

ISSN 2414-3146

Received 7 April 2025 Accepted 10 April 2025

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; high-pressure sintering; intermetallic; Cu-Fe co-occupation.

CCDC reference: 2442775

Structural data: full structural data are available from iucrdata.iucr.org

Yangkun Dai,^a Yibo Liu,^a Marek Mihalkovic,^b Bin Wen,^a Lifeng Zhang^{a,c} and Changzeng Fan^{a,d}*

^aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, ^bInstitute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia, ^cSchool of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, People's Republic of China, and ^dHebei Key Lab for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, People's Republic of China. *Correspondence e-mail: chzfan@ysu.edu.cn

A CaCu_{1.424}Fe_{0.576}Si₂ phase was obtained during high-pressure sintering of an Si-rich quasicrystal composition prealloy with the nominal chemical composition Si₆₁Cu₃₀Ca₇Fe₂. The obtained phase crystallizes in the space group *I4/mmm* (No. 139), with a = b = 4.041 Å and c = 10.010 Å. It is isotypic with CaCu₂Si₂ (a = b = 4.06 Å and c = 9.91 Å) [Palenzona *et al.* (1986). *J. Less-Common Met.* **119**, 199–209] and CaFe₂Si₂ (a = b = 3.94 Å and c = 10.19 Å) [Hlukhyy *et al.* (2012). *Z. Anorg. Allg. Chem.* **638**, 1619–1619]. It features a co-occupancy of Cu and Fe atoms with a ratio of the refined site-occupancy factors of 0.71 (15):0.29 (15).

Structure description

It has been reported that Si-rich quasicrystals form under extreme conditions during atomic bomb explosion (Bindi *et al.*, 2021). In this work, we took the Si-rich quasicrystal compostion and applied our high-pressure sintering methodology to reveal phases forming at this composition in a laboratory experiment and obtained crystals of the composition $CaCu_{1.424}Fe_{0.576}Si_2$. This phase shows remarkable structural similarities to $BaFe_{1.8}Co_{0.2}As_2$ (a = b = 3.96 Å and c = 13.96 Å) reported by Sefat *et al.* (2008), sharing identical space-group symmetry and analogous co-site-occupation behaviour. $CaCu_{1.424}Fe_{0.576}Si_2$, as well as $BaFe_{1.8}Co_{0.2}As_2$, and along with other AETX-type compounds (AE = alkaline earth metals, T = transition metals and X = Si, Ge, As), belong to the 122-type structure and all show the space group *I4/mmm*.

The distribution of atoms in the crystal unit of $CaCu_{1.424}Fe_{0.576}Si_2$ is illustrated in Fig. 1. The coordination environment of the Ca atom is shown in Fig. 2. The Ca1 atom is located in a position with 4/mmm symmetry (multiplicity 2, Wyckoff symbol *a*). It is surrounded by eight Si1 atoms (4mm, 4e) and eight Cu1/Fe1 atoms ($\overline{4m2}$, 4d), forming the centre of a

Figure 1

The crystal structure of $CaCu_{1.424}Fe_{0.576}Si_2$ (one unit cell), with displacement ellipsoids drawn at the 99% probability level.

tetradecahedron. The shortest distance between calcium and silicon is Ca1–Si1 = 3.087 (4) Å, whereas the longest Ca1–Cu1/Fe1 bond is 3.216 (2) Å.

This study refined the crystal structure model of $CaCu_{1.424}$ -Fe_{0.576}Si₂based on single-crystal X-ray diffraction data. Its composition was confirmed by EDX results.

Synthesis and crystallization

High-purity elements Ca (99.5% purity, 0.068 g), Cu (99.5% purity, 0.4718 g), Fe (99.9% purity, 0.0247 g) and Si (99.5% purity, 0.4270 g) were weighed precisely according to a stoichiometric ratio of 7:30:2:61. The mixture was homogenized and thoroughly ground in an agate mortar. Subsequently, the blended powder was loaded into a tungsten carbide die with a 5 mm inner diameter and compacted at 6 MPa for 3 min to form cylindrical pellets. These pellets were subjected to high-pressure sintering experiments using a six-anvil apparatus (Liu & Fan, 2018), where samples were pressurized to 6 GPa and

Table 1	
Experimental	details

Crystal data	
Chemical formula	CaCu _{1.42} Fe _{0.58} Si ₂
M _r	218.91
Crystal system, space group	Tetragonal, I4/mmm
Temperature (K)	296
a, c (Å)	4.041 (3), 10.010 (9)
$V(Å^3)$	163.5 (3)
Ζ	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	13.82
Crystal size (mm)	$0.10\times0.07\times0.06$
Data collection	
Diffractometer	Bruker D8 Venture Photon 100 CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.383, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	707, 60, 46
R _{int}	0.097
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.588
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.071, 0.156, 1.29
No. of reflections	60
No. of parameters	9
$\Delta \rho_{\text{max}}$, $\Delta \rho_{\text{min}}$ (e Å ⁻³)	1.05, -1.45

Computer programs: *APEX5* (Bruker, 2023), *SAINT* (Bruker, 2023), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2017) and *publCIF* (Westrip, 2010).

heated to 1573 K for 40 min, followed by rapid quenching to room temperature through furnace power termination. A regular specimen was selected and mounted on a glass fiber using adhesive for X-ray diffraction measurements.

Refinement

Comprehensive crystallographic data, data collection parameters and structure refinement details are summarized in

Figure 2

(a) The tetradecahedron formed around the Ca1 atom at the 2 *a* site and (*b*) the environment of the Ca1 atom, with displacement ellipsoids given at the 99% probability level. [Symmetry codes: (i) $-x - \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (xiii) $x - \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$; (xiii) $-x - \frac{1}{2}, -y - \frac{1}{2}, -z + \frac{1}{2}$; (xiv) $x + \frac{1}{2}, y + \frac{1}{2}, z - \frac{1}{2}$; (xv) $-x + \frac{1}{2}, -y - \frac{1}{2}, -z + \frac{1}{2}$; (xvi) $x + \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$; (xviii) $-x - \frac{1}{2}, -y - \frac{1}{2}, -z + \frac{1}{2}$; (xvi) $x + \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$; (xviii) $-x - \frac{1}{2}, -y - \frac{1}{2}, -z + \frac{1}{2}$; (xvi) $x - \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$; (xviii) -x - y, -z.]

Table 1. To facilitate comparative analysis, the labelling scheme and atomic coordinates for $CaCu_{1.424}Fe_{0.576}Si_2$ were taken from the corresponding data of $CaCu_2Si_2$ (Palenzona *et al.*, 1986) and $CaFe_2Si_2$ (Hlukhyy *et al.*, 2012). The sites of the occupancy factors for the co-occupancy of the Cu and Fe atoms refined to 0.71 (15) and 0.29 (15), respectively. The command 'SHEL 999 0.84' was used to eliminate weakly diffracting high-angle data. The maximum and minimum residual electron densities in the final difference map are located at 0.99 Å from Ca1 and 0.00 Å from Cu1, respectively.

Funding information

Funding for this research was provided by: The National Natural Science Foundation of China (grant No. 52173231; grant No. 51925105); Hebei Natural Science Foundation (grant No. E2022203182); The Innovation Ability Promotion Project of Hebei supported by Hebei Key Lab for Optimizing Metal Product Technology and Performance (grant No. 22567609H); Slovak national agencies (grant Nos. VEGA 2/0144/21, APVV19-0369, 87 APVV-20-0124).

References

- Bindi, L., Kolb, W., Eby, G. N., Asimow, P. D., Wallace, T. C. & Steinhardt, P. J. (2021). *PNAS*, **118**, e2101350118.
- Brandenburg, K. & Putz, H. (2017). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2023). APEX5 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.
- Hlukhyy, V., Hoffmann, A. & Fässler, T. F. (2012). Z. Anorg. Allg. Chem. 638, 1619–1619.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Liu, C. & Fan, C. (2018). IUCrData, 3, x180363.
- Palenzona, A., Cirafici, S. & Canepa, P. (1986). J. Less-Common Met. 119, 199–209.
- Sefat, A. S., Jin, R., McGuire, M. A., Sales, B. C., Singh, D. J. & Mandrus, D. (2008). *Phys. Rev. Lett.* **101**, 117004.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2025). **10**, x250325 [https://doi.org/10.1107/S2414314625003256]

$CaCu_{1.424}Fe_{0.576}Si_{2}$

Yangkun Dai, Yibo Liu, Marek Mihalkovic, Bin Wen, Lifeng Zhang and Changzeng Fan

Calcium copper iron disilicide

Crystal data	
CaCu _{1.42} Fe _{0.58} Si ₂	$D_x = 4.448 \text{ Mg m}^{-3}$
$M_r = 218.91$	Mo K α radiation, $\lambda = 0.71073 \text{ Å}$
Tetragonal, <i>I</i> 4/ <i>mmm</i>	Cell parameters from 452 reflections
a = 4.041 (3) Å	$\theta = 4.1-26.9^{\circ}$
c = 10.010 (9) Å	$\mu = 13.82 \text{ mm}^{-1}$
V = 163.5 (3) Å ³	T = 296 K
Z = 2	Lump, gray
F(000) = 209	$0.10 \times 0.07 \times 0.06 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 100 CMOS	60 independent reflections
diffractometer	46 reflections with $I > 2\sigma(I)$
phi and ω scans	$R_{int} = 0.097$
Absorption correction: multi-scan	$\theta_{max} = 24.7^\circ, \ \theta_{min} = 4.1^\circ$
(SADABS; Krause <i>et al.</i> , 2015)	$h = -4 \rightarrow 4$
$T_{min} = 0.383$, $T_{max} = 0.746$	$k = -4 \rightarrow 4$
707 measured reflections	$l = -11 \rightarrow 11$
Refinement	
Refinement on F^2	0 restraints
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0957P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.071$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.156$	$(\Delta/\sigma)_{max} < 0.001$
S = 1.29	$\Delta\rho_{max} = 1.05$ e Å ⁻³
60 reflections	$\Delta\rho_{min} = -1.45$ e Å ⁻³

Special details

9 parameters

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	0.000000	0.500000	0.250000	0.0171 (18)	0.29 (15)
Cu1	0.000000	0.500000	0.250000	0.0171 (18)	0.71 (15)

data reports

Sil Cal	0.000000 0.000000	0.000000 0.000000	0.3834 (10) 0.000000	0.011 (. 0.011 (.	3)	
				0.011 (.	.,	
Atomic a	lisplacement paramete	ers (Å ²)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0178 (19)	0.0178 (19)	0.016 (3)	0.000	0.000	0.000
Cu1	0.0178 (19)	0.0178 (19)	0.016 (3)	0.000	0.000	0.000
Si1	0.013 (4)	0.013 (4)	0.006 (7)	0.000	0.000	0.000
Cal	0.009 (4)	0.009 (4)	0.013 (7)	0.000	0.000	0.000
Geometr	ric parameters (Å, °)					
Fe1—Si	1	2.422 (6)	Cu1—Si1 ⁱ		2.42	22 (6)
Fe1—Si	1 ⁱ	2.422 (6)	Cu1—Si1 ⁱ	i	2.42	22 (6)
Fe1—Si	1 ⁱⁱ	2.422 (6)	Cu1—Si1 ⁱ	ii	2.42	22 (6)
Fe1—Si	1 ⁱⁱⁱ	2.422 (6)	Cu1—Ca1	vi	3.21	6 (2)
Fe1—Fe	e1 ⁱ	2.857 (2)	Cu1—Ca1		3.21	6 (2)
Fe1—Fe	e1 ^{iv}	2.857 (2)	Cu1—Ca1	ii	3.21	6 (2)
Fe1—Fe	e1 ⁱⁱⁱ	2.857 (2)	Cu1—Ca1	vii	3.216 (2)	
Fe1—Fe	el ^v	2.857 (2)	Si1—Si1 ^{viii}		2.33	3 (2)
Fe1—Ca	al ^{vi}	3.216 (2)	Si1—Ca1 ^{vi}		3.087 (4)	
Fe1—Ca	1	3.216 (2)	Si1—Ca1 ⁱⁱ	x	3.087 (4)	
Fe1—Ca	a1 ⁱⁱ	3.216 (2)	Si1—Ca1 ^x	1	3.087 (4)	
Fe1—Ca	a1 ^{vii}	3.216 (2)	Sil—Calv	'ii	3.087 (4)	
Cu1—Si	i1	2.422 (6)				
Si1—Fe	1—Si1 ⁱ	107.7 (2)	Fe1 ⁱ —Si1-	—Fe1	72.3	3 (2)
Si1—Fe	1—Si1 ⁱⁱ	113.1 (4)	Fe1 ^{xi} —Si1	—Fel	113	.1 (4)
Si1 ⁱ —Fe	el—Sil ⁱⁱ	107.7 (2)	Si1 ^{viii} —Si	l—Cu1	123	.5 (2)
Si1—Fe	1—Si1 ⁱⁱⁱ	107.7 (2)	Si1 ^{viii} —Si1	l—Fe1 ⁱⁱⁱ	123	.5 (2)
Si1 ⁱ —Fe	el—Sil ⁱⁱⁱ	113.1 (4)	Fe1 ⁱ —Si1-	—Fe1 ⁱⁱⁱ	113.1 (4)	
Si1 ⁱⁱ —Fe	e1—Si1 ⁱⁱⁱ	107.7 (2)	Fe1 ^{xi} —Si1	—Fe1 ⁱⁱⁱ	72.3 (2)	
Si1—Fe	1—Fe1 ⁱ	53.85 (10)	Fe1—Si1—Fe1 ⁱⁱⁱ		e1 ⁱⁱⁱ 72.3 (2)	
Si1 ⁱ —Fe	e1—Fe1 ⁱ	53.85 (10)	Si1 ^{viii} —Si1	l—Ca1 ^{vi}	67.78 (18)	
Si1 ⁱⁱ —Fe	e1—Fe1 ⁱ	126.15 (10)	Fe1 ⁱ —Si1-	—Ca1 ^{vi}	138	.99 (9)
Si1 ⁱⁱⁱ —F	e1—Fe1 ⁱ	126.15 (10)	Fe1 ^{xi} —Si1	—Ca1 ^{vi}	138	.99 (9)
Si1—Fe	1—Fe1 ^{iv}	126.15 (10)	Fe1—Si1-	–Ca1 ^{vi}	70.2	27 (4)
Si1 ⁱ —Fe	el—Fel ^{iv}	126.15 (10)	Cu1—Si1-	—Ca1 ^{vi}	70.2	27 (4)
Si1 ⁱⁱ —Fe	e1—Fe1 ^{iv}	53.85 (10)	Fe1 ⁱⁱⁱ —Si1—Ca1 ^{vi}		70.2	27 (4)
Si1 ⁱⁱⁱ —F	e1—Fe1 ^{iv}	53.85 (10)	Si1 ^{viii} —Si1	l—Ca1 ^{ix}	67.7	78 (18)
Fe1 ⁱ —Fe	e1—Fe1 ^{iv}	180.0	Fe1 ⁱ —Si1-	—Ca1 ^{ix}	70.2	27 (4)
Si1—Fe	1—Fe1 ⁱⁱⁱ	53.85 (10)	Fe1 ^{xi} —Si1	—Ca1 ^{ix}	70.2	27 (4)
Si1 ⁱ —Fe	e1—Fe1 ⁱⁱⁱ	126.15 (10)	Fe1—Si1-	—Ca1 ^{ix}	138	.99 (9)
Si1 ⁱⁱ —Fe	e1—Fe1 ⁱⁱⁱ	126.15 (10)	Fe1 ⁱⁱⁱ —Si1	—Ca1 ^{ix}	138.99 (9)	
Si1 ⁱⁱⁱ —F	e1—Fe1 ⁱⁱⁱ	53.85 (10)	Ca1 ^{vi} —Si1	l—Ca1 ^{ix}	135	.6 (4)
Fe1 ⁱ —Fe	e1—Fe1 ⁱⁱⁱ	90.0	Si1 ^{viii} —Si1	l—Ca1 ^x	67.7	78 (18)
Fe1 ^{iv} —F	Fe1—Fe1 ⁱⁱⁱ	90.0	Fe1 ⁱ —Si1-	—Ca1 ^x	138	.99 (9)

Si1—Fe1—Fe1 ^v	126.15 (10)	Fe1 ^{xi} —Si1—Ca1 ^x	70.27 (4)
Si1 ⁱ —Fe1—Fe1 ^v	53.85 (10)	Fe1—Si1—Ca1 ^x	138.99 (9)
Si1 ⁱⁱ —Fe1—Fe1 ^v	53.85 (10)	Fe1 ⁱⁱⁱ —Si1—Ca1 ^x	70.27 (4)
Si1 ⁱⁱⁱ —Fe1—Fe1 ^v	126.15 (10)	Ca1 ^{vi} —Si1—Ca1 ^x	81.78 (13)
Fe1 ⁱ —Fe1—Fe1 ^v	90.0	Ca1 ^{ix} —Si1—Ca1 ^x	81.78 (13)
Fe1 ^{iv} —Fe1—Fe1 ^v	90.0	Si1 ^{viii} —Si1—Ca1 ^{vii}	67.78 (18)
Fel ⁱⁱⁱ —Fel—Fel ^v	180.0	Fe1 ⁱ —Si1—Ca1 ^{vii}	70.27 (4)
Si1—Fe1—Ca1 ^{vi}	64.60 (15)	Fe1 ^{xi} —Si1—Ca1 ^{vii}	138.99 (9)
Sil ⁱ —Fel—Cal ^{vi}	162.4 (2)	Fe1—Si1—Ca1 ^{vii}	70.27 (4)
Si1 ⁱⁱ —Fe1—Ca1 ^{vi}	64.60 (15)	Fe1 ⁱⁱⁱ —Si1—Ca1 ^{vii}	138.99 (9)
Si1 ⁱⁱⁱ —Fe1—Ca1 ^{vi}	84.5 (2)	Ca1 ^{vi} —Si1—Ca1 ^{vii}	81.78 (13)
Fe1 ⁱ —Fe1—Ca1 ^{vi}	116.37 (2)	Ca1 ^{ix} —Si1—Ca1 ^{vii}	81.78 (13)
Fel ^{iv} —Fel—Cal ^{vi}	63.628 (19)	Ca1 ^x —Si1—Ca1 ^{vii}	135.6 (4)
Fe1 ⁱⁱⁱ —Fe1—Ca1 ^{vi}	63.63 (2)	Sil ⁱⁱⁱ —Cal—Sil ^{xii}	180.0
Fe1 ^v —Fe1—Ca1 ^{vi}	116.37 (2)	Si1 ⁱⁱⁱ —Ca1—Si1 ^{xiii}	135.6 (4)
Si1—Fe1—Ca1	84.5 (2)	Si1 ^{xii} —Ca1—Si1 ^{xiii}	44.4 (4)
Sil ⁱ —Fel—Cal	64.60 (15)	Sil ⁱⁱⁱ —Cal—Sil ^{xiv}	44.4 (4)
Sil ⁱⁱ —Fel—Cal	162.4 (2)	Sil ^{xii} —Cal—Sil ^{xiv}	135.6 (4)
Si1 ⁱⁱⁱ —Fe1—Ca1	64.60 (15)	Si1 ^{xiii} —Ca1—Si1 ^{xiv}	180.0
Fel ⁱ —Fel—Cal	63.63 (2)	Si1 ⁱⁱⁱ —Ca1—Si1 ⁱ	81.78 (13)
Fel ^{iv} —Fel—Cal	116.37 (2)	Sil ^{xii} —Cal—Sil ⁱ	98.22 (13)
Fe1 ⁱⁱⁱ —Fe1—Ca1	63.63 (2)	Si1 ^{xiii} —Ca1—Si1 ⁱ	81.78 (13)
Fe1 ^v —Fe1—Ca1	116.37 (2)	Si1 ^{xiv} —Ca1—Si1 ⁱ	98.22 (13)
Cal ^{vi} —Fe1—Ca1	127.26 (4)	Si1 ⁱⁱⁱ —Ca1—Si1 ^{xv}	81.78 (13)
Sil—Fel—Cal ⁱⁱ	162.4 (2)	Si1 ^{xii} —Ca1—Si1 ^{xv}	98.22 (13)
Si1 ⁱ —Fe1—Ca1 ⁱⁱ	64.60 (15)	Si1 ^{xiii} —Ca1—Si1 ^{xv}	81.78 (13)
Sil ⁱⁱ —Fel—Cal ⁱⁱ	84.5 (2)	Si1 ^{xiv} —Ca1—Si1 ^{xv}	98.22 (13)
Si1 ⁱⁱⁱ —Fe1—Ca1 ⁱⁱ	64.60 (15)	Si1 ⁱ —Ca1—Si1 ^{xv}	135.6 (4)
Fe1 ⁱ —Fe1—Ca1 ⁱⁱ	116.37 (2)	Si1 ⁱⁱⁱ —Ca1—Si1 ^{xvi}	98.22 (13)
Fe1 ^{iv} —Fe1—Ca1 ⁱⁱ	63.63 (2)	Si1 ^{xii} —Ca1—Si1 ^{xvi}	81.78 (13)
Fe1 ⁱⁱⁱ —Fe1—Ca1 ⁱⁱ	116.37 (2)	Si1 ^{xiii} —Ca1—Si1 ^{xvi}	98.22 (13)
Fe1 ^v —Fe1—Ca1 ⁱⁱ	63.63 (2)	Si1 ^{xiv} —Ca1—Si1 ^{xvi}	81.78 (13)
Ca1 ^{vi} —Fe1—Ca1 ⁱⁱ	127.26 (4)	Si1 ⁱ —Ca1—Si1 ^{xvi}	44.4 (4)
Ca1—Fe1—Ca1 ⁱⁱ	77.83 (7)	Si1 ^{xv} —Ca1—Si1 ^{xvi}	180.0
Si1—Fe1—Ca1 ^{vii}	64.60 (15)	Si1 ⁱⁱⁱ —Ca1—Si1 ^{xvii}	98.22 (13)
Si1 ⁱ —Fe1—Ca1 ^{vii}	84.5 (2)	Si1 ^{xii} —Ca1—Si1 ^{xvii}	81.78 (13)
Si1 ⁱⁱ —Fe1—Ca1 ^{vii}	64.60 (15)	Si1 ^{xiii} —Ca1—Si1 ^{xvii}	98.22 (13)
Si1 ⁱⁱⁱ —Fe1—Ca1 ^{vii}	162.4 (2)	Si1 ^{xiv} —Ca1—Si1 ^{xvii}	81.78 (13)
Fe1 ⁱ —Fe1—Ca1 ^{vii}	63.63 (2)	Si1 ⁱ —Ca1—Si1 ^{xvii}	180.0
Fe1 ^{iv} —Fe1—Ca1 ^{vii}	116.37 (2)	Si1 ^{xv} —Ca1—Si1 ^{xvii}	44.4 (4)
Fe1 ⁱⁱⁱ —Fe1—Ca1 ^{vii}	116.37 (2)	Si1 ^{xvi} —Ca1—Si1 ^{xvii}	135.6 (4)
Fe1 ^v —Fe1—Ca1 ^{vii}	63.63 (2)	Si1 ⁱⁱⁱ —Ca1—Fe1	45.14 (14)
Ca1 ^{vi} —Fe1—Ca1 ^{vii}	77.83 (7)	Si1 ^{xii} —Ca1—Fe1	134.86 (14)
Ca1—Fe1—Ca1 ^{vii}	127.26 (4)	Si1 ^{xiii} —Ca1—Fe1	96.72 (17)
Ca1 ⁱⁱ —Fe1—Ca1 ^{vii}	127.26 (4)	Si1 ^{xiv} —Ca1—Fe1	83.28 (17)
Si1—Cu1—Si1 ⁱ	107.7 (2)	Sil ⁱ —Cal—Fel	45.14 (14)
Si1—Cu1—Si1 ⁱⁱ	113.1 (4)	Si1 ^{xv} —Ca1—Fe1	96.72 (17)
Si1 ⁱ —Cu1—Si1 ⁱⁱ	107.7 (2)	Si1 ^{xvi} —Ca1—Fe1	83.28 (17)

Si1—Cu1—Si1 ⁱⁱⁱ	107.7 (2)	Si1 ^{xvii} —Ca1—Fe1	134.86 (14)
Si1 ⁱ —Cu1—Si1 ⁱⁱⁱ	113.1 (4)	Si1 ⁱⁱⁱ —Ca1—Fe1 ⁱⁱⁱ	45.14 (14)
Si1 ⁱⁱ —Cu1—Si1 ⁱⁱⁱ	107.7 (2)	Si1 ^{xii} —Ca1—Fe1 ⁱⁱⁱ	134.86 (14)
Si1—Cu1—Ca1 ^{vi}	64.60 (15)	Si1 ^{xiii} —Ca1—Fe1 ⁱⁱⁱ	96.72 (17)
Si1 ⁱ —Cu1—Ca1 ^{vi}	162.4 (2)	Si1 ^{xiv} —Ca1—Fe1 ⁱⁱⁱ	83.28 (17)
Si1 ⁱⁱ —Cu1—Ca1 ^{vi}	64.60 (15)	Si1 ⁱ —Ca1—Fe1 ⁱⁱⁱ	96.72 (17)
Si1 ⁱⁱⁱ —Cu1—Ca1 ^{vi}	84.5 (2)	Si1 ^{xv} —Ca1—Fe1 ⁱⁱⁱ	45.14 (14)
Sil—Cul—Cal	84.5 (2)	Si1 ^{xvi} —Ca1—Fe1 ⁱⁱⁱ	134.86 (14)
Si1 ⁱ —Cu1—Ca1	64.60 (15)	Si1 ^{xvii} —Ca1—Fe1 ⁱⁱⁱ	83.28 (17)
Si1 ⁱⁱ —Cu1—Ca1	162.4 (2)	Fe1—Ca1—Fe1 ⁱⁱⁱ	52.74 (4)
Si1 ⁱⁱⁱ —Cu1—Ca1	64.60 (15)	Si1 ⁱⁱⁱ —Ca1—Cu1	45.14 (14)
Ca1 ^{vi} —Cu1—Ca1	127.26 (4)	Sil ^{xii} —Cal—Cul	134.86 (14)
Si1—Cu1—Ca1 ⁱⁱ	162.4 (2)	Sil ^{xiii} —Cal—Cul	96.72 (17)
Si1 ⁱ —Cu1—Ca1 ⁱⁱ	64.60 (15)	Si1 ^{xiv} —Ca1—Cu1	83.28 (17)
Si1 ⁱⁱ —Cu1—Ca1 ⁱⁱ	84.5 (2)	Si1 ⁱ —Ca1—Cu1	45.14 (14)
Si1 ⁱⁱⁱ —Cu1—Ca1 ⁱⁱ	64.60 (15)	Si1 ^{xv} —Ca1—Cu1	96.72 (17)
Ca1 ^{vi} —Cu1—Ca1 ⁱⁱ	127.26 (4)	Si1 ^{xvi} —Ca1—Cu1	83.28 (17)
Ca1—Cu1—Ca1 ⁱⁱ	77.83 (7)	Si1 ^{xvii} —Ca1—Cu1	134.86 (14)
Si1—Cu1—Ca1 ^{vii}	64.60 (15)	Si1 ⁱⁱⁱ —Ca1—Fe1 ^{xviii}	134.86 (14)
Si1 ⁱ —Cu1—Ca1 ^{vii}	84.5 (2)	Si1 ^{xii} —Ca1—Fe1 ^{xviii}	45.14 (14)
Si1 ⁱⁱ —Cu1—Ca1 ^{vii}	64.60 (15)	Si1 ^{xiii} —Ca1—Fe1 ^{xviii}	83.28 (17)
Si1 ⁱⁱⁱ —Cu1—Ca1 ^{vii}	162.4 (2)	Si1 ^{xiv} —Ca1—Fe1 ^{xviii}	96.72 (17)
Ca1 ^{vi} —Cu1—Ca1 ^{vii}	77.83 (7)	Sili—Cal—Fel ^{xviii}	134.86 (14)
Ca1—Cu1—Ca1 ^{vii}	127.26 (4)	Si1 ^{xv} —Ca1—Fe1 ^{xviii}	83.28 (17)
Ca1 ⁱⁱ —Cu1—Ca1 ^{vii}	127.26 (4)	Si1 ^{xvi} —Ca1—Fe1 ^{xviii}	96.72 (17)
Si1 ^{viii} —Si1—Fe1 ⁱ	123.5 (2)	Si1 ^{xvii} —Ca1—Fe1 ^{xviii}	45.14 (14)
Si1 ^{viii} —Si1—Fe1 ^{xi}	123.5 (2)	Fe1—Ca1—Fe1 ^{xviii}	180.0
Fe1 ⁱ —Si1—Fe1 ^{xi}	72.3 (2)	Fe1 ⁱⁱⁱ —Ca1—Fe1 ^{xviii}	127.26 (4)
Si1 ^{viii} —Si1—Fe1	123.5 (2)		

Symmetry codes: (i) -x-1/2, -y+1/2, -z+1/2; (ii) x, y+1, z; (iii) -x+1/2, -y+1/2, -z+1/2; (iv) -x+1/2, -y+3/2, -z+1/2; (v) -x-1/2, -y+3/2, -z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vi) x-1/2, y+1/2, z+1/2; (vii) x-1/2, y+1/2, z+1/2; (viii) x-1/2, y+1/2, z+1/2; (viii) x-1/2, y-1/2, z-1/2; (viii) x-1/2, y-1/2, z-1/2; (viii) x+1/2, y-1/2, z-1/2; (viii) x+1/2, y-1/2, z-1/2; (viii) x+1/2, y-1/2, z-1/2; (viii) x+1/2, y-1/2, z-1/2; (viii) x-1/2, y-1/2, z-1/2; (viii) x+1/2, y-1/2, z-1/2; (viii) x-1/2, y-1/2, z-1/2; (viii) x-1/2, y-1/2, z-1/2; (viii) x+1/2, y-1/2, z-1/2; (viii) x-1/2, y-1/2, z-1/2; (vi