metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[5-(anthracen-9-ylmeth­yl)-1,5,9-tri­aza­cyclododecan-1-ium] tetra­chlorido­zincate

crossmark logo

aFaculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama, 244-0806, Japan, and bCollege of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, 463-8521, Japan
*Correspondence e-mail: h-kurosaki@kinjo-u.ac.jp

Edited by I. Brito, University of Antofagasta, Chile (Received 16 April 2025; accepted 20 April 2025; online 2 May 2025)

A crystalline salt comprising two monoprotonated polyamine ligands and one tetra­chloro­zincate(II) anion was prepared, (C24H32N3)2[ZnCl4], and its crystal structure was analyzed and compared with those of structurally related compounds bearing different macrocyclic frameworks and pendant arms. The protonated nitro­gen atoms engaged in intra­molecular hydrogen bonding with other nitro­gen atoms within the macrocyclic ring. In the crystal, the pendant anthracene groups participated in inter­molecular ππ and C—H⋯π inter­actions, contributing to crystal cohesion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title complex is a salt comprising two monoprotonated cationic mol­ecules of 1-(anthracen-9-ylmeth­yl)-1,5,9-tri­aza­cyclo­dodecane (Ant-[12]aneN3, 1) and a zinc tetra­chloride ion (see Fig. 1[link] for chemical structure). Ant-[12]aneN3 was designed as a ligand for DNA photocleavage by connecting the 1,5,9-tri­aza­cyclo­dodecane ([12]aneN3, 2) moiety as the ligand for the zinc(II) ion with an anthracene mol­ecule as the photosensitizing species through a methyl­ene spacer (Ichimaru et al., 2025[Ichimaru, Y., Kato, K., Yamaguchi, Y., Sakamoto, T., Jin, W., Kurihara, M., Fujita, M., Otsuka, M. & Kurosaki, H. (2025). Chem. Pharm. Bull. 73, 103-107.]). The zinc complex of [12]aneN3 is known as a model compound for the active center of the zinc enzyme carbonic anhydrase (Kimura et al., 1990[Kimura, E., Shiota, T., Koike, T., Shiro, M. & Kodama, M. (1990). J. Am. Chem. Soc. 112, 5805-5811.]). In the crystal of [12]aneN3 with zinc thio­cyanate [ZnII2](SCN)2, three nitro­gen atoms of the polyamine ring and two thio­cyanate ions are coordinated to the zinc(II) ion (Kimura et al., 1992[Kimura, E., Koike, T., Shionoya, M. & Shiro, M. (1992). Chem. Lett. 21, 787-790.]). In contrast with [ZnII2](SCN)2, in which none of the nitro­gen atoms in the polyamine ring is protonated, one of the nitro­gen atoms of Ant-[12]aneN3 is monoprotonated ([1·H]+) in the title complex and the nitro­gen atoms of the polyamine ring are not chelated to the zinc(II) ion. Hubsch-Weber and Youinou synthesized 1-benzyl-1,5,9-tri­aza­cyclo­dodecane (3) and reported the crystal structure of the diprotonated cation ([3·H2]2+) formed via the reaction of 3 with Zn(ClO4)2·6H2O (Hubsch-Weber & Youinou, 1997[Hubsch-Weber, P. & Youinou, M.-T. (1997). Tetrahedron Lett. 38, 1911-1914.]). The crystal structures of ligands 1 and 3 bearing different pendant substituents exhibit inter­esting differences. The structural features of the title complex are described below in comparison with those of [3·H2]2+.

[Figure 1]
Figure 1
Chemical structures of the compounds referred to in the text.

The asymmetric unit of the title complex contains two [1·H]+ mol­ecules (designated as mol­ecules A and B) and one tetra­chloro­zincate(II) (ZnCl42−) anion, without solvent mol­ecules or additional counter-ions. The presence of ZnCl42−, which is commonly formed in reactions involving zinc chloride (ZnCl2) (Al-Resayes et al., 2017[Al-Resayes, S. I., Azam, M., Alam, M., Suresh Kumar, R. & Adil, S. F. (2017). J. Saudi Chem. Soc. 21, 481-486.]), confirms that both ligands are monoprotonated, consistent with the observed electron density (Fig. 2[link]). Mol­ecules A and B are conformational isomers and contain three types of nitro­gen atoms: tertiary nitro­gen atoms (N1 and N4), protonated secondary nitro­gen atoms (N2 and N5), and nonprotonated secondary nitro­gen atoms (N3 and N6). The structural overlay diagram (Fig. 2[link]) reveals that A and B are nonsuperimposable. Despite exhibiting opposite chiral conformations, A and B are not true enanti­omers owing to differences in the nitro­gen atom geometries and the centrosymmetric space group, P21/c.

[Figure 2]
Figure 2
The cations (mol­ecules A and B) of the title compound, with displacement ellipsoids drawn at the 50% probability level, and their overlay diagram. Carbon-bound hydrogen atoms are omitted for clarity. In the overlay diagram, mol­ecule B is shown in green.

A key factor influencing the nitro­gen atom geometry is the hydrogen-bonding network (Fig. 3[link]). The H2A and H5A atoms bonded to protonated N2 and N5 form hydrogen bonds with Cl1. The distances between H2A and H5A and the acceptor, i.e., N2—H2A⋯Cl1 and N5—H5A⋯Cl1, are nearly equal, i.e., 2.39 (3) and 2.42 (3) Å, respectively (Table 1[link]). The other H atoms hydrogen bonded to N2 and N5, respectively, are each oriented toward the inner pore of the macrocycle. The H2B and H5B atoms form hydrogen bonds with the nitro­gen atoms of the rings forming the pores. The hydrogen-bond geometries within the macrocycle are different for mol­ecules A and B. Specifically, the distances between these hydrogen atoms and the acceptor are 2.21 (3) Å (N2—H2B⋯N1) and 2.05 (3) Å (N2—H2B⋯N3) in mol­ecule A and 1.77 (4) Å (N5—H5B⋯N4) and 2.59 (3) Å (N5—H5B⋯N6) in mol­ecule B.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.88 (3) 2.39 (3) 3.273 (2) 176.6 (16)
N5—H5A⋯Cl1 0.88 (3) 2.42 (3) 3.227 (2) 153 (3)
N2—H2B⋯N1 0.96 (3) 2.21 (3) 2.854 (2) 124 (2)
N2—H2B⋯N3 0.96 (3) 2.05 (3) 2.830 (3) 137 (2)
N5—H5B⋯N4 1.00 (4) 2.59 (3) 3.194 (3) 120 (2)
N5—H5B⋯N6 0.99 (4) 1.77 (3) 2.644 (3) 145 (3)
[Figure 3]
Figure 3
Inter­molecular and intra­molecular hydrogen-bond inter­actions of the title complex with displacement ellipsoids drawn at the 50% probability level. Carbon-bound hydrogen atoms are omitted for clarity. Hydrogen-bond inter­actions are shown as dotted lines. (a) ORTEP-style diagram showing the hydrogen bonds; (b) schematic showing the donor⋯acceptor distances of the hydrogen bonds.

The nonprotonated secondary nitro­gen atom exhibits Lewis basicity, while the tertiary nitro­gen atom is slightly less basic owing to the presence of the pendant arm. Within the macrocycle of mol­ecules A and B, the nonprotonated secondary nitro­gen atom functions as a strong hydrogen-bonding acceptor group. In mol­ecule B, the tertiary nitro­gen atom does not function as a hydrogen-bonding acceptor. In 3, there is no nonprotonated secondary nitro­gen atom. The basicity of the tertiary nitro­gen atom, which is substituted by a benzyl group as the pendant arm, is slightly impaired. Hence, none of the four hydrogen atoms bonded to the nitro­gen atoms are pointing outward in the macrocycle and hence do not form hydrogen bonds. Compared with those in mol­ecule A in the title compound, the distances between nitro­gen atoms in 3 are longer. Therefore, as mentioned above, nitro­gen protonation and hydrogen bond formation affect the geometry of nitro­gen atoms in the macrocycles.

The pendant anthracene moiety also affects the spatial arrangement of the macrocycle. As shown in Fig. 4[link], the benzyl group is directed away from the macrocyclic cavity in 3. Meanwhile, in mol­ecules A and B, the anthracene moieties are positioned above the macrocyclic ring, partially overlapping the cavity. Although this orientation may be sterically disfavored in isolated mol­ecules, it facilitates inter­molecular ππ inter­actions in the crystal, contributing to structural cohesion.

[Figure 4]
Figure 4
Dihedral angles of the macrocyclic structure and pendant arm i ball-and-stick models. H atoms and counter-anions are omitted for clarity.

As shown in Fig. 5[link], two types of aromatic inter­actions are observed in the crystal: a parallel displaced ππ stacking inter­action and a T-shaped C—H⋯π inter­action. The face-to-face ππ stacking occurs between the anthracene rings, with a centroid-to-centroid distance of 3.432 (3) Å, which is typical for aromatic stacking inter­actions. Meanwhile, in the T-shaped inter­action, the C—H group from one anthracene unit (C33—H33) points toward the centroid of a neighboring aromatic ring, with a H⋯centroid distance of 2.90 Å and a C—H⋯centroid angle of 170°, respectively. These inter­actions further stabilize the packing structure by linking adjacent ligands via directional noncovalent forces.

[Figure 5]
Figure 5
Schematic of the T-shaped and parallel displaced ππ inter­actions with displacement ellipsoids drawn at the 50% probability level. The tetra­chloro­zincate ions are omitted for clarity. The ππ inter­actions are shown as green dotted lines.

Previously, we reported the crystal structure of the zinc(II) complex [ZnII4(Cl)](NO3) containing 1-(anthracen-9-ylmeth­yl)-1,4,7,10-tetra­aza­cyclo­dodecane (Ant-[12]aneN4, 4), which is an analog of Ant-[12]aneN3 (Ichimaru et al., 2024[Ichimaru, Y., Sugiura, K., Kato, K., Kondo, Y., Kurihara, M., Jin, W., Imai, M. & Kurosaki, H. (2024). IUCr Data. 9, x240665.]). The polyamine ring of Ant-[12]aneN4 is 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen, [12]aneN4, 5), which chelates the zinc(II) ion with a counter-anion mol­ecule to form a five-coordinate structure (Ichimaru et al., 2021[Ichimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data. 6, x210397.]), similar to that formed in the {[ZnII5(H2O)](ClO4)2} complex. Therefore, the (9-anthracen­yl)methyl pendant arm does not completely inhibit the chelation of the zinc(II) ion but reduces the basicity of the bound nitro­gen atom; therefore, the polyamine ring of Ant-[12]aneN3 cannot chelate zinc(II). The protonation of the secondary nitro­gen atoms may be related to the synthesis conditions of the complex, which will be the subject of a future study. Ant-[12]aneN3 and its analogs exhibit DNA photocleavage activity (Ichimaru et al., 2025[Ichimaru, Y., Kato, K., Yamaguchi, Y., Sakamoto, T., Jin, W., Kurihara, M., Fujita, M., Otsuka, M. & Kurosaki, H. (2025). Chem. Pharm. Bull. 73, 103-107.]). Thus, the crystal structure of the title compound will contribute to the design of polyamine derivatives with DNA photocleavage activity.

Synthesis and crystallization

Ant-[12]aneN3 was synthesized using a previously reported synthetic method (Ichimaru et al., 2025[Ichimaru, Y., Kato, K., Yamaguchi, Y., Sakamoto, T., Jin, W., Kurihara, M., Fujita, M., Otsuka, M. & Kurosaki, H. (2025). Chem. Pharm. Bull. 73, 103-107.]). Then, Ant-[12]aneN3 (72.4 mg, 0.20 mmol) was dissolved in MeOH (10 ml), and a MeOH solution of ZnCl2 (27.2 mg, 0.20 mmol, 1.0 eq.) was added dropwise. The reaction mixture was stirred at 296 K for 30 min. Subsequently, the particles in the reaction mixture were filtered out and the filtrate was allowed to stand at 296 K. Colorless crystals suitable for X-ray crystallography were obtained (12.6 mg).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C24H32N3)2[ZnCl4]
Mr 932.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.0683 (2), 18.4885 (2), 17.7569 (2)
β (°) 93.407 (1)
V3) 4610.44 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.18
Crystal size (mm) 0.69 × 0.58 × 0.37
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-i
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrystAlis PRO. Rigaku Oxford Diffractioon, Yarnton, England.])
Tmin, Tmax 0.332, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 47324, 8409, 7651
Rint 0.119
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.138, 1.03
No. of reflections 8409
No. of parameters 552
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −1.13
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrystAlis PRO. Rigaku Oxford Diffractioon, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Bis[5-(anthracen-9-ylmethyl)-1,5,9-triazacyclododecan-1-ium] tetrachloridozincate top
Crystal data top
(C24H32N3)2[ZnCl4]F(000) = 1968
Mr = 932.22Dx = 1.343 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.0683 (2) ÅCell parameters from 30005 reflections
b = 18.4885 (2) Åθ = 2.5–68.2°
c = 17.7569 (2) ŵ = 3.18 mm1
β = 93.407 (1)°T = 100 K
V = 4610.44 (10) Å3Block, colourless
Z = 40.69 × 0.58 × 0.37 mm
Data collection top
Rigaku XtaLAB Synergy-i
diffractometer
7651 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.119
ω scansθmax = 68.3°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 1616
Tmin = 0.332, Tmax = 1.000k = 2222
47324 measured reflectionsl = 2121
8409 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0947P)2 + 1.017P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8409 reflectionsΔρmax = 0.86 e Å3
552 parametersΔρmin = 1.13 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were located by a geometrical calculation, and were not refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.46001 (2)0.20693 (2)0.19895 (2)0.01677 (11)
Cl10.55113 (3)0.31066 (3)0.18017 (3)0.01971 (14)
Cl20.54601 (4)0.14222 (3)0.28563 (3)0.02533 (15)
Cl30.42573 (4)0.15296 (3)0.08674 (3)0.02855 (15)
Cl40.32647 (4)0.25051 (4)0.24458 (4)0.03857 (18)
N10.78988 (11)0.40868 (9)0.34143 (10)0.0153 (4)
N20.62966 (12)0.31644 (10)0.35733 (11)0.0167 (4)
H2A0.6069 (19)0.3133 (14)0.3101 (17)0.020*
N40.16050 (12)0.44481 (10)0.13858 (10)0.0191 (4)
N30.58552 (13)0.46271 (11)0.38661 (11)0.0218 (4)
H30.6011 (19)0.5012 (15)0.4113 (16)0.026*
N50.37799 (14)0.40949 (11)0.11131 (12)0.0248 (4)
H5A0.412 (2)0.3820 (16)0.1427 (17)0.030*
C81.05304 (15)0.38679 (11)0.52527 (12)0.0177 (4)
C31.00339 (14)0.41464 (11)0.45784 (12)0.0164 (4)
N60.25947 (16)0.31225 (11)0.04973 (13)0.0311 (5)
H6A0.280 (2)0.2656 (17)0.0744 (17)0.037*
C270.12560 (14)0.57593 (12)0.02968 (12)0.0168 (4)
C170.78007 (15)0.27801 (12)0.30566 (12)0.0196 (4)
H17A0.7427800.2844770.2570720.024*
H17B0.8206000.2346270.3011900.024*
C91.00241 (15)0.36980 (11)0.58776 (12)0.0183 (4)
H91.0359000.3524970.6321870.022*
C320.12851 (14)0.65100 (12)0.01011 (12)0.0178 (4)
C330.07136 (15)0.70005 (12)0.04626 (13)0.0191 (4)
H330.0727570.7497480.0327630.023*
C340.01216 (14)0.67736 (12)0.10192 (12)0.0178 (4)
C260.06735 (14)0.55201 (11)0.08693 (12)0.0167 (4)
C150.85342 (14)0.40437 (11)0.51996 (12)0.0166 (4)
C100.90386 (15)0.37747 (11)0.58698 (12)0.0182 (4)
C71.15404 (15)0.37664 (12)0.52681 (13)0.0205 (5)
H71.1865290.3583970.5712530.025*
C180.71181 (14)0.26554 (12)0.36792 (13)0.0191 (4)
H18A0.6885880.2149890.3660440.023*
H18B0.7452790.2737590.4178120.023*
C400.20365 (15)0.49277 (12)0.19707 (12)0.0211 (5)
H40A0.1675300.4885010.2430420.025*
H40B0.1981520.5434220.1792650.025*
C61.20429 (15)0.39260 (12)0.46599 (14)0.0233 (5)
H61.2713250.3857540.4680510.028*
C160.84377 (14)0.34406 (12)0.32025 (12)0.0193 (4)
H16A0.8922540.3326900.3612370.023*
H16B0.8775590.3548420.2742190.023*
C41.06014 (16)0.43059 (12)0.39552 (13)0.0214 (5)
H41.0300370.4493440.3503500.026*
C390.00988 (14)0.60255 (12)0.12308 (12)0.0178 (4)
C51.15606 (16)0.41958 (13)0.39925 (14)0.0249 (5)
H51.1912430.4301220.3565540.030*
C10.84957 (14)0.45874 (12)0.38912 (12)0.0184 (4)
H1A0.8081820.4974130.4075690.022*
H1B0.8962430.4819130.3572030.022*
C280.18310 (15)0.52714 (13)0.01105 (13)0.0230 (5)
H280.1817810.4768610.0001260.028*
C110.85266 (16)0.35898 (12)0.65105 (12)0.0211 (5)
H110.8864820.3419730.6954560.025*
C140.75149 (15)0.41009 (12)0.52152 (13)0.0198 (4)
H140.7158220.4276610.4782240.024*
C240.75139 (15)0.44651 (13)0.27301 (12)0.0208 (5)
H24A0.7204270.4100910.2388280.025*
H24B0.8056750.4668800.2470030.025*
C20.90331 (15)0.42452 (11)0.45650 (12)0.0171 (4)
C250.06714 (15)0.47286 (12)0.10799 (13)0.0221 (5)
H25A0.0195210.4651600.1460630.026*
H25B0.0466660.4443440.0626970.026*
C230.67998 (15)0.50741 (12)0.28372 (13)0.0229 (5)
H23A0.7076260.5409170.3226120.028*
H23B0.6718240.5348220.2358750.028*
C130.70502 (15)0.39089 (12)0.58360 (13)0.0230 (5)
H130.6376150.3947030.5826010.028*
C220.58215 (15)0.48423 (12)0.30667 (13)0.0229 (5)
H22A0.5367150.5247290.2982720.027*
H22B0.5592280.4430810.2748630.027*
C410.30848 (15)0.47594 (12)0.21743 (13)0.0224 (5)
H41A0.3330250.5105830.2564170.027*
H41B0.3135040.4267680.2393700.027*
C190.54923 (16)0.30574 (12)0.40748 (13)0.0217 (5)
H19A0.5723720.3121490.4608120.026*
H19B0.5240100.2559650.4013480.026*
C420.37033 (16)0.48012 (12)0.14998 (14)0.0247 (5)
H42A0.3429120.5161920.1136540.030*
H42B0.4348430.4968130.1672800.030*
C310.18959 (16)0.67461 (14)0.04690 (13)0.0248 (5)
H310.1917480.7244070.0598670.030*
C300.24436 (17)0.62644 (15)0.08251 (13)0.0300 (5)
H300.2859700.6428390.1191290.036*
C480.14675 (17)0.37239 (12)0.17049 (14)0.0264 (5)
H48A0.1020660.3764420.2112990.032*
H48B0.2085170.3553680.1935960.032*
C290.23957 (17)0.55202 (15)0.06519 (13)0.0297 (5)
H290.2764350.5186320.0918060.036*
C210.49365 (16)0.43702 (13)0.41228 (13)0.0251 (5)
H21A0.4423520.4695140.3920190.030*
H21B0.4951890.4396700.4680200.030*
C350.04748 (15)0.72853 (13)0.13690 (14)0.0240 (5)
H350.0447080.7781040.1231450.029*
C380.05485 (15)0.58351 (14)0.17951 (13)0.0243 (5)
H380.0581740.5346240.1956040.029*
C120.75582 (16)0.36524 (12)0.64987 (13)0.0237 (5)
H120.7226660.3525320.6930340.028*
C200.47057 (15)0.35996 (13)0.38765 (13)0.0253 (5)
H20A0.4121000.3442860.4114290.030*
H20B0.4568400.3594430.3323170.030*
C370.11152 (16)0.63378 (15)0.21047 (14)0.0303 (6)
H370.1543340.6191120.2469670.036*
C470.10856 (19)0.31524 (13)0.11422 (16)0.0331 (6)
H47A0.1160350.2671110.1382810.040*
H47B0.0395240.3236830.1038860.040*
C360.10783 (17)0.70738 (15)0.18932 (15)0.0306 (6)
H360.1474880.7418410.2117570.037*
C440.4117 (2)0.34162 (15)0.00535 (15)0.0367 (6)
H44A0.4450880.3029850.0244020.044*
H44B0.4424340.3459150.0538950.044*
C430.42329 (18)0.41288 (14)0.03737 (15)0.0324 (6)
H43A0.4918960.4239460.0462240.039*
H43B0.3937440.4523430.0064160.039*
C460.15522 (19)0.31325 (13)0.03995 (16)0.0336 (6)
H46A0.1333980.2696540.0115390.040*
H46B0.1349750.3561880.0097770.040*
C450.3076 (2)0.31969 (15)0.02110 (16)0.0388 (7)
H45A0.2745050.3567480.0532560.047*
H45B0.3044820.2731620.0487310.047*
H2B0.6497 (19)0.3654 (15)0.3679 (15)0.027 (7)*
H5B0.316 (3)0.3846 (18)0.1000 (19)0.050 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00583 (17)0.02313 (18)0.02092 (18)0.00015 (10)0.00275 (12)0.00075 (11)
Cl10.0113 (3)0.0272 (3)0.0203 (3)0.00513 (18)0.00231 (19)0.00106 (19)
Cl20.0225 (3)0.0232 (3)0.0285 (3)0.0029 (2)0.0130 (2)0.0000 (2)
Cl30.0288 (3)0.0325 (3)0.0231 (3)0.0076 (2)0.0086 (2)0.0018 (2)
Cl40.0118 (3)0.0508 (4)0.0543 (4)0.0088 (2)0.0114 (3)0.0089 (3)
N10.0086 (8)0.0215 (9)0.0158 (8)0.0000 (7)0.0012 (6)0.0000 (7)
N20.0090 (9)0.0244 (10)0.0163 (9)0.0008 (7)0.0020 (7)0.0011 (7)
N40.0133 (9)0.0207 (9)0.0221 (9)0.0003 (7)0.0085 (7)0.0023 (7)
N30.0172 (9)0.0255 (10)0.0222 (10)0.0029 (8)0.0036 (7)0.0023 (8)
N50.0188 (10)0.0267 (10)0.0282 (11)0.0045 (8)0.0049 (8)0.0022 (9)
C80.0137 (10)0.0183 (10)0.0208 (11)0.0005 (8)0.0023 (8)0.0047 (8)
C30.0124 (10)0.0182 (10)0.0184 (10)0.0036 (8)0.0015 (8)0.0036 (8)
N60.0337 (12)0.0259 (11)0.0319 (12)0.0046 (9)0.0121 (9)0.0027 (9)
C270.0065 (9)0.0288 (11)0.0147 (10)0.0014 (8)0.0040 (7)0.0018 (8)
C170.0101 (10)0.0259 (11)0.0222 (11)0.0028 (8)0.0047 (8)0.0070 (9)
C90.0146 (10)0.0218 (11)0.0177 (10)0.0026 (8)0.0070 (8)0.0020 (8)
C320.0086 (10)0.0295 (12)0.0149 (10)0.0015 (8)0.0025 (8)0.0012 (8)
C330.0121 (10)0.0240 (11)0.0203 (11)0.0023 (8)0.0056 (8)0.0003 (9)
C340.0067 (9)0.0267 (11)0.0195 (10)0.0000 (8)0.0041 (8)0.0027 (9)
C260.0073 (9)0.0245 (11)0.0174 (10)0.0004 (8)0.0065 (7)0.0014 (8)
C150.0126 (10)0.0189 (10)0.0181 (10)0.0006 (8)0.0022 (8)0.0041 (8)
C100.0159 (10)0.0187 (10)0.0198 (10)0.0002 (8)0.0016 (8)0.0045 (8)
C70.0146 (11)0.0217 (11)0.0246 (11)0.0015 (8)0.0039 (8)0.0034 (9)
C180.0104 (10)0.0216 (11)0.0247 (11)0.0005 (8)0.0043 (8)0.0009 (9)
C400.0175 (11)0.0249 (11)0.0201 (11)0.0003 (9)0.0049 (8)0.0007 (9)
C60.0106 (10)0.0282 (12)0.0311 (12)0.0006 (8)0.0001 (8)0.0042 (10)
C160.0094 (10)0.0285 (11)0.0199 (10)0.0005 (8)0.0008 (8)0.0034 (9)
C40.0179 (11)0.0253 (11)0.0208 (11)0.0046 (8)0.0011 (8)0.0004 (9)
C390.0061 (9)0.0299 (11)0.0168 (10)0.0013 (8)0.0051 (7)0.0001 (9)
C50.0176 (11)0.0301 (12)0.0276 (12)0.0046 (9)0.0057 (9)0.0016 (10)
C10.0134 (10)0.0231 (11)0.0181 (10)0.0022 (8)0.0044 (8)0.0006 (8)
C280.0174 (11)0.0305 (12)0.0204 (11)0.0063 (9)0.0044 (8)0.0022 (9)
C110.0198 (11)0.0246 (11)0.0188 (11)0.0009 (8)0.0006 (9)0.0012 (9)
C140.0136 (10)0.0240 (11)0.0212 (11)0.0011 (8)0.0029 (8)0.0033 (9)
C240.0144 (10)0.0315 (12)0.0158 (10)0.0030 (9)0.0029 (8)0.0025 (9)
C20.0133 (10)0.0189 (10)0.0187 (10)0.0028 (8)0.0030 (8)0.0037 (8)
C250.0117 (10)0.0253 (11)0.0284 (12)0.0017 (8)0.0062 (8)0.0031 (9)
C230.0202 (11)0.0240 (11)0.0238 (11)0.0014 (9)0.0056 (9)0.0058 (9)
C130.0128 (10)0.0292 (12)0.0268 (12)0.0000 (9)0.0006 (8)0.0059 (9)
C220.0171 (11)0.0247 (11)0.0261 (12)0.0056 (9)0.0044 (9)0.0026 (9)
C410.0178 (11)0.0227 (11)0.0253 (11)0.0001 (8)0.0104 (9)0.0020 (9)
C190.0148 (11)0.0269 (11)0.0237 (11)0.0037 (8)0.0040 (9)0.0021 (9)
C420.0146 (11)0.0251 (11)0.0332 (13)0.0008 (9)0.0077 (9)0.0035 (10)
C310.0198 (11)0.0357 (13)0.0188 (11)0.0056 (10)0.0014 (9)0.0048 (10)
C300.0188 (12)0.0525 (16)0.0193 (11)0.0043 (11)0.0050 (9)0.0005 (11)
C480.0229 (12)0.0258 (12)0.0293 (12)0.0006 (9)0.0089 (9)0.0064 (10)
C290.0193 (12)0.0505 (16)0.0194 (11)0.0099 (10)0.0016 (9)0.0047 (11)
C210.0156 (11)0.0344 (12)0.0254 (12)0.0065 (9)0.0022 (9)0.0030 (10)
C350.0108 (10)0.0296 (12)0.0309 (12)0.0003 (9)0.0045 (9)0.0075 (10)
C380.0138 (11)0.0363 (13)0.0229 (11)0.0069 (9)0.0020 (9)0.0036 (10)
C120.0210 (11)0.0286 (12)0.0221 (11)0.0010 (9)0.0054 (9)0.0021 (9)
C200.0090 (10)0.0432 (14)0.0238 (11)0.0015 (9)0.0025 (8)0.0052 (10)
C370.0127 (11)0.0551 (16)0.0234 (12)0.0068 (10)0.0037 (9)0.0056 (11)
C470.0283 (14)0.0234 (12)0.0452 (16)0.0044 (10)0.0178 (11)0.0043 (11)
C360.0122 (11)0.0476 (15)0.0320 (13)0.0008 (10)0.0016 (10)0.0160 (11)
C440.0382 (15)0.0404 (15)0.0312 (13)0.0157 (12)0.0004 (11)0.0021 (12)
C430.0255 (13)0.0375 (14)0.0341 (14)0.0078 (11)0.0026 (10)0.0018 (11)
C460.0354 (15)0.0243 (12)0.0384 (15)0.0008 (10)0.0199 (12)0.0051 (11)
C450.0469 (17)0.0366 (14)0.0319 (14)0.0092 (12)0.0064 (12)0.0101 (12)
Geometric parameters (Å, º) top
Zn1—Cl12.3416 (5)C5—H50.9500
Zn1—Cl22.2456 (6)C1—H1A0.9900
Zn1—Cl32.2550 (6)C1—H1B0.9900
Zn1—Cl42.2396 (6)C1—C21.515 (3)
N1—C161.476 (3)C28—H280.9500
N1—C11.481 (3)C28—C291.363 (3)
N1—C241.477 (3)C11—H110.9500
N2—H2A0.88 (3)C11—C121.366 (3)
N2—C181.494 (3)C14—H140.9500
N2—C191.494 (3)C14—C131.362 (3)
N2—H2B0.96 (3)C24—H24A0.9900
N4—C401.469 (3)C24—H24B0.9900
N4—C251.485 (3)C24—C231.528 (3)
N4—C481.471 (3)C25—H25A0.9900
N3—H30.86 (3)C25—H25B0.9900
N3—C221.472 (3)C23—H23A0.9900
N3—C211.474 (3)C23—H23B0.9900
N5—H5A0.87 (3)C23—C221.520 (3)
N5—C421.482 (3)C13—H130.9500
N5—C431.494 (3)C13—C121.422 (3)
N5—H5B0.99 (4)C22—H22A0.9900
C8—C31.445 (3)C22—H22B0.9900
C8—C91.390 (3)C41—H41A0.9900
C8—C71.432 (3)C41—H41B0.9900
C3—C41.433 (3)C41—C421.524 (3)
C3—C21.419 (3)C19—H19A0.9900
N6—H6A1.00 (3)C19—H19B0.9900
N6—C461.467 (3)C19—C201.519 (3)
N6—C451.470 (4)C42—H42A0.9900
C27—C321.432 (3)C42—H42B0.9900
C27—C261.414 (3)C31—H310.9500
C27—C281.436 (3)C31—C301.358 (4)
C17—H17A0.9900C30—H300.9500
C17—H17B0.9900C30—C291.413 (4)
C17—C181.524 (3)C48—H48A0.9900
C17—C161.528 (3)C48—H48B0.9900
C9—H90.9500C48—C471.530 (3)
C9—C101.393 (3)C29—H290.9500
C32—C331.394 (3)C21—H21A0.9900
C32—C311.434 (3)C21—H21B0.9900
C33—H330.9500C21—C201.520 (3)
C33—C341.394 (3)C35—H350.9500
C34—C391.434 (3)C35—C361.354 (4)
C34—C351.431 (3)C38—H380.9500
C26—C391.414 (3)C38—C371.362 (4)
C26—C251.510 (3)C12—H120.9500
C15—C101.438 (3)C20—H20A0.9900
C15—C141.440 (3)C20—H20B0.9900
C15—C21.413 (3)C37—H370.9500
C10—C111.424 (3)C37—C361.413 (4)
C7—H70.9500C47—H47A0.9900
C7—C61.358 (3)C47—H47B0.9900
C18—H18A0.9900C47—C461.508 (4)
C18—H18B0.9900C36—H360.9500
C40—H40A0.9900C44—H44A0.9900
C40—H40B0.9900C44—H44B0.9900
C40—C411.529 (3)C44—C431.524 (4)
C6—H60.9500C44—C451.530 (4)
C6—C51.421 (3)C43—H43A0.9900
C16—H16A0.9900C43—H43B0.9900
C16—H16B0.9900C46—H46A0.9900
C4—H40.9500C46—H46B0.9900
C4—C51.362 (3)C45—H45A0.9900
C39—C381.437 (3)C45—H45B0.9900
Cl2—Zn1—Cl1104.88 (2)H24A—C24—H24B107.2
Cl2—Zn1—Cl3116.62 (2)C23—C24—H24A108.0
Cl3—Zn1—Cl1109.07 (2)C23—C24—H24B108.0
Cl4—Zn1—Cl1103.59 (2)C3—C2—C1121.01 (19)
Cl4—Zn1—Cl2111.91 (3)C15—C2—C3119.50 (19)
Cl4—Zn1—Cl3109.81 (3)C15—C2—C1119.46 (18)
C16—N1—C1111.67 (15)N4—C25—C26114.48 (17)
C16—N1—C24110.04 (16)N4—C25—H25A108.6
C24—N1—C1110.00 (16)N4—C25—H25B108.6
H2A—N2—H2B109 (2)C26—C25—H25A108.6
C18—N2—H2A108.2 (17)C26—C25—H25B108.6
C18—N2—C19116.70 (18)H25A—C25—H25B107.6
C18—N2—H2B110.6 (16)C24—C23—H23A108.3
C19—N2—H2A108.2 (17)C24—C23—H23B108.3
C19—N2—H2B103.3 (17)H23A—C23—H23B107.4
C40—N4—C25111.55 (17)C22—C23—C24115.97 (19)
C40—N4—C48109.59 (17)C22—C23—H23A108.3
C48—N4—C25108.98 (17)C22—C23—H23B108.3
C22—N3—H3105.1 (19)C14—C13—H13119.5
C22—N3—C21113.99 (17)C14—C13—C12121.0 (2)
C21—N3—H3108.2 (19)C12—C13—H13119.5
H5A—N5—H5B107 (3)N3—C22—C23110.91 (18)
C42—N5—H5A105.6 (19)N3—C22—H22A109.5
C42—N5—C43114.6 (2)N3—C22—H22B109.5
C42—N5—H5B114.6 (19)C23—C22—H22A109.5
C43—N5—H5A109.9 (19)C23—C22—H22B109.5
C43—N5—H5B105 (2)H22A—C22—H22B108.0
C9—C8—C3119.79 (19)C40—C41—H41A109.0
C9—C8—C7120.67 (19)C40—C41—H41B109.0
C7—C8—C3119.5 (2)H41A—C41—H41B107.8
C4—C3—C8116.70 (19)C42—C41—C40113.05 (18)
C2—C3—C8119.36 (19)C42—C41—H41A109.0
C2—C3—C4123.9 (2)C42—C41—H41B109.0
C46—N6—H6A108.8 (17)N2—C19—H19A109.7
C46—N6—C45113.9 (2)N2—C19—H19B109.7
C45—N6—H6A108.6 (18)N2—C19—C20109.97 (18)
C32—C27—C28117.50 (19)H19A—C19—H19B108.2
C26—C27—C32120.25 (19)C20—C19—H19A109.7
C26—C27—C28122.2 (2)C20—C19—H19B109.7
H17A—C17—H17B107.8N5—C42—C41112.34 (19)
C18—C17—H17A109.0N5—C42—H42A109.1
C18—C17—H17B109.0N5—C42—H42B109.1
C18—C17—C16112.73 (18)C41—C42—H42A109.1
C16—C17—H17A109.0C41—C42—H42B109.1
C16—C17—H17B109.0H42A—C42—H42B107.9
C8—C9—H9119.1C32—C31—H31119.7
C8—C9—C10121.74 (19)C30—C31—C32120.6 (2)
C10—C9—H9119.1C30—C31—H31119.7
C27—C32—C31119.6 (2)C31—C30—H30119.9
C33—C32—C27119.57 (19)C31—C30—C29120.1 (2)
C33—C32—C31120.9 (2)C29—C30—H30119.9
C32—C33—H33119.5N4—C48—H48A108.5
C32—C33—C34121.0 (2)N4—C48—H48B108.5
C34—C33—H33119.5N4—C48—C47115.2 (2)
C33—C34—C39120.0 (2)H48A—C48—H48B107.5
C33—C34—C35119.9 (2)C47—C48—H48A108.5
C35—C34—C39120.1 (2)C47—C48—H48B108.5
C27—C26—C39119.40 (19)C28—C29—C30121.3 (2)
C27—C26—C25119.39 (19)C28—C29—H29119.3
C39—C26—C25121.22 (19)C30—C29—H29119.3
C10—C15—C14116.9 (2)N3—C21—H21A109.0
C2—C15—C10120.49 (19)N3—C21—H21B109.0
C2—C15—C14122.59 (19)N3—C21—C20112.91 (18)
C9—C10—C15119.0 (2)H21A—C21—H21B107.8
C9—C10—C11121.20 (19)C20—C21—H21A109.0
C11—C10—C15119.75 (19)C20—C21—H21B109.0
C8—C7—H7119.4C34—C35—H35119.5
C6—C7—C8121.3 (2)C36—C35—C34121.0 (2)
C6—C7—H7119.4C36—C35—H35119.5
N2—C18—C17109.24 (17)C39—C38—H38119.2
N2—C18—H18A109.8C37—C38—C39121.7 (2)
N2—C18—H18B109.8C37—C38—H38119.2
C17—C18—H18A109.8C11—C12—C13119.5 (2)
C17—C18—H18B109.8C11—C12—H12120.2
H18A—C18—H18B108.3C13—C12—H12120.2
N4—C40—H40A108.9C19—C20—C21114.31 (18)
N4—C40—H40B108.9C19—C20—H20A108.7
N4—C40—C41113.36 (18)C19—C20—H20B108.7
H40A—C40—H40B107.7C21—C20—H20A108.7
C41—C40—H40A108.9C21—C20—H20B108.7
C41—C40—H40B108.9H20A—C20—H20B107.6
C7—C6—H6120.2C38—C37—H37119.4
C7—C6—C5119.6 (2)C38—C37—C36121.2 (2)
C5—C6—H6120.2C36—C37—H37119.4
N1—C16—C17112.66 (17)C48—C47—H47A108.4
N1—C16—H16A109.1C48—C47—H47B108.4
N1—C16—H16B109.1H47A—C47—H47B107.4
C17—C16—H16A109.1C46—C47—C48115.7 (2)
C17—C16—H16B109.1C46—C47—H47A108.4
H16A—C16—H16B107.8C46—C47—H47B108.4
C3—C4—H4119.1C35—C36—C37119.7 (2)
C5—C4—C3121.8 (2)C35—C36—H36120.2
C5—C4—H4119.1C37—C36—H36120.2
C34—C39—C38116.4 (2)H44A—C44—H44B107.8
C26—C39—C34119.74 (19)C43—C44—H44A109.0
C26—C39—C38123.9 (2)C43—C44—H44B109.0
C6—C5—H5119.5C43—C44—C45113.1 (2)
C4—C5—C6121.0 (2)C45—C44—H44A109.0
C4—C5—H5119.5C45—C44—H44B109.0
N1—C1—H1A108.4N5—C43—C44111.3 (2)
N1—C1—H1B108.4N5—C43—H43A109.4
N1—C1—C2115.45 (17)N5—C43—H43B109.4
H1A—C1—H1B107.5C44—C43—H43A109.4
C2—C1—H1A108.4C44—C43—H43B109.4
C2—C1—H1B108.4H43A—C43—H43B108.0
C27—C28—H28119.6N6—C46—C47112.4 (2)
C29—C28—C27120.9 (2)N6—C46—H46A109.1
C29—C28—H28119.6N6—C46—H46B109.1
C10—C11—H11119.4C47—C46—H46A109.1
C12—C11—C10121.3 (2)C47—C46—H46B109.1
C12—C11—H11119.4H46A—C46—H46B107.9
C15—C14—H14119.2N6—C45—C44110.7 (2)
C13—C14—C15121.5 (2)N6—C45—H45A109.5
C13—C14—H14119.2N6—C45—H45B109.5
N1—C24—H24A108.0C44—C45—H45A109.5
N1—C24—H24B108.0C44—C45—H45B109.5
N1—C24—C23117.27 (18)H45A—C45—H45B108.1
N1—C1—C2—C3107.8 (2)C18—N2—C19—C20178.05 (18)
N1—C1—C2—C1574.4 (2)C18—C17—C16—N148.3 (2)
N1—C24—C23—C2270.9 (2)C40—N4—C25—C2647.8 (3)
N2—C19—C20—C2173.1 (2)C40—N4—C48—C47175.9 (2)
N4—C40—C41—C4257.9 (3)C40—C41—C42—N591.1 (2)
N4—C48—C47—C4645.3 (3)C16—N1—C1—C250.4 (2)
N3—C21—C20—C1952.1 (3)C16—N1—C24—C23170.11 (18)
C8—C3—C4—C50.5 (3)C16—C17—C18—N278.9 (2)
C8—C3—C2—C152.4 (3)C4—C3—C2—C15177.4 (2)
C8—C3—C2—C1175.43 (18)C4—C3—C2—C14.7 (3)
C8—C9—C10—C150.6 (3)C39—C34—C35—C361.1 (3)
C8—C9—C10—C11179.2 (2)C39—C26—C25—N4118.1 (2)
C8—C7—C6—C50.3 (3)C39—C38—C37—C361.2 (4)
C3—C8—C9—C101.3 (3)C1—N1—C16—C17152.55 (18)
C3—C8—C7—C60.1 (3)C1—N1—C24—C2366.5 (2)
C3—C4—C5—C60.9 (3)C28—C27—C32—C33177.76 (19)
C27—C32—C33—C340.8 (3)C28—C27—C32—C311.7 (3)
C27—C32—C31—C300.2 (3)C28—C27—C26—C39177.80 (18)
C27—C26—C39—C340.7 (3)C28—C27—C26—C251.8 (3)
C27—C26—C39—C38177.19 (19)C14—C15—C10—C9178.92 (19)
C27—C26—C25—N462.3 (3)C14—C15—C10—C110.9 (3)
C27—C28—C29—C300.7 (3)C14—C15—C2—C3177.43 (19)
C9—C8—C3—C4179.67 (19)C14—C15—C2—C14.7 (3)
C9—C8—C3—C20.2 (3)C14—C13—C12—C110.7 (3)
C9—C8—C7—C6179.6 (2)C24—N1—C16—C1785.0 (2)
C9—C10—C11—C12178.8 (2)C24—N1—C1—C2172.84 (18)
C32—C27—C26—C391.9 (3)C24—C23—C22—N374.9 (2)
C32—C27—C26—C25178.54 (17)C2—C3—C4—C5179.4 (2)
C32—C27—C28—C291.3 (3)C2—C15—C10—C91.6 (3)
C32—C33—C34—C390.4 (3)C2—C15—C10—C11178.55 (19)
C32—C33—C34—C35178.52 (19)C2—C15—C14—C13179.4 (2)
C32—C31—C30—C291.9 (3)C25—N4—C40—C41166.87 (18)
C33—C32—C31—C30179.3 (2)C25—N4—C48—C4761.7 (3)
C33—C34—C39—C260.4 (3)C25—C26—C39—C34179.72 (17)
C33—C34—C39—C38178.47 (19)C25—C26—C39—C382.4 (3)
C33—C34—C35—C36177.8 (2)C22—N3—C21—C2077.9 (2)
C34—C39—C38—C370.7 (3)C19—N2—C18—C17172.51 (18)
C34—C35—C36—C370.6 (3)C42—N5—C43—C44169.30 (19)
C26—C27—C32—C331.9 (3)C31—C32—C33—C34179.75 (19)
C26—C27—C32—C31178.60 (19)C31—C30—C29—C282.3 (4)
C26—C27—C28—C29179.0 (2)C48—N4—C40—C4172.4 (2)
C26—C39—C38—C37177.3 (2)C48—N4—C25—C26168.92 (19)
C15—C10—C11—C121.0 (3)C48—C47—C46—N649.2 (3)
C15—C14—C13—C120.8 (3)C21—N3—C22—C23177.94 (19)
C10—C15—C14—C130.0 (3)C35—C34—C39—C26178.47 (18)
C10—C15—C2—C33.2 (3)C35—C34—C39—C380.4 (3)
C10—C15—C2—C1174.74 (18)C38—C37—C36—C350.5 (4)
C10—C11—C12—C130.2 (3)C43—N5—C42—C41169.84 (18)
C7—C8—C3—C40.0 (3)C43—C44—C45—N659.0 (3)
C7—C8—C3—C2179.92 (19)C46—N6—C45—C44162.4 (2)
C7—C8—C9—C10178.36 (19)C45—N6—C46—C47172.6 (2)
C7—C6—C5—C40.8 (3)C45—C44—C43—N558.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.88 (3)2.39 (3)3.273 (2)176.6 (16)
N5—H5A···Cl10.88 (3)2.42 (3)3.227 (2)153 (3)
N2—H2B···N10.96 (3)2.21 (3)2.854 (2)124 (2)
N2—H2B···N30.96 (3)2.05 (3)2.830 (3)137 (2)
N5—H5B···N41.00 (4)2.59 (3)3.194 (3)120 (2)
N5—H5B···N60.99 (4)1.77 (3)2.644 (3)145 (3)
 

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP23K14339 to Yoshimi Ichimaru).

References

First citationAl-Resayes, S. I., Azam, M., Alam, M., Suresh Kumar, R. & Adil, S. F. (2017). J. Saudi Chem. Soc. 21, 481–486.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHubsch-Weber, P. & Youinou, M.-T. (1997). Tetrahedron Lett. 38, 1911–1914.  CAS Google Scholar
First citationIchimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data. 6, x210397.  Google Scholar
First citationIchimaru, Y., Kato, K., Yamaguchi, Y., Sakamoto, T., Jin, W., Kurihara, M., Fujita, M., Otsuka, M. & Kurosaki, H. (2025). Chem. Pharm. Bull. 73, 103–107.  CrossRef CAS Google Scholar
First citationIchimaru, Y., Sugiura, K., Kato, K., Kondo, Y., Kurihara, M., Jin, W., Imai, M. & Kurosaki, H. (2024). IUCr Data. 9, x240665.  Google Scholar
First citationKimura, E., Koike, T., Shionoya, M. & Shiro, M. (1992). Chem. Lett. 21, 787–790.  CrossRef Google Scholar
First citationKimura, E., Shiota, T., Koike, T., Shiro, M. & Kodama, M. (1990). J. Am. Chem. Soc. 112, 5805–5811.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2022). CrystAlis PRO. Rigaku Oxford Diffractioon, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146