organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4,12-Diselena-5,6,13,14-tetra­aza­tri­cyclo­[9.3.0.03,7]tetra­deca-1(11),3(7),5,13-tetra­ene

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 8 April 2025; accepted 10 April 2025; online 2 May 2025)

In the title com­pound, C8H8N4Se2, two almost planar 1,2,3-selena­diazo­les are annulated to a cyclo­octa-1,4-diene with a boat–chair conformation, giving the mol­ecule a butterfly shape.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title com­pound, C8H8N4Se2, was prepared as part of a project focusing on medium-sized cyclo­alkynes with additional sterically demanding groups (Bissinger et al., 1988[Bissinger, H. J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. 1988, 221-224.]; Detert et al., 1994[Detert, H., Rose, B., Mayer, W. & Meier, H. (1994). Chem. Ber. 127, 1529-1532.]; Detert & Meier, 1997[Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, 1997, 1557-1563.]). Bis-1,2,3-selana­diazo­les are important sources for medium-sized cyclo­alkadiynes (Gleiter et al., 1988[Gleiter, R., Karcher, M., Jahn, R. & Irngartinger, H. (1988). Chem. Ber. 121, 735-740.]) and the structure of an isomer of the title com­pound has recently been reported (Detert & Schollmeyer, 2020[Detert, H. & Schollmeyer, D. (2020). IUCrData, 5, x201585.]). The tricyclic mol­ecule adopts a butterfly-like shape with a boat–chair conformation of the eight-membered ring and two 1,2,3-selena­diazo­le rings are fused to the central ring (Fig. 1[link]). Selena­diazole ring 1 (C2—N3—N4—Se5—C6) is planar within 0.003 (3) Å and selena­diazole ring 2 (C10—N11—N12—Se13—C14) within 0.008 (3) Å. While the connecting C1 atom lies above the plane of both selena­diazo­le rings [selena­diazole 1: 0.130 (3) Å; selena­diazole 2: 0.118 (3) Å], the adjacent C atoms of the propyl­ene tether are either above these planes [C7: 0.037 (3) Å] or below [C9: −0.134 (3) Å]. The planes of the selena­diazo­le rings subtend a dihedral angle of 79.64 (13)°. Strain in the medium-sized ring is reflected in distortion of the bond angles on C7 [113.8 (3)°], C8 [115.8 (3)°] and C9 [118.4 (3)°], whereas a bond angle of 108.3 (2)° for C2—C1—C14 is close to the perfect tetra­hedral angle. The packing diagram of the title com­pound is shown in Fig. 2[link].

[Figure 1]
Figure 1
View of the title com­pound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the packing diagram, viewed along the a-axis direction.

Synthesis and crystallization

The title com­pound was prepared from cyclo­octane-1,4-diol via Jones oxidation, formation of the semicarbazone and reaction with selenous acid in a 4.4% overall yield [m.p. 398–400 K (decom­position)]. Crystals were grown by slow evaporation of a solution in chloro­form–propan-2-ol. 1H NMR (400 MHz, CDCl3): δ 5.01 (s, 2H, H2C-2), 3.25 and 3.10 (each: t, 2H, J = 6.6 Hz, H2C-8,10), 1.95 (pseudo-q, 2H, H2C-9). 13C NMR (100 MHz, CDCl3): δ 159.4, 158.9, 156.4, 156.1 (C-1, 2, 7, 11); 26.7 (C-2), 26.4 (C-9), 25.7, 24.7 (C-8, 10) 41.5, 29.4, 28.5, 27.4, 25.5, 22.5, 20.0. 77Se NMR (73 MHz, CDCl3, SeO2/D2O as reference): δ 241.3, 240.7; UV (EtOH): λ (logɛ): 222 (4.09), 287 nm (3.45), MS (FD): 320 (M+, Se2-isotope pattern), 292 (M+—N2, Se2-isotope pattern), 264 (M+—N2, Se2-isotope pattern).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms attached to C atoms were placed at calculated positions and were refined in the riding-model approximation, with C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula C8H8N4Se2
Mr 318.10
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 7.2217 (4), 15.6664 (8), 8.4925 (5)
β (°) 90.110 (4)
V3) 960.82 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.66
Crystal size (mm) 0.42 × 0.31 × 0.21
 
Data collection
Diffractometer STOE IPDS 2T
Absorption correction Integration
Tmin, Tmax 0.107, 0.251
No. of measured, independent and observed [I > 2σ(I)] reflections 5404, 2296, 2066
Rint 0.022
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.17
No. of reflections 2296
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.44
Computer programs: WinXpose in X-AREA (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), Recipe in X-AREA (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), Integrate in X-AREA (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

4,12-Diselena-5,6,13,14-tetraazatricyclo[9.3.0.03,7]tetradeca-1(11),3(7),5,13-tetraene top
Crystal data top
C8H8N4Se2F(000) = 608
Mr = 318.10Dx = 2.199 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2217 (4) ÅCell parameters from 11184 reflections
b = 15.6664 (8) Åθ = 2.7–28.3°
c = 8.4925 (5) ŵ = 7.66 mm1
β = 90.110 (4)°T = 120 K
V = 960.82 (9) Å3Block, colorless
Z = 40.42 × 0.31 × 0.21 mm
Data collection top
STOE IPDS 2T
diffractometer
2296 independent reflections
Radiation source: sealed X-ray tube, 12x0.4mm long-fine focus2066 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.022
rotation method, ω scansθmax = 28.0°, θmin = 2.7°
Absorption correction: integrationh = 98
Tmin = 0.107, Tmax = 0.251k = 2020
5404 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0269P)2 + 2.435P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
2296 reflectionsΔρmax = 0.48 e Å3
127 parametersΔρmin = 0.44 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4215 (4)0.37887 (19)0.9033 (4)0.0160 (6)
H1A0.3025320.3808530.9609430.019*
H1B0.5224370.3698670.9805960.019*
C20.4515 (4)0.46134 (19)0.8159 (3)0.0152 (6)
N30.6299 (4)0.49038 (17)0.7962 (3)0.0178 (5)
N40.6528 (4)0.55671 (18)0.7130 (3)0.0221 (6)
Se50.42162 (5)0.59667 (2)0.63795 (4)0.02054 (10)
C60.3146 (4)0.5069 (2)0.7443 (4)0.0157 (6)
C70.1118 (4)0.4872 (2)0.7445 (4)0.0180 (6)
H7A0.0424500.5397190.7175570.022*
H7B0.0749260.4699280.8521250.022*
C80.0561 (4)0.4161 (2)0.6286 (4)0.0185 (6)
H8A0.0763610.4234680.6015380.022*
H8B0.1280390.4236440.5304460.022*
C90.0848 (4)0.3240 (2)0.6872 (4)0.0171 (6)
H9A0.0392330.3210040.7969660.020*
H9B0.0046830.2861990.6231710.020*
C100.2770 (4)0.2876 (2)0.6847 (3)0.0153 (6)
N110.3132 (4)0.22323 (17)0.5779 (3)0.0175 (5)
N120.4723 (4)0.18783 (17)0.5841 (3)0.0194 (5)
Se130.61533 (4)0.23617 (2)0.74477 (4)0.01775 (9)
C140.4189 (4)0.30689 (19)0.7851 (3)0.0141 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (14)0.0145 (14)0.0158 (13)0.0004 (11)0.0014 (11)0.0020 (11)
C20.0175 (14)0.0135 (13)0.0147 (13)0.0003 (11)0.0004 (11)0.0039 (11)
N30.0174 (13)0.0166 (12)0.0195 (12)0.0013 (10)0.0014 (10)0.0040 (10)
N40.0211 (14)0.0207 (14)0.0246 (14)0.0032 (11)0.0018 (11)0.0046 (11)
Se50.02600 (18)0.01483 (16)0.02079 (16)0.00047 (12)0.00078 (13)0.00212 (11)
C60.0169 (14)0.0152 (14)0.0151 (13)0.0011 (11)0.0004 (11)0.0006 (11)
C70.0142 (14)0.0180 (15)0.0217 (15)0.0037 (11)0.0019 (12)0.0011 (12)
C80.0120 (14)0.0218 (16)0.0217 (15)0.0006 (11)0.0015 (12)0.0011 (12)
C90.0132 (14)0.0198 (15)0.0182 (14)0.0017 (11)0.0005 (11)0.0005 (12)
C100.0157 (14)0.0150 (13)0.0152 (13)0.0011 (11)0.0002 (11)0.0016 (11)
N110.0217 (13)0.0156 (12)0.0153 (12)0.0004 (10)0.0012 (10)0.0009 (10)
N120.0224 (14)0.0193 (13)0.0165 (12)0.0003 (11)0.0011 (10)0.0020 (10)
Se130.01585 (16)0.01742 (16)0.01997 (16)0.00329 (11)0.00227 (11)0.00193 (11)
C140.0143 (14)0.0125 (13)0.0155 (13)0.0007 (11)0.0007 (11)0.0002 (10)
Geometric parameters (Å, º) top
C1—C21.506 (4)C7—H7B0.9900
C1—C141.510 (4)C8—C91.540 (4)
C1—H1A0.9900C8—H8A0.9900
C1—H1B0.9900C8—H8B0.9900
C2—C61.362 (4)C9—C101.501 (4)
C2—N31.377 (4)C9—H9A0.9900
N3—N41.268 (4)C9—H9B0.9900
N4—Se51.892 (3)C10—C141.366 (4)
Se5—C61.842 (3)C10—N111.382 (4)
C6—C71.497 (4)N11—N121.277 (4)
C7—C81.540 (4)N12—Se131.870 (3)
C7—H7A0.9900Se13—C141.833 (3)
C2—C1—C14108.3 (2)C9—C8—C7115.8 (3)
C2—C1—H1A110.0C9—C8—H8A108.3
C14—C1—H1A110.0C7—C8—H8A108.3
C2—C1—H1B110.0C9—C8—H8B108.3
C14—C1—H1B110.0C7—C8—H8B108.3
H1A—C1—H1B108.4H8A—C8—H8B107.4
C6—C2—N3116.8 (3)C10—C9—C8118.4 (3)
C6—C2—C1124.4 (3)C10—C9—H9A107.7
N3—C2—C1118.6 (3)C8—C9—H9A107.7
N4—N3—C2117.5 (3)C10—C9—H9B107.7
N3—N4—Se5110.0 (2)C8—C9—H9B107.7
C6—Se5—N487.31 (13)H9A—C9—H9B107.1
C2—C6—C7126.9 (3)C14—C10—N11115.4 (3)
C2—C6—Se5108.3 (2)C14—C10—C9126.9 (3)
C7—C6—Se5124.7 (2)N11—C10—C9117.6 (3)
C6—C7—C8113.8 (3)N12—N11—C10117.5 (3)
C6—C7—H7A108.8N11—N12—Se13110.5 (2)
C8—C7—H7A108.8C14—Se13—N1287.40 (13)
C6—C7—H7B108.8C10—C14—C1126.1 (3)
C8—C7—H7B108.8C10—C14—Se13109.3 (2)
H7A—C7—H7B107.7C1—C14—Se13124.6 (2)
C14—C1—C2—C683.3 (4)C7—C8—C9—C1078.1 (4)
C14—C1—C2—N391.8 (3)C8—C9—C10—C1474.3 (4)
C6—C2—N3—N40.2 (4)C8—C9—C10—N11110.8 (3)
C1—C2—N3—N4175.2 (3)C14—C10—N11—N120.7 (4)
C2—N3—N4—Se50.1 (3)C9—C10—N11—N12174.7 (3)
N3—N4—Se5—C60.3 (2)C10—N11—N12—Se130.2 (3)
N3—C2—C6—C7178.3 (3)N11—N12—Se13—C140.8 (2)
C1—C2—C6—C73.1 (5)N11—C10—C14—C1174.7 (3)
N3—C2—C6—Se50.5 (3)C9—C10—C14—C110.4 (5)
C1—C2—C6—Se5174.7 (2)N11—C10—C14—Se131.3 (3)
N4—Se5—C6—C20.4 (2)C9—C10—C14—Se13173.7 (2)
N4—Se5—C6—C7178.3 (3)C2—C1—C14—C1075.3 (4)
C2—C6—C7—C878.4 (4)C2—C1—C14—Se13100.0 (3)
Se5—C6—C7—C899.1 (3)N12—Se13—C14—C101.1 (2)
C6—C7—C8—C982.1 (3)N12—Se13—C14—C1174.9 (3)
 

References

First citationBissinger, H. J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. 1988, 221–224.  CrossRef Google Scholar
First citationDetert, H. & Meier, H. (1997). Liebigs Ann. Recl, 1997, 1557–1563.  CrossRef Google Scholar
First citationDetert, H., Rose, B., Mayer, W. & Meier, H. (1994). Chem. Ber. 127, 1529–1532.  CrossRef CAS Google Scholar
First citationDetert, H. & Schollmeyer, D. (2020). IUCrData, 5, x201585.  Google Scholar
First citationGleiter, R., Karcher, M., Jahn, R. & Irngartinger, H. (1988). Chem. Ber. 121, 735–740.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146