inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

CaCu1.424Fe0.576Si2

crossmark logo

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, bInstitute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia, cSchool of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, People's Republic of China, and dHebei Key Lab for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 7 April 2025; accepted 10 April 2025; online 17 April 2025)

A CaCu1.424Fe0.576Si2 phase was obtained during high-pressure sinter­ing of an Si-rich quasicrystal composition prealloy with the nominal chemical com­position Si61Cu30Ca7Fe2. The obtained phase crystallizes in the space group I4/mmm (No. 139), with a = b = 4.041 Å and c = 10.010 Å. It is isotypic with CaCu2Si2 (a = b = 4.06 Å and c = 9.91 Å) [Palenzona et al. (1986[Palenzona, A., Cirafici, S. & Canepa, P. (1986). J. Less-Common Met. 119, 199-209.]). J. Less-Common Met. 119, 199–209] and CaFe2Si2 (a = b = 3.94 Å and c = 10.19 Å) [Hlukhyy et al. (2012[Hlukhyy, V., Hoffmann, A. & Fässler, T. F. (2012). Z. Anorg. Allg. Chem. 638, 1619-1619.]). Z. Anorg. Allg. Chem. 638, 1619–1619]. It features a co-occupancy of Cu and Fe atoms with a ratio of the refined site-occupancy factors of 0.71 (15):0.29 (15).

3D view (loading...)
[Scheme 3D1]

Structure description

It has been reported that Si-rich quasicrystals form under extreme conditions during atomic bomb explosion (Bindi et al., 2021[Bindi, L., Kolb, W., Eby, G. N., Asimow, P. D., Wallace, T. C. & Steinhardt, P. J. (2021). PNAS, 118, e2101350118.]). In this work, we took the Si-rich quasicrystal compostion and applied our high-pressure sintering methodology to reveal phases forming at this composition in a laboratory experiment and obtained crystals of the com­position CaCu1.424Fe0.576Si2. This phase shows remarkable structural similarities to BaFe1.8Co0.2As2 (a = b = 3.96 Å and c = 13.96 Å) reported by Sefat et al. (2008[Sefat, A. S., Jin, R., McGuire, M. A., Sales, B. C., Singh, D. J. & Mandrus, D. (2008). Phys. Rev. Lett. 101, 117004.]), sharing identical space-group symmetry and analogous co-site-occupation behaviour. CaCu1.424Fe0.576Si2, as well as BaFe1.8Co0.2As2, and along with other AETX-type com­pounds (AE = alkaline earth metals, T = transition metals and X = Si, Ge, As), belong to the 122-type structure and all show the space group I4/mmm.

The distribution of atoms in the crystal unit of CaCu1.424Fe0.576Si2 is illustrated in Fig. 1[link]. The coordination environment of the Ca atom is shown in Fig. 2[link]. The Ca1 atom is located in a position with 4/mmm symmetry (multiplicity 2, Wyckoff symbol a). It is surrounded by eight Si1 atoms (4mm, 4 e) and eight Cu1/Fe1 atoms ([\overline{4}]m2, 4 d), forming the centre of a tetra­deca­hedron. The shortest distance between calcium and silicon is Ca1—Si1 = 3.087 (4) Å, whereas the longest Ca1—Cu1/Fe1 bond is 3.216 (2) Å.

[Figure 1]
Figure 1
The crystal structure of CaCu1.424Fe0.576Si2 (one unit cell), with displacement ellipsoids drawn at the 99% probability level.
[Figure 2]
Figure 2
(a) The tetra­deca­hedron formed around the Ca1 atom at the 2 a site and (b) the environment of the Ca1 atom, with displacement ellipsoids given at the 99% probability level. [Symmetry codes: (i) −x − [{1\over 2}], −y + [{1\over 2}], −z + [{1\over 2}]; (iii) −x + [{1\over 2}], −y + [{1\over 2}], −z + [{1\over 2}]; (xii) x − [{1\over 2}], y − [{1\over 2}], z − [{1\over 2}]; (xiii) −x − [{1\over 2}], −y − [{1\over 2}], −z + [{1\over 2}]; (xiv) x + [{1\over 2}], y + [{1\over 2}], z − [{1\over 2}]; (xv) −x + [{1\over 2}], −y − [{1\over 2}], −z + [{1\over 2}]; (xvi) x − [{1\over 2}], y + [{1\over 2}], z − [{1\over 2}]; (xvii) x + [{1\over 2}], y − [{1\over 2}], z − [{1\over 2}]; (xviii) −x, −y, −z.]

This study refined the crystal structure model of CaCu1.424Fe0.576Si2based on single-crystal X-ray diffraction data. Its com­position was confirmed by EDX results.

Synthesis and crystallization

High-purity elements Ca (99.5% purity, 0.068 g), Cu (99.5% purity, 0.4718 g), Fe (99.9% purity, 0.0247 g) and Si (99.5% purity, 0.4270 g) were weighed precisely according to a stoichiometric ratio of 7:30:2:61. The mixture was homogenized and thoroughly ground in an agate mortar. Subsequently, the blended powder was loaded into a tungsten carbide die with a 5 mm inner diameter and com­pacted at 6 MPa for 3 min to form cylindrical pellets. These pellets were subjected to high-pressure sinter­ing experiments using a six-anvil apparatus (Liu & Fan, 2018[Liu, C. & Fan, C. (2018). IUCrData, 3, x180363.]), where samples were pressurized to 6 GPa and heated to 1573 K for 40 min, followed by rapid quenching to room tem­per­a­ture through furnace power termination. A regular specimen was selected and mounted on a glass fiber using adhesive for X-ray diffraction measurements.

Refinement

Comprehensive crystallographic data, data collection parameters and structure refinement details are summarized in Table 1[link]. To facilitate com­parative analysis, the labelling scheme and atomic coordinates for CaCu1.424Fe0.576Si2 were taken from the corresponding data of CaCu2Si2 (Palenzona et al., 1986[Palenzona, A., Cirafici, S. & Canepa, P. (1986). J. Less-Common Met. 119, 199-209.]) and CaFe2Si2 (Hlukhyy et al., 2012[Hlukhyy, V., Hoffmann, A. & Fässler, T. F. (2012). Z. Anorg. Allg. Chem. 638, 1619-1619.]). The sites of the occupancy factors for the co-occupancy of the Cu and Fe atoms refined to 0.71 (15) and 0.29 (15), respectively. The command `SHEL 999 0.84' was used to eliminate weakly diffracting high-angle data. The maximum and mini­mum residual electron densities in the final difference map are located at 0.99 Å from Ca1 and 0.00 Å from Cu1, respectively.

Table 1
Experimental details

Crystal data
Chemical formula CaCu1.42Fe0.58Si2
Mr 218.91
Crystal system, space group Tetragonal, I4/mmm
Temperature (K) 296
a, c (Å) 4.041 (3), 10.010 (9)
V3) 163.5 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 13.82
Crystal size (mm) 0.10 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.383, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 707, 60, 46
Rint 0.097
(sin θ/λ)max−1) 0.588
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.156, 1.29
No. of reflections 60
No. of parameters 9
Δρmax, Δρmin (e Å−3) 1.05, −1.45
Computer programs: APEX5 (Bruker, 2023[Bruker (2023). APEX5 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.]), SAINT (Bruker, 2023[Bruker (2023). APEX5 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2017[Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Calcium copper iron disilicide top
Crystal data top
CaCu1.42Fe0.58Si2Dx = 4.448 Mg m3
Mr = 218.91Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mmmCell parameters from 452 reflections
a = 4.041 (3) Åθ = 4.1–26.9°
c = 10.010 (9) ŵ = 13.82 mm1
V = 163.5 (3) Å3T = 296 K
Z = 2Lump, gray
F(000) = 2090.10 × 0.07 × 0.06 mm
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
46 reflections with I > 2σ(I)
phi and ω scansRint = 0.097
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 24.7°, θmin = 4.1°
Tmin = 0.383, Tmax = 0.746h = 44
707 measured reflectionsk = 44
60 independent reflectionsl = 1111
Refinement top
Refinement on F29 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.071 w = 1/[σ2(Fo2) + (0.0957P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.156(Δ/σ)max < 0.001
S = 1.29Δρmax = 1.05 e Å3
60 reflectionsΔρmin = 1.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.0000000.5000000.2500000.0171 (18)0.29 (15)
Cu10.0000000.5000000.2500000.0171 (18)0.71 (15)
Si10.0000000.0000000.3834 (10)0.011 (3)
Ca10.0000000.0000000.0000000.011 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0178 (19)0.0178 (19)0.016 (3)0.0000.0000.000
Cu10.0178 (19)0.0178 (19)0.016 (3)0.0000.0000.000
Si10.013 (4)0.013 (4)0.006 (7)0.0000.0000.000
Ca10.009 (4)0.009 (4)0.013 (7)0.0000.0000.000
Geometric parameters (Å, º) top
Fe1—Si12.422 (6)Cu1—Si1i2.422 (6)
Fe1—Si1i2.422 (6)Cu1—Si1ii2.422 (6)
Fe1—Si1ii2.422 (6)Cu1—Si1iii2.422 (6)
Fe1—Si1iii2.422 (6)Cu1—Ca1vi3.216 (2)
Fe1—Fe1i2.857 (2)Cu1—Ca13.216 (2)
Fe1—Fe1iv2.857 (2)Cu1—Ca1ii3.216 (2)
Fe1—Fe1iii2.857 (2)Cu1—Ca1vii3.216 (2)
Fe1—Fe1v2.857 (2)Si1—Si1viii2.33 (2)
Fe1—Ca1vi3.216 (2)Si1—Ca1vi3.087 (4)
Fe1—Ca13.216 (2)Si1—Ca1ix3.087 (4)
Fe1—Ca1ii3.216 (2)Si1—Ca1x3.087 (4)
Fe1—Ca1vii3.216 (2)Si1—Ca1vii3.087 (4)
Cu1—Si12.422 (6)
Si1—Fe1—Si1i107.7 (2)Fe1i—Si1—Fe172.3 (2)
Si1—Fe1—Si1ii113.1 (4)Fe1xi—Si1—Fe1113.1 (4)
Si1i—Fe1—Si1ii107.7 (2)Si1viii—Si1—Cu1123.5 (2)
Si1—Fe1—Si1iii107.7 (2)Si1viii—Si1—Fe1iii123.5 (2)
Si1i—Fe1—Si1iii113.1 (4)Fe1i—Si1—Fe1iii113.1 (4)
Si1ii—Fe1—Si1iii107.7 (2)Fe1xi—Si1—Fe1iii72.3 (2)
Si1—Fe1—Fe1i53.85 (10)Fe1—Si1—Fe1iii72.3 (2)
Si1i—Fe1—Fe1i53.85 (10)Si1viii—Si1—Ca1vi67.78 (18)
Si1ii—Fe1—Fe1i126.15 (10)Fe1i—Si1—Ca1vi138.99 (9)
Si1iii—Fe1—Fe1i126.15 (10)Fe1xi—Si1—Ca1vi138.99 (9)
Si1—Fe1—Fe1iv126.15 (10)Fe1—Si1—Ca1vi70.27 (4)
Si1i—Fe1—Fe1iv126.15 (10)Cu1—Si1—Ca1vi70.27 (4)
Si1ii—Fe1—Fe1iv53.85 (10)Fe1iii—Si1—Ca1vi70.27 (4)
Si1iii—Fe1—Fe1iv53.85 (10)Si1viii—Si1—Ca1ix67.78 (18)
Fe1i—Fe1—Fe1iv180.0Fe1i—Si1—Ca1ix70.27 (4)
Si1—Fe1—Fe1iii53.85 (10)Fe1xi—Si1—Ca1ix70.27 (4)
Si1i—Fe1—Fe1iii126.15 (10)Fe1—Si1—Ca1ix138.99 (9)
Si1ii—Fe1—Fe1iii126.15 (10)Fe1iii—Si1—Ca1ix138.99 (9)
Si1iii—Fe1—Fe1iii53.85 (10)Ca1vi—Si1—Ca1ix135.6 (4)
Fe1i—Fe1—Fe1iii90.0Si1viii—Si1—Ca1x67.78 (18)
Fe1iv—Fe1—Fe1iii90.0Fe1i—Si1—Ca1x138.99 (9)
Si1—Fe1—Fe1v126.15 (10)Fe1xi—Si1—Ca1x70.27 (4)
Si1i—Fe1—Fe1v53.85 (10)Fe1—Si1—Ca1x138.99 (9)
Si1ii—Fe1—Fe1v53.85 (10)Fe1iii—Si1—Ca1x70.27 (4)
Si1iii—Fe1—Fe1v126.15 (10)Ca1vi—Si1—Ca1x81.78 (13)
Fe1i—Fe1—Fe1v90.0Ca1ix—Si1—Ca1x81.78 (13)
Fe1iv—Fe1—Fe1v90.0Si1viii—Si1—Ca1vii67.78 (18)
Fe1iii—Fe1—Fe1v180.0Fe1i—Si1—Ca1vii70.27 (4)
Si1—Fe1—Ca1vi64.60 (15)Fe1xi—Si1—Ca1vii138.99 (9)
Si1i—Fe1—Ca1vi162.4 (2)Fe1—Si1—Ca1vii70.27 (4)
Si1ii—Fe1—Ca1vi64.60 (15)Fe1iii—Si1—Ca1vii138.99 (9)
Si1iii—Fe1—Ca1vi84.5 (2)Ca1vi—Si1—Ca1vii81.78 (13)
Fe1i—Fe1—Ca1vi116.37 (2)Ca1ix—Si1—Ca1vii81.78 (13)
Fe1iv—Fe1—Ca1vi63.628 (19)Ca1x—Si1—Ca1vii135.6 (4)
Fe1iii—Fe1—Ca1vi63.63 (2)Si1iii—Ca1—Si1xii180.0
Fe1v—Fe1—Ca1vi116.37 (2)Si1iii—Ca1—Si1xiii135.6 (4)
Si1—Fe1—Ca184.5 (2)Si1xii—Ca1—Si1xiii44.4 (4)
Si1i—Fe1—Ca164.60 (15)Si1iii—Ca1—Si1xiv44.4 (4)
Si1ii—Fe1—Ca1162.4 (2)Si1xii—Ca1—Si1xiv135.6 (4)
Si1iii—Fe1—Ca164.60 (15)Si1xiii—Ca1—Si1xiv180.0
Fe1i—Fe1—Ca163.63 (2)Si1iii—Ca1—Si1i81.78 (13)
Fe1iv—Fe1—Ca1116.37 (2)Si1xii—Ca1—Si1i98.22 (13)
Fe1iii—Fe1—Ca163.63 (2)Si1xiii—Ca1—Si1i81.78 (13)
Fe1v—Fe1—Ca1116.37 (2)Si1xiv—Ca1—Si1i98.22 (13)
Ca1vi—Fe1—Ca1127.26 (4)Si1iii—Ca1—Si1xv81.78 (13)
Si1—Fe1—Ca1ii162.4 (2)Si1xii—Ca1—Si1xv98.22 (13)
Si1i—Fe1—Ca1ii64.60 (15)Si1xiii—Ca1—Si1xv81.78 (13)
Si1ii—Fe1—Ca1ii84.5 (2)Si1xiv—Ca1—Si1xv98.22 (13)
Si1iii—Fe1—Ca1ii64.60 (15)Si1i—Ca1—Si1xv135.6 (4)
Fe1i—Fe1—Ca1ii116.37 (2)Si1iii—Ca1—Si1xvi98.22 (13)
Fe1iv—Fe1—Ca1ii63.63 (2)Si1xii—Ca1—Si1xvi81.78 (13)
Fe1iii—Fe1—Ca1ii116.37 (2)Si1xiii—Ca1—Si1xvi98.22 (13)
Fe1v—Fe1—Ca1ii63.63 (2)Si1xiv—Ca1—Si1xvi81.78 (13)
Ca1vi—Fe1—Ca1ii127.26 (4)Si1i—Ca1—Si1xvi44.4 (4)
Ca1—Fe1—Ca1ii77.83 (7)Si1xv—Ca1—Si1xvi180.0
Si1—Fe1—Ca1vii64.60 (15)Si1iii—Ca1—Si1xvii98.22 (13)
Si1i—Fe1—Ca1vii84.5 (2)Si1xii—Ca1—Si1xvii81.78 (13)
Si1ii—Fe1—Ca1vii64.60 (15)Si1xiii—Ca1—Si1xvii98.22 (13)
Si1iii—Fe1—Ca1vii162.4 (2)Si1xiv—Ca1—Si1xvii81.78 (13)
Fe1i—Fe1—Ca1vii63.63 (2)Si1i—Ca1—Si1xvii180.0
Fe1iv—Fe1—Ca1vii116.37 (2)Si1xv—Ca1—Si1xvii44.4 (4)
Fe1iii—Fe1—Ca1vii116.37 (2)Si1xvi—Ca1—Si1xvii135.6 (4)
Fe1v—Fe1—Ca1vii63.63 (2)Si1iii—Ca1—Fe145.14 (14)
Ca1vi—Fe1—Ca1vii77.83 (7)Si1xii—Ca1—Fe1134.86 (14)
Ca1—Fe1—Ca1vii127.26 (4)Si1xiii—Ca1—Fe196.72 (17)
Ca1ii—Fe1—Ca1vii127.26 (4)Si1xiv—Ca1—Fe183.28 (17)
Si1—Cu1—Si1i107.7 (2)Si1i—Ca1—Fe145.14 (14)
Si1—Cu1—Si1ii113.1 (4)Si1xv—Ca1—Fe196.72 (17)
Si1i—Cu1—Si1ii107.7 (2)Si1xvi—Ca1—Fe183.28 (17)
Si1—Cu1—Si1iii107.7 (2)Si1xvii—Ca1—Fe1134.86 (14)
Si1i—Cu1—Si1iii113.1 (4)Si1iii—Ca1—Fe1iii45.14 (14)
Si1ii—Cu1—Si1iii107.7 (2)Si1xii—Ca1—Fe1iii134.86 (14)
Si1—Cu1—Ca1vi64.60 (15)Si1xiii—Ca1—Fe1iii96.72 (17)
Si1i—Cu1—Ca1vi162.4 (2)Si1xiv—Ca1—Fe1iii83.28 (17)
Si1ii—Cu1—Ca1vi64.60 (15)Si1i—Ca1—Fe1iii96.72 (17)
Si1iii—Cu1—Ca1vi84.5 (2)Si1xv—Ca1—Fe1iii45.14 (14)
Si1—Cu1—Ca184.5 (2)Si1xvi—Ca1—Fe1iii134.86 (14)
Si1i—Cu1—Ca164.60 (15)Si1xvii—Ca1—Fe1iii83.28 (17)
Si1ii—Cu1—Ca1162.4 (2)Fe1—Ca1—Fe1iii52.74 (4)
Si1iii—Cu1—Ca164.60 (15)Si1iii—Ca1—Cu145.14 (14)
Ca1vi—Cu1—Ca1127.26 (4)Si1xii—Ca1—Cu1134.86 (14)
Si1—Cu1—Ca1ii162.4 (2)Si1xiii—Ca1—Cu196.72 (17)
Si1i—Cu1—Ca1ii64.60 (15)Si1xiv—Ca1—Cu183.28 (17)
Si1ii—Cu1—Ca1ii84.5 (2)Si1i—Ca1—Cu145.14 (14)
Si1iii—Cu1—Ca1ii64.60 (15)Si1xv—Ca1—Cu196.72 (17)
Ca1vi—Cu1—Ca1ii127.26 (4)Si1xvi—Ca1—Cu183.28 (17)
Ca1—Cu1—Ca1ii77.83 (7)Si1xvii—Ca1—Cu1134.86 (14)
Si1—Cu1—Ca1vii64.60 (15)Si1iii—Ca1—Fe1xviii134.86 (14)
Si1i—Cu1—Ca1vii84.5 (2)Si1xii—Ca1—Fe1xviii45.14 (14)
Si1ii—Cu1—Ca1vii64.60 (15)Si1xiii—Ca1—Fe1xviii83.28 (17)
Si1iii—Cu1—Ca1vii162.4 (2)Si1xiv—Ca1—Fe1xviii96.72 (17)
Ca1vi—Cu1—Ca1vii77.83 (7)Si1i—Ca1—Fe1xviii134.86 (14)
Ca1—Cu1—Ca1vii127.26 (4)Si1xv—Ca1—Fe1xviii83.28 (17)
Ca1ii—Cu1—Ca1vii127.26 (4)Si1xvi—Ca1—Fe1xviii96.72 (17)
Si1viii—Si1—Fe1i123.5 (2)Si1xvii—Ca1—Fe1xviii45.14 (14)
Si1viii—Si1—Fe1xi123.5 (2)Fe1—Ca1—Fe1xviii180.0
Fe1i—Si1—Fe1xi72.3 (2)Fe1iii—Ca1—Fe1xviii127.26 (4)
Si1viii—Si1—Fe1123.5 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x1/2, y+3/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x, y, z+1; (ix) x1/2, y1/2, z+1/2; (x) x+1/2, y1/2, z+1/2; (xi) x, y1, z; (xii) x1/2, y1/2, z1/2; (xiii) x1/2, y1/2, z+1/2; (xiv) x+1/2, y+1/2, z1/2; (xv) x+1/2, y1/2, z+1/2; (xvi) x1/2, y+1/2, z1/2; (xvii) x+1/2, y1/2, z1/2; (xviii) x, y, z.
 

Funding information

Funding for this research was provided by: The National Natural Science Foundation of China (grant No. 52173231; grant No. 51925105); Hebei Natural Science Foundation (grant No. E2022203182); The Innovation Ability Promotion Project of Hebei supported by Hebei Key Lab for Optimizing Metal Product Technology and Performance (grant No. 22567609H); Slovak national agencies (grant Nos. VEGA 2/0144/21, APVV19-0369, 87 APVV-20-0124).

References

First citationBindi, L., Kolb, W., Eby, G. N., Asimow, P. D., Wallace, T. C. & Steinhardt, P. J. (2021). PNAS, 118, e2101350118.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2023). APEX5 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.  Google Scholar
First citationHlukhyy, V., Hoffmann, A. & Fässler, T. F. (2012). Z. Anorg. Allg. Chem. 638, 1619–1619.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, C. & Fan, C. (2018). IUCrData, 3, x180363.  Google Scholar
First citationPalenzona, A., Cirafici, S. & Canepa, P. (1986). J. Less-Common Met. 119, 199–209.  CrossRef ICSD CAS Google Scholar
First citationSefat, A. S., Jin, R., McGuire, M. A., Sales, B. C., Singh, D. J. & Mandrus, D. (2008). Phys. Rev. Lett. 101, 117004.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146