. The sulfonamide functional group of this structure features S=O bond lengths of 1.403 (3) and 1.433 (3) Å, an S—N bond length of 1.672 (4) Å, and an S—C bond length of 1.753 (4) Å. The crystal packing features non-classical C—H⋯O hydrogen-bond inter­actions, with the carbonyl atom acting as a bifurcated acceptor, resulting in an R12(8) ring.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isoxazoles carrying sulfonamide moieties are very important structural motifs and have gained inter­est from pharmaceutical industry and medicinal chemists owing to their various bioactivities; anti­bacterial (Esfahani et al., 2021[Esfahani, S. N., Damavandi, M. S., Sadeghi, P., Nazifi, Z., Salari-Jazi, A. & Massah, A. R. (2021). Sci. Rep. 11, 20088.]; Martinez et al., 2025[Martinez, G., Tolentino, K., Sukheja, P., Webb, J., McNamara, C. W., Chatterjee, A. K. & Yang, B. (2025). Bioorg. Med. Chem. Lett. 119, 130108.]), anti­fungal (Soliman et al., 2025[Soliman, M. M., Elwahy, A. H., Sayed, A. M., Ibrahim, M., Dawoud, M. A., Ali, S. H. M., Nady, M. T. S., Hassan, N. A., Saad, W. & Abdelhamid, I. A. (2025). Naunyn-Schmiedeberg's Arch. Pharmacol. 1-31.]), anti­cancer (Kilbile et al., 2024[Kilbile, J. T., Tamboli, Y., Ansari, S. A., Rathod, S. S., Choudhari, P. B., Alkahtani, H. & Sapkal, S. B. (2024). Polycyclic Aromat. Compd. 44, 4157-4177.]; Vaickelionienė et al., 2023[Vaickelionienė, R., Petrikaitė, V., Vaškevičienė, I., Pavilonis, A. & Mickevičius, V. (2023). PLoS One 18, e0283289.]), anti-inflammatory, anti­diabetic and anti­oxidant (Ahmad et al., 2023[Ahmad, S., Abdul Qadir, M., Ahmed, M., Imran, M., Yousaf, N., Wani, T. A., Zargar, S., Ali, I. & Muddassar, M. (2023). Front. Chem. 11, 1206380.]; Dayma et al., 2020[Dayma, V., Chopra, J., Sharma, P., Dwivedi, A., Tripathi, I. P., Bhargava, A., Murugesan, V., Goswami, A. K. & Baroliya, P. K. (2020). Heliyon 6, e04787.]). Pharmaceutically important examples of isoxazole-containing sulfonamide drugs include the anti­bacterial agents sulfisoxazole and sulfamethoxazole (Rusu et al., 2023[Rusu, A., Moga, I. M., Uncu, L. & Hancu, G. (2023). Pharmaceutics 15, 2554.]), and the anti­obesity and anti­convulsant agent zonisamide (Gidal et al., 2024[Gidal, B. E., Resnick, T., Smith, M. C. & Wheless, J. W. (2024). Neur Clin Pract 14, e200210.]). Despite the potential usage of fluorinated five-membered heterocyclic compounds and their functionalization in the life science industries (Imberg et al., 2025[Imberg, L., Siutkina, A. I., Erbacher, C., Schmidt, J., Broekmans, D. F., Ovsepyan, R. A., Daniliuc, C. G., Gonçalves de Oliveira, E., Serafim, M. S. M., O'Donoghue, A. J. & Pillaiyar, T. (2025). ACS Pharmacol. Transl. Sci. 8, 146-172.]; Hawk et al., 2021[Hawk, M. K., Ryan, S. J., Zhang, X., Huang, P., Chen, J., Liu, C., Chen, J., Lindsay-Scott, P. J., Burnett, J., White, C., Lu, Y. & Rizzo, J. R. (2021). Org. Process Res. Dev. 25, 1167-1175.]; Fuchibe et al., 2023[Fuchibe, K., Sakon, K., Suto, K., Eto, R., Nakazono, S. & Ichikawa, J. (2023). Org. Lett. 25, 7258-7262.]), studies pertaining to the synthesis of such structural units, particularly selective fluorination of five-membered isoxazole systems are rare and challenging. To address this limitation, we report herein the crystal structure of the title compound 1, obtained by treatment of 2 with excess N-fluoro­benzene­sulfonimide.

The mol­ecular structure of the title compound, 1, which consists of a 4-fluoro­isoxazole derivative with a sulfonamide group is shown in Fig. 1[link]. In the solid state, the isoxazole ring (O1/N2/C3–C5) forms a dihedral angle of 10.9 (3)° with the sulfonyl-bound phenyl ring (C19–C24). The torsion angles C19—S18—N11—C10 and C19—S18—N11—C12 are 111.2 (3)° and −70.0 (4)° respectively. The sulfonamide adopts a conformation in agreement with that seen in related structures (Khrustalev et al., 2022[Khrustalev, V. N., Çelikesir, S. T., Akkurt, M., Kolesnik, I. A., Potkin, V. I. & Mlowe, S. (2022). Acta Cryst. E78, 603-607.]; Madhan et al., 2024[Madhan, S., NizamMohideen, M., Pavunkumar, V. & Mohana­Krishnan, A. K. (2024). Acta Cryst. E80, 1110-1117.]; Moroni et al., 2024[Moroni, A. B., Bottoso, T., Lionello, D. F., Vega, D. R., Kaufman, T. S. & Calvo, N. L. (2024). Acta Cryst. E80, 1064-1068.]). The nitro­gen atom of the sulfonamide displays a sp2 character, with an S18—N11—C10 angle of 119.1 (3)°. The sulfonamide sulfur atom displays a distorted tetra­hedral geometry, with the widening of the O18—S18—O19 angle of 119.2 (2)°, accompanied by simultaneous decrease in the N11—S18—C19 angle [106.0 (2)°], as typically found in RSO2NR′ sulfonamide systems (Hernández et al., 2017[Hernández, Y., Marcos, I. S., Garrido, N. M., Sanz, F. & Diez, D. (2017). Acta Cryst. E73, 85-87.]; Moroni et al., 2024[Moroni, A. B., Bottoso, T., Lionello, D. F., Vega, D. R., Kaufman, T. S. & Calvo, N. L. (2024). Acta Cryst. E80, 1064-1068.]). The C10—N11—C12—O12 fragment adopts a syn conformation with a torsion angle of 5.0 (6)°. The mol­ecular packing features weak C—H⋯O hydrogen bonds (Table 1[link]). Atoms C10 and C24 act as donors to the double-acceptor O-atom, O19, enclosing R21(8) ring motifs, and resulting in the formation of C21(5) chains along [001] (Fig. 2[link]). Further chains are formed by other C—H⋯O hydrogen bonds; C15—H15B with O18 forming C(8) chains along [110], and C22—H22 with O12 forming C(9) chains along [1[\overline{1}]0] (Fig. 3[link]). The combination of these bonds results in a weakly inter­acting three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O19i 0.99 2.47 3.121 (6) 123
C15—H15B⋯O18ii 0.98 2.59 3.571 (6) 176
C22—H22⋯O12iii 0.95 2.51 3.335 (6) 145
C24—H24⋯O19i 0.95 2.51 3.366 (5) 150
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
View of the weakly hydrogen-bonded C21(5) chains.
[Figure 3]
Figure 3
View of the weakly hydrogen-bonded C(8) (vertical) and C(9) (horizontal) chains.

Synthesis and crystallization

The carbamate precursor 2, was prepared according to our previously established protocol (Abdul Manan et al., 2017[Abdul Manan, M. A. F., Cordes, D. B., Slawin, A. M., Bühl, M., Liao, V. W., Chua, H. C., Chebib, M. & O'Hagan, D. (2017). Chem. A Eur. J. 23, 10848-10852.]). The title compound 1, was synthesized following a literature procedure with a minor modification (Abdul Manan et al., 2017[Abdul Manan, M. A. F., Cordes, D. B., Slawin, A. M., Bühl, M., Liao, V. W., Chua, H. C., Chebib, M. & O'Hagan, D. (2017). Chem. A Eur. J. 23, 10848-10852.]) (Fig. 4[link]). n-BuLi (1.7 ml, 2.5 M in hexane, 4.29 mmol, 2.2 eq) was added dropwise to a solution of 5-(tert-butyl­oxycarbon­yl)amino­methyl-3-isopropoxyisoxazole, 2, (500 mg, 1.95 mmol, 1.0 eq) at 195 K. The mixture was stirred for 1.5 h at 195 K and a solution of N-fluoro­benzene­sulfonimide (NFSI) (1.23 g, 3.90 mmol, 2.0 eq) in THF (4 ml) was added. The mixture was stirred for 2 h at 195 K and the temperature was allowed to warm to room temperature over 12 h. The reaction mixture was quenched with aqueous NH4Cl (10 ml) and the organic phase was extracted into EtOAc (3 × 20 ml). The combined organic layers were dried over MgSO4, filtered and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (petroleum ether/Et2O, 80:20) to yield the title compound (323 mg, 40%) as a colourless viscous oil that crystallized on standing.

[Figure 4]
Figure 4
A synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H23FN2O6S
Mr 414.44
Crystal system, space group Monoclinic, Cc
Temperature (K) 173
a, b, c (Å) 13.271 (3), 13.904 (3), 11.206 (2)
β (°) 105.547 (6)
V3) 1992.1 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.11 × 0.04 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB P200K
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.828, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 11991, 3548, 2824
Rint 0.060
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.090, 1.02
No. of reflections 3548
No. of parameters 258
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.21
Absolute structure Flack x determined using 1114 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.08 (6)
Computer programs: CrystalClear-SM Expert (Rigaku, 2015[Rigaku (2015). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

tert-Butyl [(4-fluoro-3-isopropoxyisoxazol-5-yl)methyl](phenylsulfonyl)carbamate top
Crystal data top
C18H23FN2O6SF(000) = 872
Mr = 414.44Dx = 1.382 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 13.271 (3) ÅCell parameters from 2002 reflections
b = 13.904 (3) Åθ = 2.2–25.3°
c = 11.206 (2) ŵ = 0.21 mm1
β = 105.547 (6)°T = 173 K
V = 1992.1 (7) Å3Chip, colorless
Z = 40.11 × 0.04 × 0.02 mm
Data collection top
Rigaku XtaLAB P200K
diffractometer
3548 independent reflections
Radiation source: Rotating Anode, Rigaku FR-X2824 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.060
Detector resolution: 5.8140 pixels mm-1θmax = 25.4°, θmin = 2.2°
shutterless scansh = 1615
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1616
Tmin = 0.828, Tmax = 0.996l = 1313
11991 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.1932P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.19 e Å3
3548 reflectionsΔρmin = 0.21 e Å3
258 parametersAbsolute structure: Flack x determined using 1114 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.08 (6)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were located geometrically (phenyl C—H = 0.95 Å, methine C—H = 1.00 Å, methylene C—H = 0.99 Å, methyl C—H = 0.98 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(non-methyl C) or 1.5Ueq(methyl C) was applied in all cases.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S180.20066 (8)0.53009 (8)0.67391 (9)0.0319 (3)
F40.3603 (2)0.36593 (18)0.5679 (3)0.0508 (8)
O10.3211 (2)0.2277 (2)0.8123 (3)0.0405 (8)
O60.3663 (3)0.1578 (2)0.5344 (3)0.0394 (8)
O120.4876 (3)0.5034 (2)0.8535 (4)0.0509 (9)
O130.3957 (2)0.6237 (2)0.7380 (3)0.0374 (8)
O180.1283 (2)0.4542 (2)0.6758 (3)0.0423 (8)
O190.2191 (2)0.5575 (2)0.5583 (3)0.0410 (8)
N20.3347 (3)0.1538 (3)0.7299 (4)0.0424 (10)
N110.3121 (3)0.4906 (2)0.7701 (3)0.0329 (9)
C30.3498 (3)0.1989 (3)0.6341 (5)0.0334 (11)
C40.3455 (4)0.3008 (3)0.6489 (4)0.0340 (11)
C50.3268 (3)0.3148 (3)0.7593 (4)0.0328 (10)
C70.3772 (4)0.0519 (3)0.5362 (5)0.0426 (12)
H70.4244460.0312010.6175190.051*
C80.2719 (4)0.0050 (4)0.5175 (6)0.0623 (17)
H8A0.2415050.0241010.5845380.094*
H8B0.2800060.0650510.5178340.094*
H8C0.2256180.0254550.4378500.094*
C90.4282 (4)0.0302 (4)0.4340 (5)0.0558 (15)
H9A0.3816040.0500970.3543360.084*
H9B0.4417620.0389860.4323100.084*
H9C0.4943860.0654470.4490760.084*
C100.3119 (4)0.3991 (3)0.8359 (4)0.0374 (11)
H10A0.2446910.3921110.8575200.045*
H10B0.3687390.3998750.9139790.045*
C120.4078 (4)0.5381 (3)0.7916 (4)0.0356 (11)
C140.4874 (4)0.6868 (4)0.7417 (5)0.0398 (12)
C150.4359 (4)0.7729 (4)0.6674 (5)0.0501 (14)
H15A0.4010710.7527700.5825210.075*
H15B0.4890620.8214290.6657580.075*
H15C0.3840910.8003690.7057060.075*
C160.5409 (4)0.7130 (4)0.8742 (5)0.0523 (14)
H16A0.4888170.7363310.9149230.078*
H16B0.5926610.7636170.8756970.078*
H16C0.5760240.6561810.9180070.078*
C170.5602 (4)0.6343 (4)0.6781 (5)0.0547 (15)
H17A0.5919010.5790100.7285030.082*
H17B0.6152810.6783490.6689060.082*
H17C0.5199720.6120390.5962160.082*
C190.1648 (3)0.6322 (3)0.7446 (4)0.0283 (10)
C200.1626 (4)0.7214 (3)0.6888 (4)0.0405 (12)
H200.1831870.7282380.6142880.049*
C210.1299 (4)0.8004 (3)0.7437 (5)0.0497 (14)
H210.1271150.8619960.7064210.060*
C220.1013 (4)0.7896 (4)0.8526 (5)0.0452 (13)
H220.0798390.8441940.8904520.054*
C230.1037 (4)0.7005 (4)0.9071 (5)0.0439 (12)
H230.0835020.6937200.9818370.053*
C240.1353 (4)0.6210 (3)0.8528 (4)0.0391 (12)
H240.1367710.5592840.8895080.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S180.0352 (6)0.0284 (5)0.0340 (6)0.0033 (5)0.0127 (5)0.0042 (5)
F40.083 (2)0.0287 (14)0.0528 (18)0.0026 (14)0.0383 (16)0.0038 (13)
O10.054 (2)0.0259 (17)0.0449 (19)0.0021 (15)0.0193 (16)0.0043 (14)
O60.049 (2)0.0253 (16)0.045 (2)0.0029 (14)0.0144 (17)0.0042 (14)
O120.040 (2)0.0382 (19)0.071 (2)0.0057 (17)0.0076 (18)0.0059 (18)
O130.0303 (17)0.0292 (17)0.054 (2)0.0019 (13)0.0133 (15)0.0036 (15)
O180.042 (2)0.0334 (18)0.053 (2)0.0099 (15)0.0160 (16)0.0045 (16)
O190.051 (2)0.0420 (18)0.0326 (18)0.0035 (15)0.0152 (15)0.0024 (14)
N20.055 (3)0.025 (2)0.051 (3)0.0008 (18)0.020 (2)0.0018 (19)
N110.037 (2)0.0223 (19)0.042 (2)0.0015 (16)0.0153 (18)0.0014 (16)
C30.031 (2)0.025 (2)0.044 (3)0.0009 (19)0.009 (2)0.001 (2)
C40.039 (3)0.023 (2)0.041 (3)0.001 (2)0.012 (2)0.006 (2)
C50.033 (3)0.024 (2)0.042 (3)0.0009 (19)0.012 (2)0.002 (2)
C70.044 (3)0.024 (2)0.056 (3)0.007 (2)0.006 (3)0.005 (2)
C80.056 (3)0.033 (3)0.093 (5)0.001 (3)0.010 (3)0.009 (3)
C90.067 (4)0.042 (3)0.059 (4)0.013 (3)0.019 (3)0.014 (3)
C100.051 (3)0.029 (2)0.034 (3)0.002 (2)0.014 (2)0.002 (2)
C120.036 (3)0.031 (3)0.040 (3)0.002 (2)0.011 (2)0.003 (2)
C140.030 (2)0.042 (3)0.049 (3)0.011 (2)0.012 (2)0.005 (2)
C150.054 (4)0.040 (3)0.057 (3)0.014 (2)0.018 (3)0.005 (2)
C160.054 (3)0.051 (3)0.052 (3)0.016 (3)0.015 (3)0.009 (3)
C170.039 (3)0.074 (4)0.058 (4)0.006 (3)0.025 (3)0.004 (3)
C190.026 (2)0.026 (2)0.032 (2)0.0001 (19)0.0075 (19)0.0024 (19)
C200.045 (3)0.039 (3)0.039 (3)0.001 (2)0.013 (2)0.006 (2)
C210.057 (3)0.028 (3)0.066 (4)0.006 (2)0.019 (3)0.002 (2)
C220.038 (3)0.043 (3)0.055 (3)0.004 (2)0.013 (3)0.014 (2)
C230.047 (3)0.045 (3)0.044 (3)0.001 (2)0.020 (2)0.006 (2)
C240.048 (3)0.028 (3)0.045 (3)0.000 (2)0.020 (2)0.001 (2)
Geometric parameters (Å, º) top
S18—O181.430 (3)C9—H9C0.9800
S18—O191.433 (3)C10—H10A0.9900
S18—N111.672 (4)C10—H10B0.9900
S18—C191.753 (4)C14—C151.513 (7)
F4—C41.333 (5)C14—C161.509 (7)
O1—N21.425 (5)C14—C171.530 (7)
O1—C51.360 (5)C15—H15A0.9800
O6—C31.325 (5)C15—H15B0.9800
O6—C71.478 (5)C15—H15C0.9800
O12—C121.201 (6)C16—H16A0.9800
O13—C121.322 (5)C16—H16B0.9800
O13—C141.492 (5)C16—H16C0.9800
N2—C31.304 (6)C17—H17A0.9800
N11—C101.471 (6)C17—H17B0.9800
N11—C121.394 (6)C17—H17C0.9800
C3—C41.429 (6)C19—C201.386 (6)
C4—C51.340 (6)C19—C241.379 (6)
C5—C101.497 (6)C20—H200.9500
C7—H71.0000C20—C211.384 (7)
C7—C81.505 (7)C21—H210.9500
C7—C91.509 (7)C21—C221.379 (7)
C8—H8A0.9800C22—H220.9500
C8—H8B0.9800C22—C231.378 (7)
C8—H8C0.9800C23—H230.9500
C9—H9A0.9800C23—C241.380 (7)
C9—H9B0.9800C24—H240.9500
O18—S18—O19119.20 (19)O12—C12—O13127.2 (4)
O18—S18—N11103.28 (19)O12—C12—N11122.1 (4)
O18—S18—C19109.01 (19)O13—C12—N11110.7 (4)
O19—S18—N11109.52 (19)O13—C14—C15101.9 (4)
O19—S18—C19109.01 (19)O13—C14—C16109.5 (4)
N11—S18—C19105.97 (19)O13—C14—C17108.6 (4)
C5—O1—N2109.1 (3)C15—C14—C17111.7 (4)
C3—O6—C7117.1 (3)C16—C14—C15112.0 (4)
C12—O13—C14121.1 (3)C16—C14—C17112.6 (4)
C3—N2—O1105.1 (3)C14—C15—H15A109.5
C10—N11—S18119.1 (3)C14—C15—H15B109.5
C12—N11—S18124.3 (3)C14—C15—H15C109.5
C12—N11—C10116.6 (4)H15A—C15—H15B109.5
O6—C3—C4123.1 (4)H15A—C15—H15C109.5
N2—C3—O6125.7 (4)H15B—C15—H15C109.5
N2—C3—C4111.2 (4)C14—C16—H16A109.5
F4—C4—C3125.3 (4)C14—C16—H16B109.5
F4—C4—C5128.8 (4)C14—C16—H16C109.5
C5—C4—C3105.9 (4)H16A—C16—H16B109.5
O1—C5—C10114.5 (4)H16A—C16—H16C109.5
C4—C5—O1108.6 (4)H16B—C16—H16C109.5
C4—C5—C10136.9 (4)C14—C17—H17A109.5
O6—C7—H7109.5C14—C17—H17B109.5
O6—C7—C8110.2 (4)C14—C17—H17C109.5
O6—C7—C9104.5 (4)H17A—C17—H17B109.5
C8—C7—H7109.5H17A—C17—H17C109.5
C8—C7—C9113.3 (5)H17B—C17—H17C109.5
C9—C7—H7109.5C20—C19—S18119.8 (3)
C7—C8—H8A109.5C24—C19—S18118.8 (3)
C7—C8—H8B109.5C24—C19—C20121.4 (4)
C7—C8—H8C109.5C19—C20—H20120.7
H8A—C8—H8B109.5C21—C20—C19118.7 (4)
H8A—C8—H8C109.5C21—C20—H20120.7
H8B—C8—H8C109.5C20—C21—H21120.0
C7—C9—H9A109.5C22—C21—C20120.1 (5)
C7—C9—H9B109.5C22—C21—H21120.0
C7—C9—H9C109.5C21—C22—H22119.7
H9A—C9—H9B109.5C23—C22—C21120.7 (5)
H9A—C9—H9C109.5C23—C22—H22119.7
H9B—C9—H9C109.5C22—C23—H23120.1
N11—C10—C5111.8 (4)C22—C23—C24119.9 (5)
N11—C10—H10A109.3C24—C23—H23120.1
N11—C10—H10B109.3C19—C24—C23119.3 (4)
C5—C10—H10A109.3C19—C24—H24120.4
C5—C10—H10B109.3C23—C24—H24120.4
H10A—C10—H10B107.9
S18—N11—C10—C585.5 (4)N11—S18—C19—C2467.2 (4)
S18—N11—C12—O12173.8 (4)C3—O6—C7—C875.5 (5)
S18—N11—C12—O137.9 (5)C3—O6—C7—C9162.4 (4)
S18—C19—C20—C21177.4 (4)C3—C4—C5—O10.9 (5)
S18—C19—C24—C23177.9 (4)C3—C4—C5—C10179.7 (5)
F4—C4—C5—O1177.5 (4)C4—C5—C10—N114.3 (8)
F4—C4—C5—C101.9 (9)C5—O1—N2—C31.3 (5)
O1—N2—C3—O6179.8 (4)C7—O6—C3—N25.4 (6)
O1—N2—C3—C40.7 (5)C7—O6—C3—C4175.2 (4)
O1—C5—C10—N11176.3 (4)C10—N11—C12—O125.0 (6)
O6—C3—C4—F42.1 (7)C10—N11—C12—O13173.3 (4)
O6—C3—C4—C5179.4 (4)C12—O13—C14—C15178.6 (4)
O18—S18—N11—C103.4 (4)C12—O13—C14—C1662.7 (5)
O18—S18—N11—C12175.4 (3)C12—O13—C14—C1760.6 (5)
O18—S18—C19—C20134.2 (4)C12—N11—C10—C593.4 (4)
O18—S18—C19—C2443.3 (4)C14—O13—C12—O125.0 (7)
O19—S18—N11—C10131.4 (3)C14—O13—C12—N11176.7 (4)
O19—S18—N11—C1247.4 (4)C19—S18—N11—C10111.2 (3)
O19—S18—C19—C202.6 (4)C19—S18—N11—C1270.0 (4)
O19—S18—C19—C24175.0 (4)C19—C20—C21—C220.7 (7)
N2—O1—C5—C41.4 (5)C20—C19—C24—C230.4 (7)
N2—O1—C5—C10179.0 (4)C20—C21—C22—C230.8 (8)
N2—C3—C4—F4178.4 (4)C21—C22—C23—C240.3 (8)
N2—C3—C4—C50.1 (5)C22—C23—C24—C190.3 (7)
N11—S18—C19—C20115.2 (4)C24—C19—C20—C210.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O19i0.992.473.121 (6)123
C15—H15B···O18ii0.982.593.571 (6)176
C22—H22···O12iii0.952.513.335 (6)145
C24—H24···O19i0.952.513.366 (5)150
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge Universiti Teknologi MARA for financial support.

References

First citationAbdul Manan, M. A. F., Cordes, D. B., Slawin, A. M., Bühl, M., Liao, V. W., Chua, H. C., Chebib, M. & O'Hagan, D. (2017). Chem. A Eur. J. 23, 10848–10852.  CAS Google Scholar
First citationAhmad, S., Abdul Qadir, M., Ahmed, M., Imran, M., Yousaf, N., Wani, T. A., Zargar, S., Ali, I. & Muddassar, M. (2023). Front. Chem. 11, 1206380.  CrossRef PubMed Google Scholar
First citationDayma, V., Chopra, J., Sharma, P., Dwivedi, A., Tripathi, I. P., Bhargava, A., Murugesan, V., Goswami, A. K. & Baroliya, P. K. (2020). Heliyon 6, e04787.  CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEsfahani, S. N., Damavandi, M. S., Sadeghi, P., Nazifi, Z., Salari-Jazi, A. & Massah, A. R. (2021). Sci. Rep. 11, 20088.  CrossRef PubMed Google Scholar
First citationFuchibe, K., Sakon, K., Suto, K., Eto, R., Nakazono, S. & Ichikawa, J. (2023). Org. Lett. 25, 7258–7262.  CrossRef CAS PubMed Google Scholar
First citationGidal, B. E., Resnick, T., Smith, M. C. & Wheless, J. W. (2024). Neur Clin Pract 14, e200210.  CrossRef Google Scholar
First citationHawk, M. K., Ryan, S. J., Zhang, X., Huang, P., Chen, J., Liu, C., Chen, J., Lindsay-Scott, P. J., Burnett, J., White, C., Lu, Y. & Rizzo, J. R. (2021). Org. Process Res. Dev. 25, 1167–1175.  CrossRef CAS Google Scholar
First citationHernández, Y., Marcos, I. S., Garrido, N. M., Sanz, F. & Diez, D. (2017). Acta Cryst. E73, 85–87.  CrossRef IUCr Journals Google Scholar
First citationImberg, L., Siutkina, A. I., Erbacher, C., Schmidt, J., Broekmans, D. F., Ovsepyan, R. A., Daniliuc, C. G., Gonçalves de Oliveira, E., Serafim, M. S. M., O'Donoghue, A. J. & Pillaiyar, T. (2025). ACS Pharmacol. Transl. Sci. 8, 146–172.  CrossRef CAS PubMed Google Scholar
First citationKhrustalev, V. N., Çelikesir, S. T., Akkurt, M., Kolesnik, I. A., Potkin, V. I. & Mlowe, S. (2022). Acta Cryst. E78, 603–607.  CrossRef IUCr Journals Google Scholar
First citationKilbile, J. T., Tamboli, Y., Ansari, S. A., Rathod, S. S., Choudhari, P. B., Alkahtani, H. & Sapkal, S. B. (2024). Polycyclic Aromat. Compd. 44, 4157–4177.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & Mohana­Krishnan, A. K. (2024). Acta Cryst. E80, 1110–1117.  CrossRef IUCr Journals Google Scholar
First citationMartinez, G., Tolentino, K., Sukheja, P., Webb, J., McNamara, C. W., Chatterjee, A. K. & Yang, B. (2025). Bioorg. Med. Chem. Lett. 119, 130108.  CrossRef PubMed Google Scholar
First citationMoroni, A. B., Bottoso, T., Lionello, D. F., Vega, D. R., Kaufman, T. S. & Calvo, N. L. (2024). Acta Cryst. E80, 1064–1068.  CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2015). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRusu, A., Moga, I. M., Uncu, L. & Hancu, G. (2023). Pharmaceutics 15, 2554.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoliman, M. M., Elwahy, A. H., Sayed, A. M., Ibrahim, M., Dawoud, M. A., Ali, S. H. M., Nady, M. T. S., Hassan, N. A., Saad, W. & Abdelhamid, I. A. (2025). Naunyn-Schmiedeberg's Arch. Pharmacol. 1–31.  Google Scholar
First citationVaickelionienė, R., Petrikaitė, V., Vaškevičienė, I., Pavilonis, A. & Mickevičius, V. (2023). PLoS One 18, e0283289.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146