organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N′-[Oxybis(benzene-4,1-di­yl)]diacetamide

crossmark logo

aDepartment of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA, bDepartment of Mechanical Engineering, Southern University and A&M College, Baton, Rouge, Louisiana 70813, USA, and cDepartment of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
*Correspondence e-mail: rao_uppu@subr.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 23 April 2025; accepted 28 April 2025; online 2 May 2025)

In the title compound, C16H16N2O3, the phenyl groups are twisted away from coplanarity with the ether linkage, forming a dihedral angle of 59.49 (4)° with each other. The ether oxygen atom lies somewhat out of both phenyl planes, by 0.066 (2) and 0.097 (2) Å. The acetamide substituents have quite different conformations with respect to the phenyl groups on either side of the mol­ecule. On one side, the C—C—N—C torsion angle is 21.0 (2)°, while on the other side it is 76.4 (2)°. In the crystal, the acetamide N—H groups form inter­molecular N—H⋯O hydrogen bonds to acetamide O atom, with both NH groups donating to the same mol­ecule. Thus, ladder-like chains exist in the [101] direction. One of the methyl groups has its H atoms disordered into two orientations, and the crystal chosen for data collection was found to be twinned.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Acetamino­phen (N-[4-hy­droxy­phen­yl]acetamide, C8H9NO2), also known by various brand names such as Tylenol or Panadol in different countries, ranks among the most widely used pain relievers and fever reducers worldwide (Bertolini et al., 2006[Bertolini, A., Ferrari, A., Ottani, A., Guerzoni, S., Tacchi, R. & Leone, S. (2006). CNS Drug Rev. 12, 250-275.]; Ohashi & Kohno, 2020[Ohashi, N. & Kohno, T. (2020). Front. Pharmacol. 11, 580289.]). Introduced in the 1950s, current estimates show that over 25 billion doses are sold each year in the United States alone (Yoon et al., 2016[Yoon, E., Babar, A., Choudhary, M., Kutner, M. & Pyrsopoulos, N. (2016). J. Clin. Transl. Hepatol 4, 131-142.]). While this underscores the importance of acetamino­phen in over-the-counter pain management, as with most medications, the focus extends beyond the safety and efficacy of the active pharmaceutical ingredient (API). Regulatory agencies also pay close attention to impurities, particularly those present in small amounts but still capable of raising concerns (ICH, 2006a[ICH (2006a). International Conference on Harmonisation. ICH Guideline Q3A(R2): Impurities in New Drug Substances, Step 4. ICH, Geneva, Switzerland. Available from: https://database.ich.org/sites/default/files/Q3A%28R2%29%20Guideline.pdf],b[ICH (2006b). International Conference on Harmonisation. ICH Guideline Q3B(R2): Impurities in New Drug Products, Step 4. ICH, Geneva, Switzerland. Available from: https://database.ich.org/sites/default/files/Q3B%28R2%29%20Guideline.pdf]). Although these impurities are generally not expected to cause immediate harm, about 50,000 emergency room visits in the United States each year are linked to acetamino­phen toxicity, which can result in severe liver damage (specifically, centrilobular necrosis) and, in some cases, death (Stravitz & Lee, 2019[Stravitz, R. T. & Lee, W. M. (2019). Lancet 394, 869-881.]; Yoon et al., 2016[Yoon, E., Babar, A., Choudhary, M., Kutner, M. & Pyrsopoulos, N. (2016). J. Clin. Transl. Hepatol 4, 131-142.]). In recent years, the emphasis on monitoring even trace levels of impurities has increased, given their potential impact on both effectiveness of the drug and its long-term safety (ICH, 2006a[ICH (2006a). International Conference on Harmonisation. ICH Guideline Q3A(R2): Impurities in New Drug Substances, Step 4. ICH, Geneva, Switzerland. Available from: https://database.ich.org/sites/default/files/Q3A%28R2%29%20Guideline.pdf], 2021[ICH (2021). International Conference on Harmonisation. ICH Guideline Q3C(R8) on impurities: Guideline for residual solvents. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Available online: https://database.ich.org/sites/default/files/ICH_Q3C-R8_Guideline_Step4_2021_0422_1.pdf (Accessed: April 2025).]).

The title compound, N,N′-(oxydi­benzene-4,1-di­yl)diacetamide (C16H16N2O3), commonly known as Impurity N, is one of over a dozen potential byproducts that can occur in acetamino­phen. Typically present at levels below 0.1% of the active pharmaceutical ingredient (API) (Arıkan et al., 2023[Arıkan, C. C., Kulabaş, N. & Küçükgüzel, İ. (2023). J. Pharm. Biomed. Anal. 223, 115123.]), Impurity N forms when 4-amino­phenol undergoes oxidative coupling during the manufacturing process. In standard industrial practice, 4-amino­phenol is acetyl­ated to produce acetamino­phen; however, if two 4-amino­phenol mol­ecules couple oxidatively, they form 4,4′-oxydianiline, which then becomes Impurity N upon acetyl­ation (NCBI, 2025[NCBI (2025). National Center for Biotechnology Information. PubChem Patent Summary for CN-115872885-A. Retrieved April 4, 2025]). Even minimal traces of 4-amino­phenol that dimerize or incomplete reduction of 4-nitro­phenol can introduce this impurity. Additionally, under certain oxidizing conditions during storage, two acetamino­phen mol­ecules can theoretically couple via their phenolic –OH groups, creating the same ether-linked dimer (Rao & Narasaraju, 2006[Rao, R. N. & Narasaraju, A. (2006). Anal. Sci. 22, 287-292.]). These pathways are generally minor, and robust process controls combined with proper storage conditions typically keep Impurity N at trace levels (Kamberi et al., 2004[Kamberi, M., Riley, C. M., Ma (Sharon), X. & Huang, C. W. (2004). J. Pharm. Biomed. Anal. 34, 123-128.]). Various analytical methods, such as reversed-phase HPLC or UPLC coupled with UV–Vis spectroscopy, photodiode array, or mass spectrometry detection are used to detect Impurity N with sensitivity down to p.p.m. or sub-p.p.m., ensuring that its presence remains within acceptable limits in the final acetamino­phen batches (Arıkan et al., 2023[Arıkan, C. C., Kulabaş, N. & Küçükgüzel, İ. (2023). J. Pharm. Biomed. Anal. 223, 115123.]).

Impurity N currently lacks any toxicological or pharmacological characterization. However, by analogy to the metabolism of acetamino­phen and other 4-alk­oxy­anilides, this impurity is likely to undergo partial or complete de­acetyl­ation (Nohmi et al., 1984[Nohmi, T., Yoshikawa, K., Ishidate, M. Jr, Hiratsuka, A. & Watabe, T. (1984). Chem. Pharm. Bull. 32, 4525-4531.]; Ohashi & Kohno, 2020[Ohashi, N. & Kohno, T. (2020). Front. Pharmacol. 11, 580289.]; Prescott, 1980[Prescott, L. F. (1980). Br. J. Clin. Pharmacol. 10, 291S298S.]). Such metabolism would yield aromatic amine derivatives, notably N[4-(4-amino­phen­oxy)phen­yl]acetamide (the mono-de­acetyl­ated product) and 4,4′-oxydianiline (the fully de­acetyl­ated di­amine). In turn, these aromatic amines could undergo further biotransformations analogous to those of 4-amino­phenol and 4-alk­oxy­aniline, potentially forming N-arachidonoylphenolamine (AM404)-like anandamide analogues or 4-alk­oxy­nitro­sophenol derivatives (Ohashi & Kohno, 2020[Ohashi, N. & Kohno, T. (2020). Front. Pharmacol. 11, 580289.]; Zygmunt et al., 2000[Zygmunt, P. M., Chuang, H., Movahed, P., Julius, D. & Högestätt, E. D. (2000). Eur. J. Pharmacol. 396, 39-42.]). Metabolites of this type are known to elicit diverse pharmacological and pathophysiological effects. For example, certain 4-alk­oxy­aniline metabolites can inhibit cyclo­oxygenase-1 (COX-1) and have demonstrated carcinogenic and nephrotoxic effects (Kankuri et al., 2003[Kankuri, E., Solatunturi, E. & Vapaatalo, H. (2003). Thromb. Res. 110, 299-303.]; NTP, 1990[NTP (1990). National Toxicology Program. NTP Technical Report 394. NIH Publication 90-2839.]; Togei et al., 1987[Togei, K., Sano, N., Maeda, T., Shibata, M. & Otsuka, H. (1987). J. Natl Cancer Inst. 79, 1151-1158.]). These metabolic considerations suggest that Impurity N could similarly give rise to bioactive or toxic species, warranting further toxicological evaluation, despite the current lack of direct data. To better understand the mol­ecular structure and to inform studies of its potential biological inter­actions, we crystallized Impurity N from aqueous solution and determined its structure via single-crystal X-ray diffraction.

The title compound, C16H16N2O3 crystallizes with one mol­ecule in the asymmetric unit (Fig. 1[link]) in space group P21/n. The C1–C6 and C9–C14 phenyl groups are twisted out of coplanarity with the ether linkage, forming a dihedral angle of 59.49 (4)° with each other. The ether oxygen atom, O1, lies slightly out of the planes of both phenyl rings, by 0.066 (2) and 0.097 (2) Å, respectively. The acetamide substituents adopt markedly different conformations relative to the adjacent phenyl groups. On one side of the mol­ecule, the C3—C4—N1—C7 torsion angle is 21.0 (2)°, while on the opposite side, the C13—C12—N2—C15 angle is 76.4 (2)°.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with 50% ellipsoids.

In the extended structure, the acetamide N—H groups participate in N—H⋯O hydrogen bonds (Table 1[link]), each donating to the carbonyl oxygen atom of another acetamide group. Both N—H donors inter­act with the same acceptor mol­ecule at x + [{1\over 2}], [{3\over 2}] − y, [{1\over 2}] + z, resulting in the formation of ladder-like chains extending along the [101] direction, as shown in Fig. 2[link]. The N⋯O distances in these hydrogen bonds are 2.834 (2) and 2.9066 (18) Å. One of the methyl groups exhibits hydrogen-atom disorder over two orientations, and the crystal was a pseudomerohedral twin. The unit-cell packing is illustrated in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.88 (2) 1.96 (2) 2.834 (2) 169.5 (19)
N2—H2N⋯O2i 0.88 (2) 2.03 (2) 2.9066 (18) 170 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the the hydrogen bonding with 50% ellipsoids.
[Figure 3]
Figure 3
The unit-cell packing. Only NH hydrogen atoms are shown.

Synthesis and crystallization

N,N′-(Oxydi­benzene-4,1-di­yl)diacetamide, C16H16N2O3 (CAS 3070–86-8) was obtained from AmBeed (Arlington Heights, Illinois, USA) and was used without further purification. Crystals in the form of colorless laths were prepared by slow cooling of a nearly saturated solution of the title compound in boiling deionized water (resistance ca. 18 MΩ cm−1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal was a slight pseudomerohedral twin with twin law [1 0 0, 0 −1 0, 0 0 −1] and refined BASF parameter of 0.0053 (5). All H atoms were located in difference maps and those on C were thereafter treated as riding in geometrically idealized positions with C—H distances 0.95 Å for phenyl and 0.98 Å for methyl. Coordinates of the N—H atom were refined. Uiso(H) values were assigned as 1.2Ueq for the attached atom (1.5 for meth­yl). The H atoms on methyl group C16 were disordered into two conformations and were treated as two half-occupied sets related by a 60° torsional rotation. A residual density peak of 0.90 e Å−3 lies 0.95 Å from the O atom (O3) of the acetamide containing the disordered methyl group, perhaps indicative of further disorder in this substituent or imperfect handling of the twinning. The 0 4 0 reflection was omitted from the refinement, having negative Fo and large Fc.

Table 2
Experimental details

Crystal data
Chemical formula C16H16N2O3
Mr 284.31
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.5676 (5), 33.185 (3), 7.6949 (5)
β (°) 90.325 (2)
V3) 1421.68 (19)
Z 4
Radiation type Ag Kα, λ = 0.56086 Å
μ (mm−1) 0.06
Crystal size (mm) 0.32 × 0.27 × 0.09
 
Data collection
Diffractometer Bruker D8 Venture DUO with Photon III C14
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.933, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 22399, 4306, 3468
Rint 0.065
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.179, 1.05
No. of reflections 4306
No. of parameters 198
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.90, −0.43
Computer programs: APEX5 and SAINT (Bruker, 2016[Bruker (2016). APEX5 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a), SHELXL2019/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

N,N'-[Oxybis(benzene-4,1-diyl)]diacetamide top
Crystal data top
C16H16N2O3F(000) = 600
Mr = 284.31Dx = 1.328 Mg m3
Monoclinic, P21/nAg Kα radiation, λ = 0.56086 Å
a = 5.5676 (5) ÅCell parameters from 4722 reflections
b = 33.185 (3) Åθ = 2.5–23.6°
c = 7.6949 (5) ŵ = 0.06 mm1
β = 90.325 (2)°T = 100 K
V = 1421.68 (19) Å3Plate, colourless
Z = 40.32 × 0.27 × 0.09 mm
Data collection top
Bruker D8 Venture DUO with Photon III C14
diffractometer
3468 reflections with I > 2σ(I)
Radiation source: IµS 3.0 microfocusRint = 0.065
φ and ω scansθmax = 23.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 75
Tmin = 0.933, Tmax = 0.995k = 4747
22399 measured reflectionsl = 1010
4306 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0799P)2 + 0.725P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4306 reflectionsΔρmax = 0.90 e Å3
198 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.1938 (2)0.75069 (3)0.64144 (15)0.0233 (2)
O20.4346 (2)0.56780 (3)0.40229 (16)0.0333 (3)
O30.5307 (3)0.91576 (5)0.3437 (2)0.0510 (4)
N10.6286 (3)0.59932 (4)0.62577 (17)0.0247 (3)
H1N0.756 (4)0.5980 (6)0.695 (3)0.030*
N20.6478 (3)0.90044 (4)0.61679 (18)0.0263 (3)
H2N0.744 (4)0.9074 (6)0.703 (3)0.032*
C10.3149 (3)0.71413 (4)0.63352 (18)0.0209 (3)
C20.1942 (3)0.68320 (4)0.54986 (19)0.0222 (3)
H2A0.0450520.6883890.4935850.027*
C30.2906 (3)0.64448 (4)0.54791 (19)0.0228 (3)
H30.2058550.6231360.4927380.027*
C40.5119 (3)0.63719 (4)0.62715 (19)0.0215 (3)
C50.6302 (3)0.66855 (4)0.71332 (19)0.0218 (3)
H50.7797820.6635290.7692970.026*
C60.5316 (3)0.70702 (4)0.71806 (19)0.0223 (3)
H60.6114230.7281570.7783660.027*
C70.5930 (3)0.56846 (4)0.5137 (2)0.0261 (3)
C80.7694 (4)0.53426 (5)0.5312 (3)0.0348 (4)
H8A0.8939030.5414970.6161440.052*
H8B0.8437720.5290050.4183650.052*
H8C0.6851130.5100150.5705800.052*
C90.3190 (3)0.78663 (4)0.63494 (18)0.0204 (3)
C100.2098 (3)0.81915 (5)0.7162 (2)0.0234 (3)
H100.0638040.8155530.7776080.028*
C110.3159 (3)0.85704 (4)0.7068 (2)0.0246 (3)
H110.2405170.8795290.7599810.030*
C120.5310 (3)0.86207 (4)0.62024 (19)0.0228 (3)
C130.6378 (3)0.82935 (4)0.53787 (19)0.0230 (3)
H130.7842910.8329530.4770800.028*
C140.5318 (3)0.79144 (4)0.54388 (19)0.0222 (3)
H140.6037470.7691760.4866100.027*
C150.6455 (4)0.92400 (5)0.4754 (2)0.0335 (4)
C160.8005 (4)0.96122 (6)0.4857 (3)0.0458 (5)
H16A0.8774020.9626180.6004460.069*0.5
H16B0.9241510.9600140.3957410.069*0.5
H16C0.7006680.9851940.4677260.069*0.5
H16D0.7907450.9759330.3754960.069*0.5
H16E0.7439960.9785370.5802010.069*0.5
H16F0.9674790.9533570.5082150.069*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0205 (5)0.0192 (5)0.0303 (6)0.0009 (4)0.0001 (4)0.0008 (4)
O20.0427 (7)0.0221 (5)0.0349 (6)0.0029 (5)0.0140 (5)0.0010 (4)
O30.0667 (11)0.0395 (8)0.0464 (8)0.0211 (7)0.0289 (8)0.0121 (6)
N10.0271 (7)0.0211 (6)0.0257 (6)0.0031 (5)0.0055 (5)0.0009 (5)
N20.0302 (7)0.0218 (6)0.0269 (7)0.0051 (5)0.0066 (5)0.0020 (5)
C10.0207 (7)0.0202 (6)0.0219 (6)0.0009 (5)0.0003 (5)0.0019 (5)
C20.0203 (7)0.0236 (7)0.0228 (7)0.0002 (5)0.0016 (5)0.0006 (5)
C30.0225 (7)0.0225 (7)0.0235 (7)0.0012 (5)0.0025 (5)0.0003 (5)
C40.0235 (7)0.0198 (6)0.0212 (7)0.0013 (5)0.0003 (5)0.0014 (5)
C50.0209 (7)0.0231 (7)0.0215 (6)0.0012 (5)0.0023 (5)0.0011 (5)
C60.0227 (7)0.0221 (7)0.0219 (7)0.0002 (5)0.0017 (5)0.0003 (5)
C70.0313 (8)0.0194 (6)0.0275 (7)0.0011 (6)0.0039 (6)0.0013 (5)
C80.0406 (10)0.0238 (7)0.0399 (9)0.0080 (7)0.0109 (8)0.0036 (6)
C90.0201 (6)0.0201 (6)0.0210 (6)0.0003 (5)0.0035 (5)0.0001 (5)
C100.0211 (7)0.0244 (7)0.0247 (7)0.0022 (5)0.0006 (5)0.0021 (5)
C110.0256 (7)0.0221 (7)0.0261 (7)0.0029 (5)0.0020 (6)0.0043 (5)
C120.0249 (7)0.0201 (6)0.0231 (7)0.0007 (5)0.0052 (5)0.0014 (5)
C130.0226 (7)0.0226 (7)0.0237 (7)0.0005 (5)0.0001 (5)0.0000 (5)
C140.0230 (7)0.0213 (6)0.0224 (7)0.0009 (5)0.0013 (5)0.0010 (5)
C150.0399 (10)0.0250 (8)0.0355 (9)0.0077 (7)0.0111 (7)0.0029 (6)
C160.0603 (13)0.0322 (9)0.0446 (11)0.0202 (9)0.0143 (10)0.0058 (8)
Geometric parameters (Å, º) top
O1—C91.3827 (17)C8—H8A0.9800
O1—C11.3896 (17)C8—H8B0.9800
O2—C71.227 (2)C8—H8C0.9800
O3—C151.226 (2)C9—C101.389 (2)
N1—C71.353 (2)C9—C141.389 (2)
N1—C41.4150 (19)C10—C111.392 (2)
N1—H1N0.88 (2)C10—H100.9500
N2—C151.340 (2)C11—C121.384 (2)
N2—C121.4299 (19)C11—H110.9500
N2—H2N0.88 (2)C12—C131.392 (2)
C1—C21.384 (2)C13—C141.391 (2)
C1—C61.388 (2)C13—H130.9500
C2—C31.393 (2)C14—H140.9500
C2—H2A0.9500C15—C161.508 (2)
C3—C41.392 (2)C16—H16A0.9800
C3—H30.9500C16—H16B0.9800
C4—C51.397 (2)C16—H16C0.9800
C5—C61.390 (2)C16—H16D0.9800
C5—H50.9500C16—H16E0.9800
C6—H60.9500C16—H16F0.9800
C7—C81.506 (2)
C9—O1—C1120.45 (12)H8A—C8—H8C109.5
C7—N1—C4127.70 (13)H8B—C8—H8C109.5
C7—N1—H1N117.3 (14)O1—C9—C10115.59 (13)
C4—N1—H1N114.1 (13)O1—C9—C14123.29 (13)
C15—N2—C12122.17 (14)C10—C9—C14120.97 (13)
C15—N2—H2N117.5 (14)C9—C10—C11119.45 (14)
C12—N2—H2N119.5 (14)C9—C10—H10120.3
C2—C1—C6120.72 (13)C11—C10—H10120.3
C2—C1—O1115.69 (13)C12—C11—C10120.20 (14)
C6—C1—O1123.27 (13)C12—C11—H11119.9
C1—C2—C3120.20 (14)C10—C11—H11119.9
C1—C2—H2A119.9C11—C12—C13119.87 (14)
C3—C2—H2A119.9C11—C12—N2120.73 (13)
C4—C3—C2119.72 (14)C13—C12—N2119.39 (14)
C4—C3—H3120.1C14—C13—C12120.53 (14)
C2—C3—H3120.1C14—C13—H13119.7
C3—C4—C5119.48 (13)C12—C13—H13119.7
C3—C4—N1123.81 (13)C9—C14—C13118.95 (13)
C5—C4—N1116.72 (13)C9—C14—H14120.5
C6—C5—C4120.73 (14)C13—C14—H14120.5
C6—C5—H5119.6O3—C15—N2122.93 (16)
C4—C5—H5119.6O3—C15—C16121.45 (16)
C1—C6—C5119.09 (13)N2—C15—C16115.60 (16)
C1—C6—H6120.5C15—C16—H16A109.5
C5—C6—H6120.5C15—C16—H16B109.5
O2—C7—N1124.15 (14)H16A—C16—H16B109.5
O2—C7—C8120.98 (14)C15—C16—H16C109.5
N1—C7—C8114.85 (14)H16A—C16—H16C109.5
C7—C8—H8A109.5H16B—C16—H16C109.5
C7—C8—H8B109.5H16D—C16—H16E109.5
H8A—C8—H8B109.5H16D—C16—H16F109.5
C7—C8—H8C109.5H16E—C16—H16F109.5
C9—O1—C1—C2146.40 (13)C1—O1—C9—C10153.03 (13)
C9—O1—C1—C640.1 (2)C1—O1—C9—C1431.3 (2)
C6—C1—C2—C30.7 (2)O1—C9—C10—C11176.08 (13)
O1—C1—C2—C3174.44 (13)C14—C9—C10—C110.3 (2)
C1—C2—C3—C41.4 (2)C9—C10—C11—C121.3 (2)
C2—C3—C4—C52.4 (2)C10—C11—C12—C131.9 (2)
C2—C3—C4—N1177.33 (14)C10—C11—C12—N2176.98 (14)
C7—N1—C4—C321.0 (2)C15—N2—C12—C11104.7 (2)
C7—N1—C4—C5158.72 (16)C15—N2—C12—C1376.4 (2)
C3—C4—C5—C61.1 (2)C11—C12—C13—C140.9 (2)
N1—C4—C5—C6178.57 (13)N2—C12—C13—C14178.00 (13)
C2—C1—C6—C51.9 (2)O1—C9—C14—C13176.73 (13)
O1—C1—C6—C5175.17 (13)C10—C9—C14—C131.3 (2)
C4—C5—C6—C11.0 (2)C12—C13—C14—C90.7 (2)
C4—N1—C7—O26.5 (3)C12—N2—C15—O35.1 (3)
C4—N1—C7—C8171.91 (15)C12—N2—C15—C16173.16 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.88 (2)1.96 (2)2.834 (2)169.5 (19)
N2—H2N···O2i0.88 (2)2.03 (2)2.9066 (18)170 (2)
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Funding information

Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant No. P20 GM103424–21 and the National Science Foundation (NSF) under grant No. 2418415 RII FEC: Advancing Climate Neutrality in Farming Communities through Upcycling Natural Fiber Reinforced Fireproof Vitrimer Composites. The purchase of the diffractometer was made possible by National Science Foundation MRI award CHE–2215262. The contents of the manuscript are solely the responsibility of the authors and do not represent the official views of NIH, NIGMS, or NSF.

References

First citationArıkan, C. C., Kulabaş, N. & Küçükgüzel, İ. (2023). J. Pharm. Biomed. Anal. 223, 115123.  PubMed Google Scholar
First citationBertolini, A., Ferrari, A., Ottani, A., Guerzoni, S., Tacchi, R. & Leone, S. (2006). CNS Drug Rev. 12, 250–275.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX5 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationICH (2006a). International Conference on Harmonisation. ICH Guideline Q3A(R2): Impurities in New Drug Substances, Step 4. ICH, Geneva, Switzerland. Available from: https://database.ich.org/sites/default/files/Q3A%28R2%29%20Guideline.pdf  Google Scholar
First citationICH (2006b). International Conference on Harmonisation. ICH Guideline Q3B(R2): Impurities in New Drug Products, Step 4. ICH, Geneva, Switzerland. Available from: https://database.ich.org/sites/default/files/Q3B%28R2%29%20Guideline.pdf  Google Scholar
First citationICH (2021). International Conference on Harmonisation. ICH Guideline Q3C(R8) on impurities: Guideline for residual solvents. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Available online: https://database.ich.org/sites/default/files/ICH_Q3C-R8_Guideline_Step4_2021_0422_1.pdf (Accessed: April 2025).  Google Scholar
First citationKamberi, M., Riley, C. M., Ma (Sharon), X. & Huang, C. W. (2004). J. Pharm. Biomed. Anal. 34, 123–128.  Google Scholar
First citationKankuri, E., Solatunturi, E. & Vapaatalo, H. (2003). Thromb. Res. 110, 299–303.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNCBI (2025). National Center for Biotechnology Information. PubChem Patent Summary for CN-115872885-A. Retrieved April 4, 2025  Google Scholar
First citationNohmi, T., Yoshikawa, K., Ishidate, M. Jr, Hiratsuka, A. & Watabe, T. (1984). Chem. Pharm. Bull. 32, 4525–4531.  CrossRef CAS Google Scholar
First citationNTP (1990). National Toxicology Program. NTP Technical Report 394. NIH Publication 90-2839.  Google Scholar
First citationOhashi, N. & Kohno, T. (2020). Front. Pharmacol. 11, 580289.  CrossRef PubMed Google Scholar
First citationPrescott, L. F. (1980). Br. J. Clin. Pharmacol. 10, 291S298S.  Google Scholar
First citationRao, R. N. & Narasaraju, A. (2006). Anal. Sci. 22, 287–292.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStravitz, R. T. & Lee, W. M. (2019). Lancet 394, 869–881.  CrossRef CAS PubMed Google Scholar
First citationTogei, K., Sano, N., Maeda, T., Shibata, M. & Otsuka, H. (1987). J. Natl Cancer Inst. 79, 1151–1158.  CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoon, E., Babar, A., Choudhary, M., Kutner, M. & Pyrsopoulos, N. (2016). J. Clin. Transl. Hepatol 4, 131–142.  PubMed Google Scholar
First citationZygmunt, P. M., Chuang, H., Movahed, P., Julius, D. & Högestätt, E. D. (2000). Eur. J. Pharmacol. 396, 39–42.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146