

organic compounds
N-[(1Z)-Cyclodec-5-yn-1-ylidene]hydroxylamine
aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de
The 10H15NO, is reported. Two twist-boat-shaped cycloalkynes are centrosymmetrically connected via oxime hydrogen bridges. Deformation of the alkyne unit results from ring strain.
of cyclodecynone oxime, CKeywords: crystal structure; heterocycle; selenium; medium-sized ring.
CCDC reference: 2449294
![[Scheme 3D1]](bt4170scheme3D1.gif)
![[Scheme 1]](bt4170scheme1.gif)
Structure description
The title compound, C10H15NO (Fig. 1), was prepared as part of a project focusing on medium-sized rings and transannular reactions. Whereas the bond angle of 119.76 (9)° at the carbonyl group (C2—C1—C10) is perfect for a sp2-hybridized carbon, the C—C—C bond angles on the methylene tether are significantly larger than for an ideal sp3 Except for the propargylic carbon atoms C4—C5—C6: 111.67 (9)°, C7—C8—C9: 112.64 (9)°, the C—C—C bond angles vary between 114.75 (10)° and 116.98 (9)°. Ring strain also distorts the alkyne unit, bond angles on the acetylenic carbons are reduced to 172.02 (11)° for C5—C6—C7 and to 172.38 (11)° for C6—C7—C8. The cyclodecyne ring adopts a twist-boat conformation with C4 and C9 being fore and aft. The other atoms are mostly coplanar, only C1 lies 0.477 (1) Å above and C2 lies −0.5213 (11) Å below this plane. The oxime unit (C1, N11, O12, H122) is planar with an r.m.s. deviation of 0.022 Å. Centrosymmetric dimers are formed via hydrogen bridging. The oxime units form a planar six-membered ring via two hydrogen bridges O12—H122—N11i, H122⋯N11i: 1.908 (19) Å (symmetry code as in Table 1
) This gives the dimer the shape of two steps in a staircase (Fig. 2
), the angle between the cyclodecyne planes and the di-oxime plane being 75.1 (5)°.
|
![]() | Figure 1 Perspective view (Spek, 2009 ![]() |
![]() | Figure 2 Part of the packing diagram. View along b-axis direction (Spek, 2009 ![]() |
Synthesis and crystallization
Synthetic and spectroscopic details:
The title compound was prepared by G. Krämer (Krämer, 1996; Krämer et al., 2009
). Oxidation of decaline to the hydroperoxide, rearrangement to hydroxyketone/hemiacetal and conversion via semicarbazone to 1,2,3-selenadiazole (Detert et al., 1992
), oxidation and yielded cyclodecynone (Gleiter et al., 1988
). The oxime was formed according to Hanack (Hanack et al., 1972
).
The annotation of the NMR signals follows IUPAC nomenclature. 1H-NMR (200 MHz, CDCl3): 9.1 (bs, 1 H, OH), 2.75 (t, 2 H, J = 6.1 Hz), 2.37 (t, 2 H, J = 6 Hz), 2.20-1.95 (m, 6 H, 3,4,7-H), 1.80 (m, 4 H, 8,9-H); 13C-NMR (100 MHz, CDCl3): 160.3 (C=N), 84.9, 83.4 (C-5, C-6), 33.5, 30.6, 26.1, 24.3, 23.9, 19.7, 18.3.
Refinement
Crystal data, data collection and structure .
|
Structural data
CCDC reference: 2449294
https://doi.org/10.1107/S2414314625004146/bt4170sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314625004146/bt4170Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314625004146/bt4170Isup3.cml
C10H15NO | Dx = 1.173 Mg m−3 |
Mr = 165.23 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9411 reflections |
a = 9.5469 (4) Å | θ = 2.8–29.9° |
b = 8.9830 (3) Å | µ = 0.08 mm−1 |
c = 21.8191 (7) Å | T = 120 K |
V = 1871.20 (12) Å3 | Plate, colorless |
Z = 8 | 0.80 × 0.48 × 0.14 mm |
F(000) = 720 |
Stoe IPDS 2T diffractometer | 2225 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube, 12x0.4mm long-fine focus | Rint = 0.023 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.4°, θmin = 2.8° |
rotation method, ω scans | h = −11→13 |
6155 measured reflections | k = −12→10 |
2574 independent reflections | l = −30→25 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | All H-atom parameters refined |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0486P)2 + 0.7721P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2574 reflections | Δρmax = 0.37 e Å−3 |
162 parameters | Δρmin = −0.17 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All hydrogen atoms were located in a difference map. The H atom bonded to O was freely refined. The coordinates of the H atoms attached to carbon atoms were freely refined. Their displacement parameters were also refined constraining the U values of each pair of H atoms bonded to the same C atom to be equal. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.58239 (10) | 0.31386 (12) | 0.09451 (4) | 0.0202 (2) | |
C2 | 0.53594 (12) | 0.15439 (12) | 0.08775 (5) | 0.0239 (2) | |
H2A | 0.5224 (16) | 0.1130 (17) | 0.1307 (7) | 0.035 (3)* | |
H2B | 0.6203 (17) | 0.0993 (17) | 0.0708 (7) | 0.035 (3)* | |
C3 | 0.40563 (12) | 0.12659 (12) | 0.04840 (5) | 0.0265 (2) | |
H3A | 0.4264 (15) | 0.1549 (17) | 0.0047 (7) | 0.034 (3)* | |
H3B | 0.3876 (16) | 0.0187 (17) | 0.0483 (7) | 0.034 (3)* | |
C4 | 0.27114 (12) | 0.20571 (13) | 0.06758 (5) | 0.0269 (2) | |
H4A | 0.1977 (16) | 0.1686 (17) | 0.0414 (7) | 0.034 (3)* | |
H4B | 0.2806 (16) | 0.3164 (18) | 0.0633 (7) | 0.034 (3)* | |
C5 | 0.22458 (13) | 0.17707 (15) | 0.13387 (6) | 0.0312 (3) | |
H5A | 0.1284 (18) | 0.2109 (19) | 0.1418 (8) | 0.044 (3)* | |
H5B | 0.2294 (18) | 0.072 (2) | 0.1442 (7) | 0.044 (3)* | |
C6 | 0.31476 (12) | 0.25459 (12) | 0.17804 (5) | 0.0253 (2) | |
C7 | 0.39879 (12) | 0.32077 (13) | 0.20810 (5) | 0.0253 (2) | |
C8 | 0.51520 (14) | 0.39742 (16) | 0.23847 (5) | 0.0337 (3) | |
H8A | 0.5657 (18) | 0.3253 (19) | 0.2646 (8) | 0.046 (3)* | |
H8B | 0.4801 (19) | 0.4749 (19) | 0.2667 (8) | 0.046 (3)* | |
C9 | 0.61843 (12) | 0.46629 (14) | 0.19295 (5) | 0.0280 (2) | |
H9A | 0.6953 (15) | 0.5097 (16) | 0.2174 (7) | 0.031 (3)* | |
H9B | 0.5754 (15) | 0.5494 (16) | 0.1713 (7) | 0.031 (3)* | |
C10 | 0.67983 (11) | 0.35670 (13) | 0.14614 (5) | 0.0249 (2) | |
H10A | 0.7644 (16) | 0.4019 (17) | 0.1266 (6) | 0.033 (3)* | |
H10B | 0.7124 (15) | 0.2666 (17) | 0.1673 (7) | 0.033 (3)* | |
N11 | 0.54369 (9) | 0.40276 (10) | 0.05199 (4) | 0.02058 (19) | |
O12 | 0.60094 (8) | 0.54785 (9) | 0.05794 (4) | 0.02628 (19) | |
H122 | 0.5675 (19) | 0.595 (2) | 0.0207 (9) | 0.054 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0171 (4) | 0.0245 (5) | 0.0190 (4) | 0.0022 (4) | 0.0032 (3) | 0.0029 (4) |
C2 | 0.0263 (5) | 0.0209 (5) | 0.0247 (5) | 0.0050 (4) | 0.0043 (4) | 0.0016 (4) |
C3 | 0.0315 (6) | 0.0224 (5) | 0.0256 (5) | −0.0018 (4) | 0.0027 (4) | −0.0059 (4) |
C4 | 0.0238 (5) | 0.0308 (6) | 0.0262 (5) | −0.0040 (4) | −0.0017 (4) | −0.0060 (4) |
C5 | 0.0279 (6) | 0.0333 (6) | 0.0324 (6) | −0.0104 (5) | 0.0077 (5) | −0.0064 (5) |
C6 | 0.0275 (5) | 0.0268 (5) | 0.0214 (5) | −0.0009 (4) | 0.0082 (4) | 0.0014 (4) |
C7 | 0.0276 (5) | 0.0311 (5) | 0.0170 (4) | 0.0023 (4) | 0.0035 (4) | 0.0018 (4) |
C8 | 0.0328 (6) | 0.0496 (7) | 0.0186 (5) | −0.0020 (6) | −0.0046 (4) | −0.0022 (5) |
C9 | 0.0273 (5) | 0.0317 (6) | 0.0251 (5) | −0.0036 (5) | −0.0084 (4) | 0.0012 (4) |
C10 | 0.0192 (5) | 0.0302 (5) | 0.0254 (5) | −0.0002 (4) | −0.0048 (4) | 0.0077 (4) |
N11 | 0.0209 (4) | 0.0218 (4) | 0.0190 (4) | −0.0011 (3) | 0.0023 (3) | 0.0027 (3) |
O12 | 0.0287 (4) | 0.0248 (4) | 0.0253 (4) | −0.0075 (3) | −0.0046 (3) | 0.0079 (3) |
C1—N11 | 1.2785 (13) | C5—H5B | 0.969 (18) |
C1—C2 | 1.5069 (15) | C6—C7 | 1.1946 (16) |
C1—C10 | 1.5108 (14) | C7—C8 | 1.4656 (16) |
C2—C3 | 1.5319 (16) | C8—C9 | 1.5298 (17) |
C2—H2A | 1.017 (15) | C8—H8A | 0.989 (17) |
C2—H2B | 1.015 (16) | C8—H8B | 0.988 (17) |
C3—C4 | 1.5260 (16) | C9—C10 | 1.5349 (17) |
C3—H3A | 1.007 (15) | C9—H9A | 0.987 (15) |
C3—H3B | 0.984 (15) | C9—H9B | 0.974 (15) |
C4—C5 | 1.5349 (16) | C10—H10A | 0.999 (15) |
C4—H4A | 0.964 (15) | C10—H10B | 0.983 (15) |
C4—H4B | 1.003 (16) | N11—O12 | 1.4193 (11) |
C5—C6 | 1.4680 (16) | O12—H122 | 0.971 (19) |
C5—H5A | 0.983 (17) | ||
N11—C1—C2 | 115.96 (9) | C4—C5—H5B | 111.6 (10) |
N11—C1—C10 | 124.04 (10) | H5A—C5—H5B | 107.7 (14) |
C2—C1—C10 | 119.76 (9) | C7—C6—C5 | 172.02 (11) |
C1—C2—C3 | 116.67 (9) | C6—C7—C8 | 172.38 (11) |
C1—C2—H2A | 107.1 (9) | C7—C8—C9 | 112.64 (9) |
C3—C2—H2A | 110.7 (9) | C7—C8—H8A | 108.8 (10) |
C1—C2—H2B | 105.4 (9) | C9—C8—H8A | 109.0 (10) |
C3—C2—H2B | 111.2 (9) | C7—C8—H8B | 110.8 (10) |
H2A—C2—H2B | 104.9 (12) | C9—C8—H8B | 109.8 (10) |
C4—C3—C2 | 116.98 (9) | H8A—C8—H8B | 105.5 (14) |
C4—C3—H3A | 107.9 (9) | C8—C9—C10 | 114.75 (10) |
C2—C3—H3A | 109.3 (9) | C8—C9—H9A | 106.7 (9) |
C4—C3—H3B | 108.2 (9) | C10—C9—H9A | 109.2 (9) |
C2—C3—H3B | 107.7 (9) | C8—C9—H9B | 110.6 (9) |
H3A—C3—H3B | 106.3 (12) | C10—C9—H9B | 109.3 (9) |
C3—C4—C5 | 115.09 (10) | H9A—C9—H9B | 105.8 (12) |
C3—C4—H4A | 106.8 (9) | C1—C10—C9 | 115.11 (9) |
C5—C4—H4A | 106.8 (9) | C1—C10—H10A | 106.5 (8) |
C3—C4—H4B | 111.1 (9) | C9—C10—H10A | 109.4 (9) |
C5—C4—H4B | 106.3 (8) | C1—C10—H10B | 109.6 (9) |
H4A—C4—H4B | 110.6 (12) | C9—C10—H10B | 109.6 (9) |
C6—C5—C4 | 111.67 (9) | H10A—C10—H10B | 106.3 (12) |
C6—C5—H5A | 106.6 (10) | C1—N11—O12 | 113.33 (8) |
C4—C5—H5A | 112.7 (10) | N11—O12—H122 | 101.5 (11) |
C6—C5—H5B | 106.3 (10) | ||
N11—C1—C2—C3 | −23.67 (13) | N11—C1—C10—C9 | 69.25 (13) |
C10—C1—C2—C3 | 161.71 (9) | C2—C1—C10—C9 | −116.59 (11) |
C1—C2—C3—C4 | −57.70 (13) | C8—C9—C10—C1 | 76.41 (12) |
C2—C3—C4—C5 | −55.44 (14) | C2—C1—N11—O12 | −174.64 (8) |
C3—C4—C5—C6 | 72.79 (13) | C10—C1—N11—O12 | −0.28 (14) |
C7—C8—C9—C10 | −55.59 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H122···N11i | 0.971 (19) | 1.908 (19) | 2.8030 (12) | 151.9 (16) |
Symmetry code: (i) −x+1, −y+1, −z. |
References
Detert, H., Antony–Mayer, C. & Meier, H. (1992). Angew. Chem. 104, 755–757. CrossRef CAS Google Scholar
Gleiter, R., Kratz, D. & Schehlmann, V. (1988). Tetrahedron Lett. 29, 2813–2816. CrossRef Google Scholar
Hanack, M., Harding, C. E. & Derocque, J.-L. (1972). Chem. Ber. 105, 421–433. CrossRef Google Scholar
Krämer, G. (1996). PhD Thesis, University of Mainz, p. 119. Google Scholar
Meier, H., Krämer, G. & Detert, H. (2009). Heterocycles 78, 2201–2208. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.