

inorganic compounds
CaCu1.424Fe0.576Si2
aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, bInstitute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia, cSchool of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, People's Republic of China, and dHebei Key Lab for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn
A CaCu1.424Fe0.576Si2 phase was obtained during high-pressure sintering of an Si-rich composition prealloy with the nominal chemical composition Si61Cu30Ca7Fe2. The obtained phase crystallizes in the I4/mmm (No. 139), with a = b = 4.041 Å and c = 10.010 Å. It is isotypic with CaCu2Si2 (a = b = 4.06 Å and c = 9.91 Å) [Palenzona et al. (1986). J. Less-Common Met. 119, 199–209] and CaFe2Si2 (a = b = 3.94 Å and c = 10.19 Å) [Hlukhyy et al. (2012
). Z. Anorg. Allg. Chem. 638, 1619–1619]. It features a co-occupancy of Cu and Fe atoms with a ratio of the refined site-occupancy factors of 0.71 (15):0.29 (15).
CCDC reference: 2442775
![[Scheme 3D1]](bt4168scheme3D1.gif)
Structure description
It has been reported that Si-rich quasicrystals form under extreme conditions during atomic bomb explosion (Bindi et al., 2021). In this work, we took the Si-rich compostion and applied our high-pressure sintering methodology to reveal phases forming at this composition in a laboratory experiment and obtained crystals of the composition CaCu1.424Fe0.576Si2. This phase shows remarkable structural similarities to BaFe1.8Co0.2As2 (a = b = 3.96 Å and c = 13.96 Å) reported by Sefat et al. (2008
), sharing identical space-group symmetry and analogous co-site-occupation behaviour. CaCu1.424Fe0.576Si2, as well as BaFe1.8Co0.2As2, and along with other AETX-type compounds (AE = alkaline earth metals, T = transition metals and X = Si, Ge, As), belong to the 122-type structure and all show the I4/mmm.
The distribution of atoms in the crystal unit of CaCu1.424Fe0.576Si2 is illustrated in Fig. 1. The coordination environment of the Ca atom is shown in Fig. 2
. The Ca1 atom is located in a position with 4/mmm symmetry (multiplicity 2, Wyckoff symbol a). It is surrounded by eight Si1 atoms (4mm, 4 e) and eight Cu1/Fe1 atoms (
m2, 4 d), forming the centre of a tetradecahedron. The shortest distance between calcium and silicon is Ca1—Si1 = 3.087 (4) Å, whereas the longest Ca1—Cu1/Fe1 bond is 3.216 (2) Å.
![]() | Figure 1 The crystal structure of CaCu1.424Fe0.576Si2 (one unit cell), with displacement ellipsoids drawn at the 99% probability level. |
![]() | Figure 2 (a) The tetradecahedron formed around the Ca1 atom at the 2 a site and (b) the environment of the Ca1 atom, with displacement ellipsoids given at the 99% probability level. [Symmetry codes: (i) −x − |
This study refined the 1.424Fe0.576Si2based on single-crystal X-ray diffraction data. Its composition was confirmed by EDX results.
model of CaCuSynthesis and crystallization
High-purity elements Ca (99.5% purity, 0.068 g), Cu (99.5% purity, 0.4718 g), Fe (99.9% purity, 0.0247 g) and Si (99.5% purity, 0.4270 g) were weighed precisely according to a stoichiometric ratio of 7:30:2:61. The mixture was homogenized and thoroughly ground in an agate mortar. Subsequently, the blended powder was loaded into a tungsten carbide die with a 5 mm inner diameter and compacted at 6 MPa for 3 min to form cylindrical pellets. These pellets were subjected to high-pressure sintering experiments using a six-anvil apparatus (Liu & Fan, 2018), where samples were pressurized to 6 GPa and heated to 1573 K for 40 min, followed by rapid quenching to room temperature through furnace power termination. A regular specimen was selected and mounted on a glass fiber using adhesive for X-ray diffraction measurements.
Refinement
Comprehensive crystallographic data, data collection parameters and structure . To facilitate comparative analysis, the labelling scheme and atomic coordinates for CaCu1.424Fe0.576Si2 were taken from the corresponding data of CaCu2Si2 (Palenzona et al., 1986
) and CaFe2Si2 (Hlukhyy et al., 2012
). The sites of the occupancy factors for the co-occupancy of the Cu and Fe atoms refined to 0.71 (15) and 0.29 (15), respectively. The command `SHEL 999 0.84' was used to eliminate weakly diffracting high-angle data. The maximum and minimum residual electron densities in the final difference map are located at 0.99 Å from Ca1 and 0.00 Å from Cu1, respectively.
|
Structural data
CCDC reference: 2442775
https://doi.org/10.1107/S2414314625003256/bt4168sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314625003256/bt4168Isup2.hkl
supplementary file. DOI: https://doi.org/10.1107/S2414314625003256/bt4168sup3.docx
CaCu1.42Fe0.58Si2 | Dx = 4.448 Mg m−3 |
Mr = 218.91 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4/mmm | Cell parameters from 452 reflections |
a = 4.041 (3) Å | θ = 4.1–26.9° |
c = 10.010 (9) Å | µ = 13.82 mm−1 |
V = 163.5 (3) Å3 | T = 296 K |
Z = 2 | Lump, gray |
F(000) = 209 | 0.10 × 0.07 × 0.06 mm |
Bruker D8 Venture Photon 100 CMOS diffractometer | 46 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.097 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 24.7°, θmin = 4.1° |
Tmin = 0.383, Tmax = 0.746 | h = −4→4 |
707 measured reflections | k = −4→4 |
60 independent reflections | l = −11→11 |
Refinement on F2 | 9 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.071 | w = 1/[σ2(Fo2) + (0.0957P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.156 | (Δ/σ)max < 0.001 |
S = 1.29 | Δρmax = 1.05 e Å−3 |
60 reflections | Δρmin = −1.45 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.000000 | 0.500000 | 0.250000 | 0.0171 (18) | 0.29 (15) |
Cu1 | 0.000000 | 0.500000 | 0.250000 | 0.0171 (18) | 0.71 (15) |
Si1 | 0.000000 | 0.000000 | 0.3834 (10) | 0.011 (3) | |
Ca1 | 0.000000 | 0.000000 | 0.000000 | 0.011 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0178 (19) | 0.0178 (19) | 0.016 (3) | 0.000 | 0.000 | 0.000 |
Cu1 | 0.0178 (19) | 0.0178 (19) | 0.016 (3) | 0.000 | 0.000 | 0.000 |
Si1 | 0.013 (4) | 0.013 (4) | 0.006 (7) | 0.000 | 0.000 | 0.000 |
Ca1 | 0.009 (4) | 0.009 (4) | 0.013 (7) | 0.000 | 0.000 | 0.000 |
Fe1—Si1 | 2.422 (6) | Cu1—Si1i | 2.422 (6) |
Fe1—Si1i | 2.422 (6) | Cu1—Si1ii | 2.422 (6) |
Fe1—Si1ii | 2.422 (6) | Cu1—Si1iii | 2.422 (6) |
Fe1—Si1iii | 2.422 (6) | Cu1—Ca1vi | 3.216 (2) |
Fe1—Fe1i | 2.857 (2) | Cu1—Ca1 | 3.216 (2) |
Fe1—Fe1iv | 2.857 (2) | Cu1—Ca1ii | 3.216 (2) |
Fe1—Fe1iii | 2.857 (2) | Cu1—Ca1vii | 3.216 (2) |
Fe1—Fe1v | 2.857 (2) | Si1—Si1viii | 2.33 (2) |
Fe1—Ca1vi | 3.216 (2) | Si1—Ca1vi | 3.087 (4) |
Fe1—Ca1 | 3.216 (2) | Si1—Ca1ix | 3.087 (4) |
Fe1—Ca1ii | 3.216 (2) | Si1—Ca1x | 3.087 (4) |
Fe1—Ca1vii | 3.216 (2) | Si1—Ca1vii | 3.087 (4) |
Cu1—Si1 | 2.422 (6) | ||
Si1—Fe1—Si1i | 107.7 (2) | Fe1i—Si1—Fe1 | 72.3 (2) |
Si1—Fe1—Si1ii | 113.1 (4) | Fe1xi—Si1—Fe1 | 113.1 (4) |
Si1i—Fe1—Si1ii | 107.7 (2) | Si1viii—Si1—Cu1 | 123.5 (2) |
Si1—Fe1—Si1iii | 107.7 (2) | Si1viii—Si1—Fe1iii | 123.5 (2) |
Si1i—Fe1—Si1iii | 113.1 (4) | Fe1i—Si1—Fe1iii | 113.1 (4) |
Si1ii—Fe1—Si1iii | 107.7 (2) | Fe1xi—Si1—Fe1iii | 72.3 (2) |
Si1—Fe1—Fe1i | 53.85 (10) | Fe1—Si1—Fe1iii | 72.3 (2) |
Si1i—Fe1—Fe1i | 53.85 (10) | Si1viii—Si1—Ca1vi | 67.78 (18) |
Si1ii—Fe1—Fe1i | 126.15 (10) | Fe1i—Si1—Ca1vi | 138.99 (9) |
Si1iii—Fe1—Fe1i | 126.15 (10) | Fe1xi—Si1—Ca1vi | 138.99 (9) |
Si1—Fe1—Fe1iv | 126.15 (10) | Fe1—Si1—Ca1vi | 70.27 (4) |
Si1i—Fe1—Fe1iv | 126.15 (10) | Cu1—Si1—Ca1vi | 70.27 (4) |
Si1ii—Fe1—Fe1iv | 53.85 (10) | Fe1iii—Si1—Ca1vi | 70.27 (4) |
Si1iii—Fe1—Fe1iv | 53.85 (10) | Si1viii—Si1—Ca1ix | 67.78 (18) |
Fe1i—Fe1—Fe1iv | 180.0 | Fe1i—Si1—Ca1ix | 70.27 (4) |
Si1—Fe1—Fe1iii | 53.85 (10) | Fe1xi—Si1—Ca1ix | 70.27 (4) |
Si1i—Fe1—Fe1iii | 126.15 (10) | Fe1—Si1—Ca1ix | 138.99 (9) |
Si1ii—Fe1—Fe1iii | 126.15 (10) | Fe1iii—Si1—Ca1ix | 138.99 (9) |
Si1iii—Fe1—Fe1iii | 53.85 (10) | Ca1vi—Si1—Ca1ix | 135.6 (4) |
Fe1i—Fe1—Fe1iii | 90.0 | Si1viii—Si1—Ca1x | 67.78 (18) |
Fe1iv—Fe1—Fe1iii | 90.0 | Fe1i—Si1—Ca1x | 138.99 (9) |
Si1—Fe1—Fe1v | 126.15 (10) | Fe1xi—Si1—Ca1x | 70.27 (4) |
Si1i—Fe1—Fe1v | 53.85 (10) | Fe1—Si1—Ca1x | 138.99 (9) |
Si1ii—Fe1—Fe1v | 53.85 (10) | Fe1iii—Si1—Ca1x | 70.27 (4) |
Si1iii—Fe1—Fe1v | 126.15 (10) | Ca1vi—Si1—Ca1x | 81.78 (13) |
Fe1i—Fe1—Fe1v | 90.0 | Ca1ix—Si1—Ca1x | 81.78 (13) |
Fe1iv—Fe1—Fe1v | 90.0 | Si1viii—Si1—Ca1vii | 67.78 (18) |
Fe1iii—Fe1—Fe1v | 180.0 | Fe1i—Si1—Ca1vii | 70.27 (4) |
Si1—Fe1—Ca1vi | 64.60 (15) | Fe1xi—Si1—Ca1vii | 138.99 (9) |
Si1i—Fe1—Ca1vi | 162.4 (2) | Fe1—Si1—Ca1vii | 70.27 (4) |
Si1ii—Fe1—Ca1vi | 64.60 (15) | Fe1iii—Si1—Ca1vii | 138.99 (9) |
Si1iii—Fe1—Ca1vi | 84.5 (2) | Ca1vi—Si1—Ca1vii | 81.78 (13) |
Fe1i—Fe1—Ca1vi | 116.37 (2) | Ca1ix—Si1—Ca1vii | 81.78 (13) |
Fe1iv—Fe1—Ca1vi | 63.628 (19) | Ca1x—Si1—Ca1vii | 135.6 (4) |
Fe1iii—Fe1—Ca1vi | 63.63 (2) | Si1iii—Ca1—Si1xii | 180.0 |
Fe1v—Fe1—Ca1vi | 116.37 (2) | Si1iii—Ca1—Si1xiii | 135.6 (4) |
Si1—Fe1—Ca1 | 84.5 (2) | Si1xii—Ca1—Si1xiii | 44.4 (4) |
Si1i—Fe1—Ca1 | 64.60 (15) | Si1iii—Ca1—Si1xiv | 44.4 (4) |
Si1ii—Fe1—Ca1 | 162.4 (2) | Si1xii—Ca1—Si1xiv | 135.6 (4) |
Si1iii—Fe1—Ca1 | 64.60 (15) | Si1xiii—Ca1—Si1xiv | 180.0 |
Fe1i—Fe1—Ca1 | 63.63 (2) | Si1iii—Ca1—Si1i | 81.78 (13) |
Fe1iv—Fe1—Ca1 | 116.37 (2) | Si1xii—Ca1—Si1i | 98.22 (13) |
Fe1iii—Fe1—Ca1 | 63.63 (2) | Si1xiii—Ca1—Si1i | 81.78 (13) |
Fe1v—Fe1—Ca1 | 116.37 (2) | Si1xiv—Ca1—Si1i | 98.22 (13) |
Ca1vi—Fe1—Ca1 | 127.26 (4) | Si1iii—Ca1—Si1xv | 81.78 (13) |
Si1—Fe1—Ca1ii | 162.4 (2) | Si1xii—Ca1—Si1xv | 98.22 (13) |
Si1i—Fe1—Ca1ii | 64.60 (15) | Si1xiii—Ca1—Si1xv | 81.78 (13) |
Si1ii—Fe1—Ca1ii | 84.5 (2) | Si1xiv—Ca1—Si1xv | 98.22 (13) |
Si1iii—Fe1—Ca1ii | 64.60 (15) | Si1i—Ca1—Si1xv | 135.6 (4) |
Fe1i—Fe1—Ca1ii | 116.37 (2) | Si1iii—Ca1—Si1xvi | 98.22 (13) |
Fe1iv—Fe1—Ca1ii | 63.63 (2) | Si1xii—Ca1—Si1xvi | 81.78 (13) |
Fe1iii—Fe1—Ca1ii | 116.37 (2) | Si1xiii—Ca1—Si1xvi | 98.22 (13) |
Fe1v—Fe1—Ca1ii | 63.63 (2) | Si1xiv—Ca1—Si1xvi | 81.78 (13) |
Ca1vi—Fe1—Ca1ii | 127.26 (4) | Si1i—Ca1—Si1xvi | 44.4 (4) |
Ca1—Fe1—Ca1ii | 77.83 (7) | Si1xv—Ca1—Si1xvi | 180.0 |
Si1—Fe1—Ca1vii | 64.60 (15) | Si1iii—Ca1—Si1xvii | 98.22 (13) |
Si1i—Fe1—Ca1vii | 84.5 (2) | Si1xii—Ca1—Si1xvii | 81.78 (13) |
Si1ii—Fe1—Ca1vii | 64.60 (15) | Si1xiii—Ca1—Si1xvii | 98.22 (13) |
Si1iii—Fe1—Ca1vii | 162.4 (2) | Si1xiv—Ca1—Si1xvii | 81.78 (13) |
Fe1i—Fe1—Ca1vii | 63.63 (2) | Si1i—Ca1—Si1xvii | 180.0 |
Fe1iv—Fe1—Ca1vii | 116.37 (2) | Si1xv—Ca1—Si1xvii | 44.4 (4) |
Fe1iii—Fe1—Ca1vii | 116.37 (2) | Si1xvi—Ca1—Si1xvii | 135.6 (4) |
Fe1v—Fe1—Ca1vii | 63.63 (2) | Si1iii—Ca1—Fe1 | 45.14 (14) |
Ca1vi—Fe1—Ca1vii | 77.83 (7) | Si1xii—Ca1—Fe1 | 134.86 (14) |
Ca1—Fe1—Ca1vii | 127.26 (4) | Si1xiii—Ca1—Fe1 | 96.72 (17) |
Ca1ii—Fe1—Ca1vii | 127.26 (4) | Si1xiv—Ca1—Fe1 | 83.28 (17) |
Si1—Cu1—Si1i | 107.7 (2) | Si1i—Ca1—Fe1 | 45.14 (14) |
Si1—Cu1—Si1ii | 113.1 (4) | Si1xv—Ca1—Fe1 | 96.72 (17) |
Si1i—Cu1—Si1ii | 107.7 (2) | Si1xvi—Ca1—Fe1 | 83.28 (17) |
Si1—Cu1—Si1iii | 107.7 (2) | Si1xvii—Ca1—Fe1 | 134.86 (14) |
Si1i—Cu1—Si1iii | 113.1 (4) | Si1iii—Ca1—Fe1iii | 45.14 (14) |
Si1ii—Cu1—Si1iii | 107.7 (2) | Si1xii—Ca1—Fe1iii | 134.86 (14) |
Si1—Cu1—Ca1vi | 64.60 (15) | Si1xiii—Ca1—Fe1iii | 96.72 (17) |
Si1i—Cu1—Ca1vi | 162.4 (2) | Si1xiv—Ca1—Fe1iii | 83.28 (17) |
Si1ii—Cu1—Ca1vi | 64.60 (15) | Si1i—Ca1—Fe1iii | 96.72 (17) |
Si1iii—Cu1—Ca1vi | 84.5 (2) | Si1xv—Ca1—Fe1iii | 45.14 (14) |
Si1—Cu1—Ca1 | 84.5 (2) | Si1xvi—Ca1—Fe1iii | 134.86 (14) |
Si1i—Cu1—Ca1 | 64.60 (15) | Si1xvii—Ca1—Fe1iii | 83.28 (17) |
Si1ii—Cu1—Ca1 | 162.4 (2) | Fe1—Ca1—Fe1iii | 52.74 (4) |
Si1iii—Cu1—Ca1 | 64.60 (15) | Si1iii—Ca1—Cu1 | 45.14 (14) |
Ca1vi—Cu1—Ca1 | 127.26 (4) | Si1xii—Ca1—Cu1 | 134.86 (14) |
Si1—Cu1—Ca1ii | 162.4 (2) | Si1xiii—Ca1—Cu1 | 96.72 (17) |
Si1i—Cu1—Ca1ii | 64.60 (15) | Si1xiv—Ca1—Cu1 | 83.28 (17) |
Si1ii—Cu1—Ca1ii | 84.5 (2) | Si1i—Ca1—Cu1 | 45.14 (14) |
Si1iii—Cu1—Ca1ii | 64.60 (15) | Si1xv—Ca1—Cu1 | 96.72 (17) |
Ca1vi—Cu1—Ca1ii | 127.26 (4) | Si1xvi—Ca1—Cu1 | 83.28 (17) |
Ca1—Cu1—Ca1ii | 77.83 (7) | Si1xvii—Ca1—Cu1 | 134.86 (14) |
Si1—Cu1—Ca1vii | 64.60 (15) | Si1iii—Ca1—Fe1xviii | 134.86 (14) |
Si1i—Cu1—Ca1vii | 84.5 (2) | Si1xii—Ca1—Fe1xviii | 45.14 (14) |
Si1ii—Cu1—Ca1vii | 64.60 (15) | Si1xiii—Ca1—Fe1xviii | 83.28 (17) |
Si1iii—Cu1—Ca1vii | 162.4 (2) | Si1xiv—Ca1—Fe1xviii | 96.72 (17) |
Ca1vi—Cu1—Ca1vii | 77.83 (7) | Si1i—Ca1—Fe1xviii | 134.86 (14) |
Ca1—Cu1—Ca1vii | 127.26 (4) | Si1xv—Ca1—Fe1xviii | 83.28 (17) |
Ca1ii—Cu1—Ca1vii | 127.26 (4) | Si1xvi—Ca1—Fe1xviii | 96.72 (17) |
Si1viii—Si1—Fe1i | 123.5 (2) | Si1xvii—Ca1—Fe1xviii | 45.14 (14) |
Si1viii—Si1—Fe1xi | 123.5 (2) | Fe1—Ca1—Fe1xviii | 180.0 |
Fe1i—Si1—Fe1xi | 72.3 (2) | Fe1iii—Ca1—Fe1xviii | 127.26 (4) |
Si1viii—Si1—Fe1 | 123.5 (2) |
Symmetry codes: (i) −x−1/2, −y+1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+1/2, −y+1/2, −z+1/2; (iv) −x+1/2, −y+3/2, −z+1/2; (v) −x−1/2, −y+3/2, −z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x−1/2, y+1/2, z+1/2; (viii) −x, −y, −z+1; (ix) x−1/2, y−1/2, z+1/2; (x) x+1/2, y−1/2, z+1/2; (xi) x, y−1, z; (xii) x−1/2, y−1/2, z−1/2; (xiii) −x−1/2, −y−1/2, −z+1/2; (xiv) x+1/2, y+1/2, z−1/2; (xv) −x+1/2, −y−1/2, −z+1/2; (xvi) x−1/2, y+1/2, z−1/2; (xvii) x+1/2, y−1/2, z−1/2; (xviii) −x, −y, −z. |
Funding information
Funding for this research was provided by: The National Natural Science Foundation of China (grant No. 52173231; grant No. 51925105); Hebei Natural Science Foundation (grant No. E2022203182); The Innovation Ability Promotion Project of Hebei supported by Hebei Key Lab for Optimizing Metal Product Technology and Performance (grant No. 22567609H); Slovak national agencies (grant Nos. VEGA 2/0144/21, APVV19-0369, 87 APVV-20-0124).
References
Bindi, L., Kolb, W., Eby, G. N., Asimow, P. D., Wallace, T. C. & Steinhardt, P. J. (2021). PNAS, 118, e2101350118. Google Scholar
Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2023). APEX5 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008. Google Scholar
Hlukhyy, V., Hoffmann, A. & Fässler, T. F. (2012). Z. Anorg. Allg. Chem. 638, 1619–1619. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liu, C. & Fan, C. (2018). IUCrData, 3, x180363. Google Scholar
Palenzona, A., Cirafici, S. & Canepa, P. (1986). J. Less-Common Met. 119, 199–209. CrossRef ICSD CAS Google Scholar
Sefat, A. S., Jin, R., McGuire, M. A., Sales, B. C., Singh, D. J. & Mandrus, D. (2008). Phys. Rev. Lett. 101, 117004. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.