organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[(1Z)-Cyclo­dec-5-yn-1-yl­­idene]hydroxyl­amine

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 5 May 2025; accepted 7 May 2025; online 13 May 2025)

The crystal structure of cyclo­decynone oxime, C10H15NO, is reported. Two twist-boat-shaped cyclo­alkynes are centrosymmetrically connected via oxime hydrogen bridges. Deformation of the alkyne unit results from ring strain.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C10H15NO (Fig. 1[link]), was prepared as part of a project focusing on medium-sized rings and transannular reactions. Whereas the bond angle of 119.76 (9)° at the carbonyl group (C2—C1—C10) is perfect for a sp2-hybridized carbon, the C—C—C bond angles on the methyl­ene tether are significantly larger than for an ideal sp3 hybridization. Except for the propargylic carbon atoms C4—C5—C6: 111.67 (9)°, C7—C8—C9: 112.64 (9)°, the C—C—C bond angles vary between 114.75 (10)° and 116.98 (9)°. Ring strain also distorts the alkyne unit, bond angles on the acetyl­enic carbons are reduced to 172.02 (11)° for C5—C6—C7 and to 172.38 (11)° for C6—C7—C8. The cyclo­decyne ring adopts a twist-boat conformation with C4 and C9 being fore and aft. The other atoms are mostly coplanar, only C1 lies 0.477 (1) Å above and C2 lies −0.5213 (11) Å below this plane. The oxime unit (C1, N11, O12, H122) is planar with an r.m.s. deviation of 0.022 Å. Centrosymmetric dimers are formed via hydrogen bridging. The oxime units form a planar six-membered ring via two hydrogen bridges O12—H122—N11i, H122⋯N11i: 1.908 (19) Å (symmetry code as in Table 1[link]) This gives the dimer the shape of two steps in a staircase (Fig. 2[link]), the angle between the cyclo­decyne planes and the di-oxime plane being 75.1 (5)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H122⋯N11i 0.971 (19) 1.908 (19) 2.8030 (12) 151.9 (16)
Symmetry code: (i) [-x+1, -y+1, -z].
[Figure 1]
Figure 1
Perspective view (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the packing diagram. View along b-axis direction (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Synthesis and crystallization

Synthetic and spectroscopic details:

The title compound was prepared by G. Krämer (Krämer, 1996[Krämer, G. (1996). PhD Thesis, University of Mainz, p. 119.]; Krämer et al., 2009[Meier, H., Krämer, G. & Detert, H. (2009). Heterocycles 78, 2201-2208.]). Oxidation of deca­line to the hydro­peroxide, rearrangement to hy­droxy­ketone/hemiacetal and conversion via semicarbazone to 1,2,3-selena­diazole (Detert et al., 1992[Detert, H., Antony-Mayer, C. & Meier, H. (1992). Angew. Chem. 104, 755-757.]), oxidation and pyrolysis yielded cyclo­decynone (Gleiter et al., 1988[Gleiter, R., Kratz, D. & Schehlmann, V. (1988). Tetrahedron Lett. 29, 2813-2816.]). The oxime was formed according to Hanack (Hanack et al., 1972[Hanack, M., Harding, C. E. & Derocque, J.-L. (1972). Chem. Ber. 105, 421-433.]).

The annotation of the NMR signals follows IUPAC nomenclature. 1H-NMR (200 MHz, CDCl3): 9.1 (bs, 1 H, OH), 2.75 (t, 2 H, J = 6.1 Hz), 2.37 (t, 2 H, J = 6 Hz), 2.20-1.95 (m, 6 H, 3,4,7-H), 1.80 (m, 4 H, 8,9-H); 13C-NMR (100 MHz, CDCl3): 160.3 (C=N), 84.9, 83.4 (C-5, C-6), 33.5, 30.6, 26.1, 24.3, 23.9, 19.7, 18.3.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H15NO
Mr 165.23
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 120
a, b, c (Å) 9.5469 (4), 8.9830 (3), 21.8191 (7)
V3) 1871.20 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.80 × 0.48 × 0.14
 
Data collection
Diffractometer Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 6155, 2574, 2225
Rint 0.023
(sin θ/λ)max−1) 0.691
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.04
No. of reflections 2574
No. of parameters 162
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.37, −0.17
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

N-[(1Z)-Cyclodec-5-yn-1-ylidene]hydroxylamine top
Crystal data top
C10H15NODx = 1.173 Mg m3
Mr = 165.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9411 reflections
a = 9.5469 (4) Åθ = 2.8–29.9°
b = 8.9830 (3) ŵ = 0.08 mm1
c = 21.8191 (7) ÅT = 120 K
V = 1871.20 (12) Å3Plate, colorless
Z = 80.80 × 0.48 × 0.14 mm
F(000) = 720
Data collection top
Stoe IPDS 2T
diffractometer
2225 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12x0.4mm long-fine focusRint = 0.023
Detector resolution: 6.67 pixels mm-1θmax = 29.4°, θmin = 2.8°
rotation method, ω scansh = 1113
6155 measured reflectionsk = 1210
2574 independent reflectionsl = 3025
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.7721P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2574 reflectionsΔρmax = 0.37 e Å3
162 parametersΔρmin = 0.17 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were located in a difference map. The H atom bonded to O was freely refined. The coordinates of the H atoms attached to carbon atoms were freely refined. Their displacement parameters were also refined constraining the U values of each pair of H atoms bonded to the same C atom to be equal.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58239 (10)0.31386 (12)0.09451 (4)0.0202 (2)
C20.53594 (12)0.15439 (12)0.08775 (5)0.0239 (2)
H2A0.5224 (16)0.1130 (17)0.1307 (7)0.035 (3)*
H2B0.6203 (17)0.0993 (17)0.0708 (7)0.035 (3)*
C30.40563 (12)0.12659 (12)0.04840 (5)0.0265 (2)
H3A0.4264 (15)0.1549 (17)0.0047 (7)0.034 (3)*
H3B0.3876 (16)0.0187 (17)0.0483 (7)0.034 (3)*
C40.27114 (12)0.20571 (13)0.06758 (5)0.0269 (2)
H4A0.1977 (16)0.1686 (17)0.0414 (7)0.034 (3)*
H4B0.2806 (16)0.3164 (18)0.0633 (7)0.034 (3)*
C50.22458 (13)0.17707 (15)0.13387 (6)0.0312 (3)
H5A0.1284 (18)0.2109 (19)0.1418 (8)0.044 (3)*
H5B0.2294 (18)0.072 (2)0.1442 (7)0.044 (3)*
C60.31476 (12)0.25459 (12)0.17804 (5)0.0253 (2)
C70.39879 (12)0.32077 (13)0.20810 (5)0.0253 (2)
C80.51520 (14)0.39742 (16)0.23847 (5)0.0337 (3)
H8A0.5657 (18)0.3253 (19)0.2646 (8)0.046 (3)*
H8B0.4801 (19)0.4749 (19)0.2667 (8)0.046 (3)*
C90.61843 (12)0.46629 (14)0.19295 (5)0.0280 (2)
H9A0.6953 (15)0.5097 (16)0.2174 (7)0.031 (3)*
H9B0.5754 (15)0.5494 (16)0.1713 (7)0.031 (3)*
C100.67983 (11)0.35670 (13)0.14614 (5)0.0249 (2)
H10A0.7644 (16)0.4019 (17)0.1266 (6)0.033 (3)*
H10B0.7124 (15)0.2666 (17)0.1673 (7)0.033 (3)*
N110.54369 (9)0.40276 (10)0.05199 (4)0.02058 (19)
O120.60094 (8)0.54785 (9)0.05794 (4)0.02628 (19)
H1220.5675 (19)0.595 (2)0.0207 (9)0.054 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0171 (4)0.0245 (5)0.0190 (4)0.0022 (4)0.0032 (3)0.0029 (4)
C20.0263 (5)0.0209 (5)0.0247 (5)0.0050 (4)0.0043 (4)0.0016 (4)
C30.0315 (6)0.0224 (5)0.0256 (5)0.0018 (4)0.0027 (4)0.0059 (4)
C40.0238 (5)0.0308 (6)0.0262 (5)0.0040 (4)0.0017 (4)0.0060 (4)
C50.0279 (6)0.0333 (6)0.0324 (6)0.0104 (5)0.0077 (5)0.0064 (5)
C60.0275 (5)0.0268 (5)0.0214 (5)0.0009 (4)0.0082 (4)0.0014 (4)
C70.0276 (5)0.0311 (5)0.0170 (4)0.0023 (4)0.0035 (4)0.0018 (4)
C80.0328 (6)0.0496 (7)0.0186 (5)0.0020 (6)0.0046 (4)0.0022 (5)
C90.0273 (5)0.0317 (6)0.0251 (5)0.0036 (5)0.0084 (4)0.0012 (4)
C100.0192 (5)0.0302 (5)0.0254 (5)0.0002 (4)0.0048 (4)0.0077 (4)
N110.0209 (4)0.0218 (4)0.0190 (4)0.0011 (3)0.0023 (3)0.0027 (3)
O120.0287 (4)0.0248 (4)0.0253 (4)0.0075 (3)0.0046 (3)0.0079 (3)
Geometric parameters (Å, º) top
C1—N111.2785 (13)C5—H5B0.969 (18)
C1—C21.5069 (15)C6—C71.1946 (16)
C1—C101.5108 (14)C7—C81.4656 (16)
C2—C31.5319 (16)C8—C91.5298 (17)
C2—H2A1.017 (15)C8—H8A0.989 (17)
C2—H2B1.015 (16)C8—H8B0.988 (17)
C3—C41.5260 (16)C9—C101.5349 (17)
C3—H3A1.007 (15)C9—H9A0.987 (15)
C3—H3B0.984 (15)C9—H9B0.974 (15)
C4—C51.5349 (16)C10—H10A0.999 (15)
C4—H4A0.964 (15)C10—H10B0.983 (15)
C4—H4B1.003 (16)N11—O121.4193 (11)
C5—C61.4680 (16)O12—H1220.971 (19)
C5—H5A0.983 (17)
N11—C1—C2115.96 (9)C4—C5—H5B111.6 (10)
N11—C1—C10124.04 (10)H5A—C5—H5B107.7 (14)
C2—C1—C10119.76 (9)C7—C6—C5172.02 (11)
C1—C2—C3116.67 (9)C6—C7—C8172.38 (11)
C1—C2—H2A107.1 (9)C7—C8—C9112.64 (9)
C3—C2—H2A110.7 (9)C7—C8—H8A108.8 (10)
C1—C2—H2B105.4 (9)C9—C8—H8A109.0 (10)
C3—C2—H2B111.2 (9)C7—C8—H8B110.8 (10)
H2A—C2—H2B104.9 (12)C9—C8—H8B109.8 (10)
C4—C3—C2116.98 (9)H8A—C8—H8B105.5 (14)
C4—C3—H3A107.9 (9)C8—C9—C10114.75 (10)
C2—C3—H3A109.3 (9)C8—C9—H9A106.7 (9)
C4—C3—H3B108.2 (9)C10—C9—H9A109.2 (9)
C2—C3—H3B107.7 (9)C8—C9—H9B110.6 (9)
H3A—C3—H3B106.3 (12)C10—C9—H9B109.3 (9)
C3—C4—C5115.09 (10)H9A—C9—H9B105.8 (12)
C3—C4—H4A106.8 (9)C1—C10—C9115.11 (9)
C5—C4—H4A106.8 (9)C1—C10—H10A106.5 (8)
C3—C4—H4B111.1 (9)C9—C10—H10A109.4 (9)
C5—C4—H4B106.3 (8)C1—C10—H10B109.6 (9)
H4A—C4—H4B110.6 (12)C9—C10—H10B109.6 (9)
C6—C5—C4111.67 (9)H10A—C10—H10B106.3 (12)
C6—C5—H5A106.6 (10)C1—N11—O12113.33 (8)
C4—C5—H5A112.7 (10)N11—O12—H122101.5 (11)
C6—C5—H5B106.3 (10)
N11—C1—C2—C323.67 (13)N11—C1—C10—C969.25 (13)
C10—C1—C2—C3161.71 (9)C2—C1—C10—C9116.59 (11)
C1—C2—C3—C457.70 (13)C8—C9—C10—C176.41 (12)
C2—C3—C4—C555.44 (14)C2—C1—N11—O12174.64 (8)
C3—C4—C5—C672.79 (13)C10—C1—N11—O120.28 (14)
C7—C8—C9—C1055.59 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H122···N11i0.971 (19)1.908 (19)2.8030 (12)151.9 (16)
Symmetry code: (i) x+1, y+1, z.
 

References

First citationDetert, H., Antony–Mayer, C. & Meier, H. (1992). Angew. Chem. 104, 755–757.  CrossRef CAS Google Scholar
First citationGleiter, R., Kratz, D. & Schehlmann, V. (1988). Tetrahedron Lett. 29, 2813–2816.  CrossRef Google Scholar
First citationHanack, M., Harding, C. E. & Derocque, J.-L. (1972). Chem. Ber. 105, 421–433.  CrossRef Google Scholar
First citationKrämer, G. (1996). PhD Thesis, University of Mainz, p. 119.  Google Scholar
First citationMeier, H., Krämer, G. & Detert, H. (2009). Heterocycles 78, 2201–2208.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146