organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2′-Amino-5′-benzoyl-5-bromo-6′-methyl-2-oxo­spiro­[indoline-3,4′-pyran]-3′-carbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, bHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), Murtuza Mukhtarov Str. 194, Az 1065, Baku, Azerbaijan, and fDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 25 March 2025; accepted 24 April 2025; online 2 May 2025)

In the title compound, C21H14BrN3O3, the indoline ring system is almost planar, while the pyran ring is in flattened-boat conformation. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules, enclosing R22(8) and R22(12) ring motifs, into (001) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Some spiro­oxindoles show enhanced receptor-binding capabilities and diverse biological activities (Naghiyev et al., 2019[Naghiyev, F. N., Maharramov, A. M., Asadov, Kh. A. & Mamedov, I. G. (2019). Russ. J. Org. Chem. 55, 388-391.]). The 2-oxo­spiro­[indoline-3,4′-pyran] core represents an important subclass of spiro­oxindoles, incorporating both oxindole and pyran moieties, contributing to their broad pharmacological potential. The presence of electron-withdrawing groups, such as cyano (–CN) and halogens (e.g., bromine), play an important role in modulating the electronic properties, lipophilicity and reactivity of these systems (see e.g., Mamedov et al., 2019[Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232-233.]). As part of our ongoing work in this area, we now report the synthesis and structure of the title compound, C21H14BrN3O3 (I).

Compound (I) contains an indoline fused ring, a pyran ring and a benzene ring (Fig. 1[link]). In the indoline ring system, the A (N1/C2/C3/C3A/C7A) and B (C3A/C4–C7/C7A) rings are slightly puckered subtending a dihedral angle of 2.44 (7)°. The pyran C (O2/C3/C8–C11) ring is in a flattened-boat conformation with Cremer–Pople puckering parameters QT = 0.91 (2) Å, θ = 94 (1)° and φ = 161.4 (14)° (Fig. 2[link]). Atom C3 in (I) is a stereogenic centre: in the arbitrarily chosen asymmetric unit it has an R configuration, but crystal symmetry generates a racemic mixture.

[Figure 1]
Figure 1
The mol­ecular structure of (I) with 50% probability ellipsoids.
[Figure 2]
Figure 2
A partial packing diagram of (I) with N—H⋯O and N—H⋯N hydrogen bonds shown as dashed lines. H atoms not involved in these inter­actions were omitted for clarity.

In the crystal, N—H⋯O and N—H⋯N hydrogen bonds (Table 1[link]) link the mol­ecules, enclosing R22(8) and R22(12) ring motifs, into (001) sheets (Fig. 2[link]). Neither significant ππ nor C—H⋯π inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 (2) 2.01 (2) 2.839 (2) 171 (3)
N2—H2A⋯O1ii 0.77 (4) 2.17 (4) 2.885 (3) 155 (3)
N2—H2B⋯N3iii 0.84 (3) 2.22 (3) 3.043 (3) 166 (3)
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [-x+1, -y, -z+2]; (iii) [-x, -y, -z+2].

To visualize the inter­molecular inter­actions in (I), a Hirshfeld surface (HS) analysis (Fig. 3[link]) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The overall two-dimensional fingerprint plot is shown in Fig. 4[link]a, and those delineated into the different contact types are illustrated in Fig. 4[link]bn, together with their relative contributions to the Hirshfeld surface. The most important contributions to the surface are H⋯H (33.3%), H⋯O/O⋯H (16.7%) H⋯C/C⋯H (14.2%) H⋯N/N⋯H (13.0%) and H⋯Br/Br⋯H (11.5%) contacts. The other contact types contribute 2.5% or less.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of (I) plotted over dnorm.
[Figure 4]
Figure 4
The two-dimensional fingerprint plots for (I), showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) H⋯N/N⋯H, (f) H⋯Br/Br⋯H, (g) C⋯C, (h) C⋯O/O⋯C, (i) O⋯Br/Br⋯O, (j) C⋯Br/Br⋯C, (k) N⋯Br/Br⋯N, (l) C⋯N/N⋯C, (m) N⋯N and (n) N⋯O/O⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Synthesis and crystallization

A mixture of 1.40 g (0.0051 mol) of 2-(5-bromo-2-oxindolin-3- yl­idene)malono­nitrile and 0.85 g (0.0052 mol) of benzoyl­acetone was dissolved in 30 ml of methyl alcohol with stirring. The reaction mixture was stirred for 10 min and 7 mol% piperazine hydrate was added and stirring was continued. The reaction mixture was kept for 48 h. Crystals were formed as a result of the evaporation of the solvent. These were separated by filtration and recrystallized from a solvent mixture of ethyl alcohol and water (m.p. 275°C, yield 71%). 1H NMR (300 MHz, DMSO-d6, p.p.m.): 1.67 (s, 3H, CH3); 6.74–7.77 (m, 10H, arom. and NH2); 10.59 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6, p.p.m.): 20.17 (CH3), 50.61 (Cquat.), 55.84 (=Cquat.), 111.24 (CHarom.), 111.87 (Cquat.), 113.89 (CHarom.), 118.24 (CN), 127.50 (CHarom.) 128.37 (CHarom.), 129.31 (CHarom.), 132.02 (CHarom.), 133.94 (CHarom.), 135.61 (Carom.), 138.74 (Carom.), 142.07 (Carom.), 154.92 (Cquat.), 160.44 (Cquat.), 178.52 (C=O), 194.35 (O=C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H14BrN3O3
Mr 436.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.4809 (2), 10.5655 (2), 12.0412 (3)
α, β, γ (°) 97.593 (2), 104.947 (2), 94.357 (2)
V3) 905.43 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.34
Crystal size (mm) 0.19 × 0.15 × 0.13
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix CCD diffractometer
Absorption correction Multi-scan
Tmin, Tmax 0.772, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23470, 3833, 3637
Rint 0.056
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.07
No. of reflections 3833
No. of parameters 266
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.25, −0.67
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

2'-Amino-5'-benzoyl-5-bromo-6'-methyl-2-oxospiro[indoline-3,4'-pyran]-3'-carbonitrile top
Crystal data top
C21H14BrN3O3Z = 2
Mr = 436.26F(000) = 440
Triclinic, P1Dx = 1.600 Mg m3
a = 7.4809 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.5655 (2) ÅCell parameters from 15969 reflections
c = 12.0412 (3) Åθ = 4.2–77.0°
α = 97.593 (2)°µ = 3.34 mm1
β = 104.947 (2)°T = 100 K
γ = 94.357 (2)°Prism, colourless
V = 905.43 (4) Å30.19 × 0.15 × 0.13 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix CCD
diffractometer
3637 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.056
φ and ω scansθmax = 77.8°, θmin = 3.9°
Absorption correction: multi-scanh = 99
Tmin = 0.772, Tmax = 1.000k = 1113
23470 measured reflectionsl = 1515
3833 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0797P)2 + 0.589P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3833 reflectionsΔρmax = 1.25 e Å3
266 parametersΔρmin = 0.67 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The N-bound hydrogen atoms were located in a difference Fourier map, and their positions and Uiso values were freely refined. The C-bound hydrogen atom positions were calculated geometrically at distances of 0.95 Å (for aromatic CH) and 0.98 Å (for CH3) and refined using a riding model with the constraint Uiso(H) = 1.2Ueq (C) or 1.5Ueq (methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.16061 (4)0.19367 (2)0.39177 (2)0.03246 (13)
O10.5377 (2)0.33126 (14)0.99795 (13)0.0199 (3)
O20.4954 (2)0.04326 (14)0.82672 (13)0.0199 (3)
O30.5431 (3)0.19720 (16)0.57324 (15)0.0297 (4)
N10.3204 (3)0.42221 (17)0.86972 (16)0.0191 (4)
N20.2919 (3)0.11430 (18)0.91685 (17)0.0216 (4)
N30.0061 (3)0.14095 (18)0.95428 (18)0.0264 (4)
C20.4187 (3)0.32603 (19)0.90471 (18)0.0179 (4)
C30.3504 (3)0.20421 (19)0.81000 (17)0.0180 (4)
C3A0.2025 (3)0.25501 (19)0.72040 (18)0.0184 (4)
C40.0972 (3)0.1946 (2)0.61193 (19)0.0226 (4)
H40.1050960.1072590.5844910.027*
C50.0213 (3)0.2680 (2)0.54460 (19)0.0234 (4)
C60.0356 (3)0.3954 (2)0.58398 (19)0.0223 (4)
H60.1215260.4412960.5367710.027*
C70.0755 (3)0.4567 (2)0.69262 (19)0.0212 (4)
H70.0699380.5445300.7197060.025*
C7A0.1936 (3)0.38420 (19)0.75885 (18)0.0185 (4)
C80.3499 (3)0.01640 (19)0.87053 (18)0.0189 (4)
C90.2749 (3)0.09743 (19)0.86361 (18)0.0187 (4)
C100.5006 (3)0.1573 (2)0.75533 (18)0.0196 (4)
C110.5590 (3)0.0417 (2)0.76235 (18)0.0198 (4)
C120.1265 (3)0.12001 (19)0.91351 (18)0.0203 (4)
C130.5570 (3)0.2399 (2)0.67443 (19)0.0211 (4)
C140.6205 (3)0.3790 (2)0.72057 (19)0.0209 (4)
C150.7485 (3)0.4173 (2)0.8292 (2)0.0223 (4)
H150.7960580.3551650.8757570.027*
C160.8059 (3)0.5482 (2)0.8687 (2)0.0261 (5)
H160.8945820.5753130.9419400.031*
C170.7333 (4)0.6387 (2)0.8010 (2)0.0303 (5)
H170.7705990.7275970.8290380.036*
C180.6066 (4)0.6001 (2)0.6925 (2)0.0310 (5)
H180.5577580.6624350.6464950.037*
C190.5516 (3)0.4701 (2)0.6518 (2)0.0255 (5)
H190.4670160.4432250.5770820.031*
C200.6925 (3)0.0187 (2)0.7052 (2)0.0250 (4)
H20A0.7834280.0559090.7623480.038*
H20B0.7575100.0464990.6743090.038*
H20C0.6245640.0866140.6414480.038*
H10.351 (4)0.4971 (19)0.907 (2)0.025 (7)*
H2A0.360 (5)0.165 (3)0.929 (3)0.025 (7)*
H2B0.204 (5)0.110 (3)0.949 (3)0.024 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03811 (18)0.02869 (18)0.01956 (16)0.00059 (11)0.00948 (11)0.00112 (11)
O10.0246 (7)0.0147 (6)0.0158 (7)0.0005 (5)0.0021 (6)0.0022 (5)
O20.0242 (7)0.0134 (7)0.0194 (7)0.0008 (5)0.0011 (6)0.0036 (5)
O30.0422 (10)0.0234 (8)0.0209 (8)0.0019 (7)0.0068 (7)0.0005 (6)
N10.0241 (8)0.0123 (8)0.0164 (8)0.0012 (7)0.0005 (7)0.0000 (6)
N20.0258 (9)0.0146 (9)0.0221 (9)0.0017 (7)0.0012 (8)0.0056 (7)
N30.0296 (10)0.0190 (9)0.0302 (10)0.0010 (7)0.0074 (8)0.0048 (7)
C20.0218 (9)0.0132 (9)0.0164 (9)0.0024 (7)0.0022 (8)0.0030 (7)
C30.0229 (9)0.0123 (9)0.0143 (9)0.0018 (7)0.0018 (8)0.0014 (7)
C3A0.0213 (9)0.0137 (9)0.0175 (9)0.0008 (7)0.0003 (8)0.0045 (7)
C40.0266 (10)0.0179 (10)0.0187 (10)0.0010 (8)0.0009 (8)0.0022 (8)
C50.0252 (10)0.0228 (10)0.0165 (10)0.0031 (8)0.0025 (8)0.0023 (8)
C60.0229 (10)0.0221 (10)0.0207 (10)0.0031 (8)0.0013 (8)0.0082 (8)
C70.0251 (10)0.0152 (9)0.0213 (10)0.0014 (8)0.0027 (8)0.0037 (8)
C7A0.0206 (9)0.0161 (9)0.0157 (9)0.0017 (7)0.0007 (8)0.0015 (7)
C80.0209 (9)0.0138 (9)0.0156 (9)0.0028 (7)0.0039 (7)0.0003 (7)
C90.0230 (10)0.0130 (9)0.0159 (9)0.0015 (7)0.0012 (8)0.0019 (7)
C100.0226 (9)0.0158 (9)0.0159 (9)0.0023 (7)0.0004 (8)0.0008 (7)
C110.0233 (9)0.0159 (9)0.0152 (9)0.0037 (7)0.0014 (8)0.0009 (7)
C120.0262 (10)0.0113 (9)0.0186 (10)0.0015 (7)0.0020 (8)0.0031 (7)
C130.0232 (10)0.0195 (10)0.0178 (10)0.0001 (8)0.0012 (8)0.0028 (8)
C140.0235 (10)0.0186 (10)0.0204 (10)0.0002 (8)0.0057 (8)0.0040 (8)
C150.0256 (10)0.0191 (10)0.0215 (10)0.0006 (8)0.0048 (8)0.0044 (8)
C160.0296 (11)0.0219 (11)0.0239 (11)0.0046 (9)0.0057 (9)0.0005 (9)
C170.0395 (13)0.0159 (10)0.0331 (13)0.0026 (9)0.0088 (11)0.0009 (9)
C180.0409 (13)0.0207 (11)0.0307 (12)0.0036 (10)0.0063 (11)0.0087 (9)
C190.0295 (11)0.0230 (11)0.0233 (11)0.0021 (9)0.0050 (9)0.0064 (9)
C200.0279 (11)0.0190 (10)0.0257 (11)0.0013 (8)0.0039 (9)0.0023 (8)
Geometric parameters (Å, º) top
Br1—C51.896 (2)C7—C7A1.380 (3)
O1—C21.232 (3)C7—H70.9500
O2—C81.359 (3)C8—C91.369 (3)
O2—C111.394 (2)C9—C121.413 (3)
O3—C131.217 (3)C10—C111.333 (3)
N1—C21.348 (3)C10—C131.506 (3)
N1—C7A1.411 (3)C11—C201.488 (3)
N1—H10.839 (18)C13—C141.496 (3)
N2—C81.334 (3)C14—C191.394 (3)
N2—H2A0.77 (4)C14—C151.395 (3)
N2—H2B0.84 (3)C15—C161.398 (3)
N3—C121.154 (3)C15—H150.9500
C2—C31.559 (3)C16—C171.389 (4)
C3—C91.514 (3)C16—H160.9500
C3—C3A1.518 (3)C17—C181.390 (4)
C3—C101.524 (3)C17—H170.9500
C3A—C41.381 (3)C18—C191.389 (3)
C3A—C7A1.394 (3)C18—H180.9500
C4—C51.394 (3)C19—H190.9500
C4—H40.9500C20—H20A0.9800
C5—C61.389 (3)C20—H20B0.9800
C6—C71.398 (3)C20—H20C0.9800
C6—H60.9500
C8—O2—C11119.18 (16)C8—C9—C12119.15 (19)
C2—N1—C7A111.69 (17)C8—C9—C3122.83 (19)
C2—N1—H1120 (2)C12—C9—C3117.95 (18)
C7A—N1—H1127 (2)C11—C10—C13120.5 (2)
C8—N2—H2A115 (2)C11—C10—C3123.11 (19)
C8—N2—H2B121 (2)C13—C10—C3115.54 (18)
H2A—N2—H2B121 (3)C10—C11—O2122.49 (19)
O1—C2—N1125.97 (19)C10—C11—C20128.1 (2)
O1—C2—C3125.24 (18)O2—C11—C20109.42 (17)
N1—C2—C3108.74 (17)N3—C12—C9178.7 (2)
C9—C3—C3A113.82 (17)O3—C13—C14120.62 (19)
C9—C3—C10109.35 (17)O3—C13—C10121.6 (2)
C3A—C3—C10109.87 (17)C14—C13—C10117.71 (18)
C9—C3—C2108.90 (16)C19—C14—C15120.4 (2)
C3A—C3—C2100.89 (16)C19—C14—C13118.6 (2)
C10—C3—C2113.91 (17)C15—C14—C13121.00 (19)
C4—C3A—C7A121.2 (2)C14—C15—C16119.3 (2)
C4—C3A—C3129.27 (19)C14—C15—H15120.4
C7A—C3A—C3109.29 (18)C16—C15—H15120.4
C3A—C4—C5116.8 (2)C17—C16—C15120.0 (2)
C3A—C4—H4121.6C17—C16—H16120.0
C5—C4—H4121.6C15—C16—H16120.0
C6—C5—C4122.2 (2)C16—C17—C18120.5 (2)
C6—C5—Br1118.69 (17)C16—C17—H17119.7
C4—C5—Br1119.03 (17)C18—C17—H17119.7
C5—C6—C7120.4 (2)C19—C18—C17119.7 (2)
C5—C6—H6119.8C19—C18—H18120.2
C7—C6—H6119.8C17—C18—H18120.2
C7A—C7—C6117.2 (2)C18—C19—C14120.0 (2)
C7A—C7—H7121.4C18—C19—H19120.0
C6—C7—H7121.4C14—C19—H19120.0
C7—C7A—C3A122.0 (2)C11—C20—H20A109.5
C7—C7A—N1128.69 (19)C11—C20—H20B109.5
C3A—C7A—N1109.33 (18)H20A—C20—H20B109.5
N2—C8—O2111.49 (19)C11—C20—H20C109.5
N2—C8—C9126.3 (2)H20A—C20—H20C109.5
O2—C8—C9122.24 (19)H20B—C20—H20C109.5
C7A—N1—C2—O1179.29 (19)C3A—C3—C9—C8129.8 (2)
C7A—N1—C2—C31.9 (2)C10—C3—C9—C86.6 (3)
O1—C2—C3—C958.0 (3)C2—C3—C9—C8118.5 (2)
N1—C2—C3—C9119.44 (19)C3A—C3—C9—C1253.4 (3)
O1—C2—C3—C3A178.00 (19)C10—C3—C9—C12176.68 (18)
N1—C2—C3—C3A0.6 (2)C2—C3—C9—C1258.3 (2)
O1—C2—C3—C1064.4 (3)C9—C3—C10—C113.7 (3)
N1—C2—C3—C10118.23 (19)C3A—C3—C10—C11129.3 (2)
C9—C3—C3A—C467.7 (3)C2—C3—C10—C11118.4 (2)
C10—C3—C3A—C455.3 (3)C9—C3—C10—C13166.01 (17)
C2—C3—C3A—C4175.8 (2)C3A—C3—C10—C1340.4 (2)
C9—C3—C3A—C7A117.36 (19)C2—C3—C10—C1371.9 (2)
C10—C3—C3A—C7A119.64 (19)C13—C10—C11—O2173.27 (18)
C2—C3—C3A—C7A0.9 (2)C3—C10—C11—O24.1 (3)
C7A—C3A—C4—C51.7 (3)C13—C10—C11—C205.5 (3)
C3—C3A—C4—C5176.1 (2)C3—C10—C11—C20174.7 (2)
C3A—C4—C5—C60.6 (3)C8—O2—C11—C109.6 (3)
C3A—C4—C5—Br1176.89 (16)C8—O2—C11—C20169.36 (18)
C4—C5—C6—C72.5 (3)C11—C10—C13—O348.6 (3)
Br1—C5—C6—C7175.06 (16)C3—C10—C13—O3121.3 (2)
C5—C6—C7—C7A1.9 (3)C11—C10—C13—C14134.9 (2)
C6—C7—C7A—C3A0.3 (3)C3—C10—C13—C1455.1 (3)
C6—C7—C7A—N1179.3 (2)O3—C13—C14—C1942.0 (3)
C4—C3A—C7A—C72.2 (3)C10—C13—C14—C19134.5 (2)
C3—C3A—C7A—C7177.61 (19)O3—C13—C14—C15137.0 (2)
C4—C3A—C7A—N1177.50 (19)C10—C13—C14—C1546.5 (3)
C3—C3A—C7A—N12.1 (2)C19—C14—C15—C160.4 (3)
C2—N1—C7A—C7177.1 (2)C13—C14—C15—C16179.3 (2)
C2—N1—C7A—C3A2.6 (2)C14—C15—C16—C171.1 (3)
C11—O2—C8—N2172.17 (17)C15—C16—C17—C181.4 (4)
C11—O2—C8—C96.6 (3)C16—C17—C18—C190.2 (4)
N2—C8—C9—C122.9 (3)C17—C18—C19—C141.3 (4)
O2—C8—C9—C12178.52 (19)C15—C14—C19—C181.6 (3)
N2—C8—C9—C3179.6 (2)C13—C14—C19—C18179.4 (2)
O2—C8—C9—C31.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (2)2.01 (2)2.839 (2)171 (3)
N2—H2A···O1ii0.77 (4)2.17 (4)2.885 (3)155 (3)
N2—H2B···N3iii0.84 (3)2.22 (3)3.043 (3)166 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x, y, z+2.
 

Acknowledgements

The authors' contributions are as follows. Conceptualizations, ANK and TH; methodology, FNN and ANB; investigation, TH, VNK and FNN; writing (original draft), TH, VNK and ANK; writing (review and editing of the manuscript), TH and FNN; visualization, TH and ANB; funding acquisition, VNK, TH and ANB; resources, TH, VNK and FNN; supervision, FNN and TH.

Funding information

This work was supported by Baku State University and the RUDN University Strategic Academic Leadership Program. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Maharramov, A. M., Asadov, Kh. A. & Mamedov, I. G. (2019). Russ. J. Org. Chem. 55, 388–391.  CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146