metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(4,4′-bipyridin-1-ium) cis-bis­­(1,2-di­cyano-2-sulfido­ethene-1-sulfinato-κ2S,S′)platinate(2−)

crossmark logo

a900 N Grand Avenue, Suite 61651, Austin College, Sherman, TX 75090, USA, and bRigaku Oxford Diffraction, 9009 New Trails Dr., The Woodlands, TX 77381, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 21 February 2025; accepted 28 April 2025; online 23 May 2025)

Crystals of the sulfinate-containing platinate salt, (C10H9N2)2[Pt(C4N2O2S2)2], were obtained from a solution of [Pt(4,4′-bpy)2(mnt)] after a long period with minimal light (4,4′-bpy is 4,4′-bi­pyridine and mnt is maleo­nitrile­dithiol­ate). In the crystals, the cations associate via C—H⋯O hydrogen bonds with hydrogen bonded (—H⋯) chains of pyridinium anions. The cis-geometry of the sulfinate around the square-planar platinum atom, coupled with a torsion of one of the rings of the pyridinium, engenders multiple hydrogen bonds between the sulfinate oxygen atoms and the pyridinium hydrogen atoms.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit of the title compound contains one-half of the platinum bis-sulfinate moiety with the platinum residing on an inversion centre and a single pyridinium cation. The square-planar platinate anions have the sulfinate moieties in a cis arrangement around the platinum atom (Fig. 1[link]). The Pt—S distances between the S2 thiol­ate and the S1 sulfinate are 2.3120 (13) and 2.2554 (12) Å, respectively. The S=O bond distances [S1=O1 = 1.448 (4) and S1=O2 = 1.439 (4) Å] in this structure match the S=O distances of 1.470 (4) and 1.444 (4) Å observed in platinum(II) sulfinato-thiol­ato complexes (Ishii et al., 2007[Ishii, A., Kashiura, S., Hayashi, Y. & Weigand, W. (2007). Chem. Eur. J. 13, 4326-4333.]). The S—O single-bond distances in sulfenato ligands typically are around 0.1 Å longer at 1.55 Å (Buonomo et al., 1995[Buonomo, R. M., Font, I., Maguire, M. J., Reibenspies, J. H., Tuntulani, T. & Darensbourg, M. Y. (1995). J. Am. Chem. Soc. 117, 963-973.]).

[Figure 1]
Figure 1
Ellipsoid representation (50% probability) of the title compound showing O⋯H distances for hydrogen bonds between O1 and H8 and O2(−x + 1, y, −z + [{3\over 2}]) and H8 and H7.

The pyridinium cations form hydrogen-bonded one-dimensional chains along the c-axis direction, which surround the platinate anions. These anions are slipped-stacked so as to fit between the pyridinium chains (Fig. 2[link]). This type of packing of the anions is observed in a [Pt(mnt)2] salt with a planar 4-amino­pyridinium monocation (Pei et al., 2012[Pei, W.-B., Wu, J.-S., Ren, X.-M., Tian, Z.-F. & Xie, J. (2012). Dalton Trans. 41, 7609-7619.]), but when [Pt(mnt)2]2− crystallizes with a planar dicationic [4,4′-H2bpy]2+ it forms ABAB stacks of alternating cations and anions (Crawford et al., 2004[Crawford, P. C., Gillon, A. L., Green, J., Orpen, A. G., Podesta, T. J. & Pritchard, S. V. (2004). CrystEngComm 6, 419-428.]). The sulfinate moieties alternate their positions along the slipped stacking of the anions, which corresponds to a rotation between the two rings of the pyridinium cation [torsion angle C8—C9—C10—C11 of 130.8 (5)°], that positions the H8 and H7 hydrogen atoms for H-bonding with the O1 and O2(−x + 1, y, −z + [{3\over 2}]) atoms of the sulfinates (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N3i 0.86 1.88 2.730 (5) 171
C7—H7⋯N2ii 0.93 2.50 3.363 (7) 155
C7—H7⋯O2iii 0.93 2.57 3.197 (7) 125
C8—H8⋯O1 0.93 2.40 3.301 (6) 164
C8—H8⋯O2iii 0.93 2.77 3.287 (7) 116
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Ellipsoid representation (50% probability) of the packing of the title compound with pyridinium chains connected by hydrogen bonds between N3 of one pyridinium and the H4 of an adjacent pyridinium. The H-bond distance between N3(−x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]) and H4(−x + [{3\over 2}], −y + [{1\over 2}], −z + 1) is shown. Some symmetry-related cell contents were removed for clarity.

Synthesis and crystallization

A methanol/water (1:1) solution containing [Pt(4,4′-bpy)2(mnt)] (Smith et al. 2019[Smith, J. B., Otten, B. M., Derry, P. J., Browning, C., Bodenstedt, K. W., Sandridge, J. H., Satumtira, N. T., Zilaie, M., Payne, J., Nuti, R., Omary, M. A. & Smucker, B. W. (2019). Comments Inorg. Chem. 39, 188-215.]; 4,4′-bpy is 4,4′-bi­pyridine and mnt is maleo­nitrile­dithiol­ate) was combined with excess 4,4′-bpy due to the observed exchangeability of the 4,4′-bpy ligand. This solution was layered with THF in a thin tube. Small orange prisms were harvested from the bottom of the tube after a long period with minimal light. This conversion of a di­thiol­ate ligand to its monosulfinate derivative has been achieved through multiple modes including: photooxidation in the presence of water (Connick & Gray, 1997[Connick, W. B. & Gray, H. B. (1997). J. Am. Chem. Soc. 119, 11620-11627.]), chemical oxidation (Sugimoto et al., 2000[Sugimoto, K., Kuroda-Sowa, T., Maekawa, M. & Munakata, M. (2000). Bull. Chem. Soc. Jpn 73, 391-394.]; Ishii et al., 2007[Ishii, A., Kashiura, S., Hayashi, Y. & Weigand, W. (2007). Chem. Eur. J. 13, 4326-4333.]), or after a prolonged period in minimal light (Stace et al., 2016[Stace, J. J., Ball, P. J., Shingade, V., Chatterjee, S., Shiveley, A., Fleeman, W. L., Staniszewski, A. J., Krause, J. A. & Connick, W. B. (2016). Inorg. Chim. Acta 447, 98-104.]). Protons for the pyridinium likely originated from the solvents.

Refinement

Crystal data, data collection, and refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C10H9N2)2[Pt(C4N2O2S2)2]
Mr 853.83
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 14.5669 (8), 10.8981 (6), 19.4595 (9)
β (°) 98.782 (5)
V3) 3053.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.92
Crystal size (mm) 0.09 × 0.07 × 0.03
 
Data collection
Diffractometer XtaLAB Mini II
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.])
Tmin, Tmax 0.712, 0.851
No. of measured, independent and observed [I > 2σ(I)] reflections 21005, 3124, 2503
Rint 0.042
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.066, 1.04
No. of reflections 3124
No. of parameters 204
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.71, −0.52
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Bis(4,4'-bipyridin-1-ium) cis-bis(1,2-dicyano-2-sulfidoethene-1-sulfinato-κ2S,S')platinate(2-) top
Crystal data top
(C10H9N2)2[Pt(C4N2O2S2)2]F(000) = 1664
Mr = 853.83Dx = 1.858 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.5669 (8) ÅCell parameters from 2218 reflections
b = 10.8981 (6) Åθ = 2.4–25.0°
c = 19.4595 (9) ŵ = 4.92 mm1
β = 98.782 (5)°T = 293 K
V = 3053.0 (3) Å3Irregular, orange
Z = 40.09 × 0.07 × 0.03 mm
Data collection top
XtaLAB Mini II
diffractometer
3124 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.0000 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 1818
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2024)
k = 1313
Tmin = 0.712, Tmax = 0.851l = 2224
21005 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0297P)2 + 5.2814P]
where P = (Fo2 + 2Fc2)/3
3124 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Refinement. H atoms bound to C and N atoms were positioned geometrically (C—H = 0.93 Å and N—H = 0.86 Å) and constrained to ride on the parent atom. Uiso(H) values were fixed at multiples of Ueq(C) [1.2 for C(H) and N(H) groups].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.50000.54391 (3)0.75000.03897 (10)
S10.53256 (8)0.39852 (12)0.67484 (5)0.0419 (3)
S20.53745 (10)0.69516 (13)0.67571 (6)0.0578 (4)
O10.6114 (3)0.3230 (4)0.7024 (2)0.0851 (13)
O20.4521 (3)0.3318 (4)0.6426 (2)0.0870 (13)
N10.6220 (3)0.3574 (5)0.5069 (2)0.0660 (13)
N20.6297 (4)0.7379 (5)0.5134 (2)0.0909 (18)
C10.5992 (3)0.4160 (5)0.5502 (2)0.0463 (13)
C20.5716 (3)0.4857 (5)0.6059 (2)0.0422 (12)
C30.5720 (3)0.6082 (5)0.6092 (2)0.0463 (12)
C40.6036 (4)0.6797 (5)0.5551 (3)0.0607 (15)
N30.6676 (3)0.0315 (4)0.91351 (18)0.0501 (10)
N40.6763 (3)0.0238 (4)0.55456 (18)0.0539 (11)
H40.67770.03270.51080.065*
C50.6851 (3)0.1265 (5)0.8051 (2)0.0490 (12)
H50.69720.19700.78110.059*
C60.6820 (3)0.1305 (6)0.8767 (2)0.0530 (13)
H60.69040.20570.89940.064*
C70.6538 (4)0.0747 (5)0.8800 (2)0.0566 (15)
H70.64440.14450.90550.068*
C80.6526 (4)0.0866 (5)0.8087 (2)0.0513 (13)
H80.64030.16210.78700.062*
C90.6698 (3)0.0150 (4)0.7708 (2)0.0371 (11)
C100.6723 (3)0.0038 (4)0.6942 (2)0.0390 (11)
C110.7447 (3)0.0520 (5)0.6645 (2)0.0512 (13)
H110.79280.09410.69150.061*
C120.7449 (4)0.0366 (5)0.5939 (2)0.0578 (14)
H120.79340.06890.57350.069*
C130.6066 (4)0.0702 (5)0.5822 (2)0.0557 (14)
H130.55950.11190.55390.067*
C140.6023 (4)0.0579 (5)0.6520 (2)0.0537 (13)
H140.55260.09080.67060.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.04944 (16)0.04359 (17)0.02506 (13)0.0000.00946 (10)0.000
S10.0532 (7)0.0454 (7)0.0290 (6)0.0023 (6)0.0125 (5)0.0011 (5)
S20.0908 (10)0.0468 (8)0.0387 (7)0.0084 (7)0.0192 (7)0.0017 (6)
O10.106 (3)0.090 (3)0.061 (2)0.019 (3)0.017 (2)0.006 (2)
O20.096 (3)0.098 (4)0.070 (3)0.023 (3)0.023 (2)0.016 (3)
N10.074 (3)0.089 (4)0.039 (2)0.001 (3)0.019 (2)0.009 (3)
N20.133 (5)0.095 (4)0.048 (3)0.041 (4)0.024 (3)0.010 (3)
C10.048 (3)0.060 (4)0.030 (2)0.005 (2)0.005 (2)0.002 (2)
C20.046 (3)0.055 (4)0.027 (2)0.001 (2)0.008 (2)0.006 (2)
C30.050 (3)0.061 (4)0.027 (2)0.004 (3)0.006 (2)0.006 (2)
C40.080 (4)0.067 (4)0.036 (3)0.020 (3)0.010 (3)0.003 (3)
N30.060 (2)0.071 (3)0.0202 (17)0.005 (2)0.0091 (17)0.000 (2)
N40.086 (3)0.058 (3)0.0185 (17)0.007 (3)0.010 (2)0.0003 (19)
C50.066 (3)0.057 (3)0.024 (2)0.005 (3)0.008 (2)0.004 (2)
C60.065 (3)0.064 (4)0.029 (2)0.004 (3)0.003 (2)0.007 (3)
C70.073 (4)0.068 (4)0.029 (2)0.014 (3)0.010 (2)0.013 (2)
C80.076 (4)0.051 (3)0.028 (2)0.015 (3)0.010 (2)0.000 (2)
C90.045 (2)0.045 (3)0.021 (2)0.002 (2)0.0061 (18)0.0001 (19)
C100.053 (3)0.041 (3)0.023 (2)0.004 (2)0.007 (2)0.0033 (18)
C110.060 (3)0.066 (4)0.028 (2)0.006 (3)0.010 (2)0.000 (3)
C120.070 (3)0.077 (4)0.030 (2)0.005 (3)0.019 (2)0.001 (3)
C130.080 (4)0.057 (4)0.029 (2)0.012 (3)0.004 (2)0.004 (2)
C140.067 (3)0.067 (4)0.029 (2)0.011 (3)0.013 (2)0.004 (2)
Geometric parameters (Å, º) top
Pt1—S1i2.2554 (12)C5—H50.9300
Pt1—S12.2554 (12)C5—C61.402 (6)
Pt1—S2i2.3120 (13)C5—C91.387 (7)
Pt1—S22.3120 (13)C6—H60.9300
S1—O11.448 (4)C7—H70.9300
S1—O21.439 (4)C7—C81.392 (6)
S1—C21.805 (5)C8—H80.9300
S2—C31.740 (5)C8—C91.375 (6)
N1—C11.147 (6)C9—C101.501 (5)
N2—C41.139 (6)C10—C111.382 (6)
C1—C21.431 (7)C10—C141.383 (7)
C2—C31.337 (7)C11—H110.9300
C3—C41.440 (7)C11—C121.384 (6)
N3—C61.330 (6)C12—H120.9300
N3—C71.328 (6)C13—H130.9300
N4—H40.8600C13—C141.376 (6)
N4—C121.335 (7)C14—H140.9300
N4—C131.321 (6)
S1i—Pt1—S190.74 (6)N3—C6—C5122.8 (5)
S1—Pt1—S290.13 (4)N3—C6—H6118.6
S1i—Pt1—S2178.08 (5)C5—C6—H6118.6
S1i—Pt1—S2i90.13 (4)N3—C7—H7118.4
S1—Pt1—S2i178.08 (5)N3—C7—C8123.3 (5)
S2i—Pt1—S289.05 (7)C8—C7—H7118.4
O1—S1—Pt1113.09 (17)C7—C8—H8120.5
O1—S1—C2104.6 (2)C9—C8—C7119.0 (5)
O2—S1—Pt1113.54 (18)C9—C8—H8120.5
O2—S1—C2105.7 (2)C5—C9—C10121.5 (4)
C2—S1—Pt1103.49 (17)C8—C9—C5118.4 (4)
C3—S2—Pt1101.52 (18)C8—C9—C10120.1 (4)
N1—C1—C2178.0 (6)C11—C10—C9121.4 (4)
C1—C2—S1116.2 (4)C11—C10—C14118.5 (4)
C3—C2—S1119.4 (4)C14—C10—C9120.1 (4)
C3—C2—C1124.5 (4)C10—C11—H11120.4
C2—C3—S2125.4 (4)C10—C11—C12119.1 (5)
C2—C3—C4120.4 (5)C12—C11—H11120.4
C4—C3—S2114.2 (4)N4—C12—C11120.9 (5)
N2—C4—C3178.6 (6)N4—C12—H12119.5
C7—N3—C6117.9 (4)C11—C12—H12119.5
C12—N4—H4119.7N4—C13—H13119.4
C13—N4—H4119.7N4—C13—C14121.2 (5)
C13—N4—C12120.7 (4)C14—C13—H13119.4
C6—C5—H5120.7C10—C14—H14120.2
C9—C5—H5120.7C13—C14—C10119.5 (5)
C9—C5—C6118.6 (5)C13—C14—H14120.2
Pt1—S1—C2—C1178.9 (3)C6—N3—C7—C80.7 (8)
Pt1—S1—C2—C31.9 (4)C6—C5—C9—C80.3 (7)
Pt1—S2—C3—C21.7 (5)C6—C5—C9—C10179.8 (4)
Pt1—S2—C3—C4177.6 (3)C7—N3—C6—C51.5 (7)
S1—C2—C3—S20.1 (6)C7—C8—C9—C51.7 (7)
S1—C2—C3—C4179.4 (4)C7—C8—C9—C10177.8 (5)
O1—S1—C2—C160.3 (4)C8—C9—C10—C11130.8 (5)
O1—S1—C2—C3120.6 (4)C8—C9—C10—C1447.9 (7)
O2—S1—C2—C161.5 (4)C9—C5—C6—N32.0 (7)
O2—S1—C2—C3117.7 (4)C9—C10—C11—C12178.5 (5)
C1—C2—C3—S2179.2 (3)C9—C10—C14—C13178.4 (5)
C1—C2—C3—C41.5 (8)C10—C11—C12—N40.1 (9)
N3—C7—C8—C92.4 (8)C11—C10—C14—C130.3 (8)
N4—C13—C14—C100.2 (8)C12—N4—C13—C140.1 (8)
C5—C9—C10—C1148.7 (7)C13—N4—C12—C110.2 (8)
C5—C9—C10—C14132.6 (5)C14—C10—C11—C120.2 (8)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N3ii0.861.882.730 (5)171
C7—H7···N2iii0.932.503.363 (7)155
C7—H7···O2i0.932.573.197 (7)125
C8—H8···O10.932.403.301 (6)164
C8—H8···O2i0.932.773.287 (7)116
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z1/2; (iii) x, y+1, z+1/2.
 

Funding information

Funding for this research was provided by: Welch Foundation (grant No. AD-0007 to Austin College Chemistry Department); Jerry Taylor and Nancy Bryant Foundation (gift to Austin College Science Division).

References

First citationBuonomo, R. M., Font, I., Maguire, M. J., Reibenspies, J. H., Tuntulani, T. & Darensbourg, M. Y. (1995). J. Am. Chem. Soc. 117, 963–973.  CSD CrossRef CAS Web of Science Google Scholar
First citationConnick, W. B. & Gray, H. B. (1997). J. Am. Chem. Soc. 119, 11620–11627.  CrossRef CAS Google Scholar
First citationCrawford, P. C., Gillon, A. L., Green, J., Orpen, A. G., Podesta, T. J. & Pritchard, S. V. (2004). CrystEngComm 6, 419–428.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshii, A., Kashiura, S., Hayashi, Y. & Weigand, W. (2007). Chem. Eur. J. 13, 4326–4333.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPei, W.-B., Wu, J.-S., Ren, X.-M., Tian, Z.-F. & Xie, J. (2012). Dalton Trans. 41, 7609–7619.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, J. B., Otten, B. M., Derry, P. J., Browning, C., Bodenstedt, K. W., Sandridge, J. H., Satumtira, N. T., Zilaie, M., Payne, J., Nuti, R., Omary, M. A. & Smucker, B. W. (2019). Comments Inorg. Chem. 39, 188–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationStace, J. J., Ball, P. J., Shingade, V., Chatterjee, S., Shiveley, A., Fleeman, W. L., Staniszewski, A. J., Krause, J. A. & Connick, W. B. (2016). Inorg. Chim. Acta 447, 98–104.  CrossRef CAS Google Scholar
First citationSugimoto, K., Kuroda-Sowa, T., Maekawa, M. & Munakata, M. (2000). Bull. Chem. Soc. Jpn 73, 391–394.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146