

organic compounds
4-(4-tert-Butylbenzyl)-1-neopentyl-1,2,4-triazolium bromide
aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu
The title 1,2,4-triazolium salt, C18H28N3+·Br−, crystallizes in the monoclinic Pc. The extended structure exhibits a short intermolecular interaction between a heterocyclic C—H group and a bromide ion (H⋯Br = 2.57 Å). Additional weaker interactions exist between the other heterocyclic C—H group, an alkyl C—H group and bromide ions.
Keywords: crystal structure; triazolium salt; heterocyclic ionic compound.
CCDC reference: 2420832
![[Scheme 3D1]](hb4505scheme3D1.gif)
![[Scheme 1]](hb4505scheme1.gif)
Structure description
Asymmetric 1,2,4-triazolium cations are precursors for the synthesis of N-heterocyclic (NHCs) and are also of interest due to their utility as cations in ionic liquids (ILs) (Dwivedi et al., 2014; Nelson, 2015
; Strassner et al., 2013
; Riederer et al., 2011
; Chianese et al., 2004
). The crystal structures of several triazolium salts have been reported (Peña Hueso et al., 2022
; Kumasaki et al., 2021
; Ponjan et al., 2020
; Guino-o et al., 2015
; Maynard et al., 2023
). We have synthesized many imidazolium and triazolium salts as precursors in the synthesis of NHC complexes of rhodium and iridium (Castaldi et al., 2021
; Gnanamgari et al., 2007
; Idrees et al., 2017
; Lerch et al., 2024
; Nichol et al., 2011
; Newman et al., 2021
; Rushlow et al., 2022
).
The molecular structure of the title complex, C18H28N3+·Br−, 2 (Fig. 1), consists of a triazolium cation and a bromide counter-ion. The bond lengths in the triazolium ring indicate aromaticity with C—N bonds exhibiting distances in the range of 1.292 (9)–1.368 (9) Å and an N—N bond distance of 1.376 (8) Å; the N—C—N bond angles range from 107.9 (5) to 112.1 (6)°. The bulky neopentyl and 4-tertbutyl benzyl substituents on the nitrogen atoms are in the expected anti-conformation with respect to the triazolium ring.
![]() | Figure 1 The molecular structure of 2 with displacement ellipsoids drawn at the 50% probability level. |
In the extended structure of 2, several C—H⋯Br− interactions are observed for heterocyclic C—H groups and an alkyl C—H group (Table 1). The non-classical hydrogen-bonding interactions are shown as dotted red lines in Fig. 2
. The shortest non-standard hydrogen-bonding interaction occurs between the most acidic hydrogen atom (C1—H1) and the bromide anion.
|
![]() | Figure 2 Crystal packing of 2 viewed along the b-axis direction. C—H⋯Br non-classical hydrogen-bonding interactions are shown as dotted red lines. |
Synthesis and crystallization
1-Neopentyl triazole (1) was synthesized as previously described (Mata et al., 2003). All other compounds used in the syntheses as shown in Fig. 3
were obtained from Sigma-Aldrich and used as received. The synthesis was performed under nitrogen using reagent-grade solvents, which were used as received without further purification. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz Varian spectrometer and referenced to the residual solvent peak (δ in p.p.m.). The title compound (2) crystallized as colorless needles by slow diffusion of pentane into a CH2Cl2 solution.
![]() | Figure 3 Reaction scheme for synthesis of 2. |
1-Meopentyl-4-(4-tert-butylbenzyl)-1,2,4-triazolium bromide (2): 1-neopentyl-1,2,4-triazole (1) (1.67 g, 11.98 mmol) and 4-tert-butylbenzyl bromide (5.34 g, 23.49 mmol) were added to degassed toluene (20 ml) and the mixture was refluxed in the dark for 72 h. After cooling, ether (75 ml) was added and the white solid that formed was filtered, washed with ether and air dried. Yield: 3.26 g (74%). 1H NMR: CDCl3, δ (p.p.m.) 11.92 (s, 1 H, N—C5H—N), 8.62 (s, 1 H, N—C3H—N), 7.55 (d, 2H, Harom), 7.44 (d, 2H, Harom), 5.84 [s, 2H, N—CH2 of CH2C6H4C(CH3)3], 4.28 [s, 2 H, CH2 of CH2C(CH3)3], 1.29 [s, 9 H, CH3 of C6H4C(CH3)3], 1.04 [s, 9 H, CH3 of CH2C(CH3)3]. 13C NMR: δ 153.26 [Carom of C—C(CH3)3], 143.5 (N—C3H—N), 142.61 (N—C5H—N), 129.09, 128.82, 126.70 (Carom), 63.64 [N—CH2 of CH2C(CH3)3], 51.87 [N—CH2 of CH2C6H4C(CH3)3], 34.78 [C of C6H4C(CH3)3], 32.68 [C of CH2C(CH3)3], 31.17 [CH3 of C6H4C(CH3)3], 27.27 [CH3 of CH2C(CH3)3].
Refinement
Crystal data, data collection, and structure . The final model was refined as an with a of 0.31 (4).
|
Structural data
CCDC reference: 2420832
https://doi.org/10.1107/S2414314625000926/hb4505sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314625000926/hb4505Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314625000926/hb4505Isup3.cml
C18H28N3+·Br− | F(000) = 384 |
Mr = 366.34 | Dx = 1.263 Mg m−3 |
Monoclinic, Pc | Cu Kα radiation, λ = 1.54184 Å |
a = 14.9741 (2) Å | Cell parameters from 11602 reflections |
b = 6.3842 (1) Å | θ = 2.9–74.4° |
c = 10.0741 (1) Å | µ = 2.90 mm−1 |
β = 90.435 (1)° | T = 100 K |
V = 963.03 (2) Å3 | Needle, colorless |
Z = 2 | 0.32 × 0.06 × 0.01 mm |
Rigaku XtaLAB Synergy-S diffractometer | 3564 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.067 |
ω scans | θmax = 74.5°, θmin = 3.0° |
Absorption correction: multi-scan [SCALE3 ABSPACK in CrysAlis PRO (Rigaku OD, 2024)] | h = −18→18 |
Tmin = 0.676, Tmax = 1.000 | k = −7→6 |
14617 measured reflections | l = −12→12 |
3683 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0959P)2 + 0.2583P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.135 | (Δ/σ)max < 0.001 |
S = 1.15 | Δρmax = 0.77 e Å−3 |
3683 reflections | Δρmin = −0.87 e Å−3 |
206 parameters | Absolute structure: Refined as an inversion twin |
2 restraints | Absolute structure parameter: 0.31 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.54656 (4) | 0.06909 (7) | 0.65493 (5) | 0.0291 (2) | |
N1 | 0.5500 (4) | 0.4637 (8) | 0.3783 (5) | 0.0207 (10) | |
N2 | 0.6783 (3) | 0.3713 (9) | 0.4539 (5) | 0.0223 (9) | |
N3 | 0.6620 (4) | 0.5666 (8) | 0.5062 (7) | 0.0274 (14) | |
C1 | 0.6101 (3) | 0.3093 (10) | 0.3806 (6) | 0.0227 (11) | |
H1 | 0.604702 | 0.177837 | 0.337098 | 0.027* | |
C2 | 0.5849 (4) | 0.6176 (10) | 0.4576 (7) | 0.0265 (12) | |
H2 | 0.555844 | 0.746944 | 0.474936 | 0.032* | |
C3 | 0.4647 (5) | 0.4590 (10) | 0.3070 (7) | 0.0202 (12) | |
H3A | 0.454105 | 0.316252 | 0.271962 | 0.024* | |
H3B | 0.467148 | 0.556569 | 0.230747 | 0.024* | |
C4 | 0.3883 (4) | 0.5206 (10) | 0.3966 (6) | 0.0212 (11) | |
C5 | 0.3528 (4) | 0.3741 (10) | 0.4850 (7) | 0.0259 (11) | |
H5 | 0.378248 | 0.238097 | 0.491755 | 0.031* | |
C6 | 0.2802 (4) | 0.4284 (9) | 0.5630 (7) | 0.0274 (14) | |
H6 | 0.256577 | 0.327384 | 0.622421 | 0.033* | |
C7 | 0.2407 (4) | 0.6264 (10) | 0.5570 (6) | 0.0222 (10) | |
C8 | 0.2798 (4) | 0.7725 (11) | 0.4722 (8) | 0.0307 (13) | |
H8 | 0.256487 | 0.910800 | 0.468385 | 0.037* | |
C9 | 0.3527 (4) | 0.7196 (9) | 0.3927 (7) | 0.0288 (13) | |
H9 | 0.377835 | 0.821754 | 0.335496 | 0.035* | |
C10 | 0.1587 (4) | 0.6849 (11) | 0.6395 (6) | 0.0271 (12) | |
C11 | 0.1228 (7) | 0.5004 (18) | 0.7177 (13) | 0.067 (3) | |
H11A | 0.171894 | 0.432843 | 0.766215 | 0.101* | |
H11B | 0.095357 | 0.399365 | 0.656521 | 0.101* | |
H11C | 0.077949 | 0.549817 | 0.780724 | 0.101* | |
C12 | 0.0862 (5) | 0.773 (2) | 0.5505 (9) | 0.070 (3) | |
H12A | 0.110278 | 0.890299 | 0.498836 | 0.105* | |
H12B | 0.036538 | 0.823367 | 0.604882 | 0.105* | |
H12C | 0.064673 | 0.663981 | 0.489943 | 0.105* | |
C13 | 0.1868 (6) | 0.8531 (18) | 0.7397 (10) | 0.057 (2) | |
H13A | 0.236811 | 0.801050 | 0.793659 | 0.085* | |
H13B | 0.136364 | 0.886337 | 0.797395 | 0.085* | |
H13C | 0.205292 | 0.979608 | 0.692129 | 0.085* | |
C14 | 0.7580 (4) | 0.2541 (10) | 0.4900 (6) | 0.0252 (11) | |
H14A | 0.742071 | 0.103995 | 0.496963 | 0.030* | |
H14B | 0.778492 | 0.300990 | 0.578763 | 0.030* | |
C15 | 0.8356 (4) | 0.2761 (11) | 0.3927 (7) | 0.0286 (13) | |
C16 | 0.8101 (5) | 0.1791 (14) | 0.2603 (8) | 0.0421 (17) | |
H16A | 0.792902 | 0.032522 | 0.273682 | 0.063* | |
H16B | 0.861192 | 0.185658 | 0.200193 | 0.063* | |
H16C | 0.759767 | 0.256349 | 0.221446 | 0.063* | |
C17 | 0.8590 (5) | 0.5087 (15) | 0.3764 (10) | 0.0461 (18) | |
H17A | 0.807805 | 0.583173 | 0.337805 | 0.069* | |
H17B | 0.910499 | 0.522528 | 0.317528 | 0.069* | |
H17C | 0.873678 | 0.568915 | 0.463317 | 0.069* | |
C18 | 0.9139 (4) | 0.1561 (13) | 0.4534 (8) | 0.0374 (15) | |
H18A | 0.928094 | 0.213916 | 0.541221 | 0.056* | |
H18B | 0.966108 | 0.169448 | 0.395882 | 0.056* | |
H18C | 0.897962 | 0.007942 | 0.462197 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0425 (3) | 0.0204 (3) | 0.0244 (3) | 0.0068 (3) | 0.0046 (2) | 0.0019 (3) |
N1 | 0.022 (2) | 0.021 (3) | 0.019 (3) | 0.0001 (19) | 0.002 (2) | 0.0024 (19) |
N2 | 0.019 (2) | 0.026 (2) | 0.021 (2) | 0.005 (2) | −0.0004 (17) | 0.000 (2) |
N3 | 0.023 (3) | 0.025 (3) | 0.034 (3) | 0.0024 (18) | −0.007 (3) | −0.011 (2) |
C1 | 0.022 (2) | 0.025 (3) | 0.021 (3) | 0.001 (2) | 0.0011 (19) | −0.001 (2) |
C2 | 0.026 (3) | 0.017 (2) | 0.037 (3) | 0.002 (3) | 0.000 (2) | −0.007 (3) |
C3 | 0.021 (3) | 0.016 (2) | 0.024 (3) | −0.003 (2) | −0.002 (2) | −0.004 (2) |
C4 | 0.022 (2) | 0.022 (3) | 0.019 (3) | −0.003 (2) | −0.003 (2) | 0.000 (2) |
C5 | 0.032 (3) | 0.015 (2) | 0.031 (3) | 0.003 (2) | 0.003 (2) | 0.000 (2) |
C6 | 0.025 (3) | 0.031 (4) | 0.026 (3) | −0.002 (2) | −0.001 (2) | 0.006 (2) |
C7 | 0.020 (2) | 0.024 (3) | 0.023 (3) | −0.001 (2) | 0.0019 (19) | 0.000 (2) |
C8 | 0.032 (3) | 0.025 (3) | 0.036 (4) | 0.007 (2) | 0.010 (3) | 0.008 (3) |
C9 | 0.032 (3) | 0.019 (3) | 0.036 (3) | 0.004 (2) | 0.004 (2) | 0.012 (3) |
C10 | 0.020 (2) | 0.038 (3) | 0.022 (3) | 0.005 (2) | 0.001 (2) | −0.001 (2) |
C11 | 0.055 (5) | 0.054 (5) | 0.094 (8) | 0.007 (4) | 0.053 (5) | 0.013 (6) |
C12 | 0.033 (3) | 0.141 (10) | 0.037 (4) | 0.038 (5) | 0.006 (3) | 0.017 (5) |
C13 | 0.041 (4) | 0.076 (6) | 0.053 (5) | 0.003 (4) | 0.013 (3) | −0.025 (5) |
C14 | 0.023 (2) | 0.027 (3) | 0.025 (3) | 0.006 (2) | 0.000 (2) | 0.003 (2) |
C15 | 0.027 (3) | 0.028 (3) | 0.031 (3) | 0.009 (2) | 0.001 (2) | 0.008 (3) |
C16 | 0.041 (3) | 0.058 (5) | 0.028 (4) | 0.015 (3) | −0.001 (3) | −0.006 (3) |
C17 | 0.027 (3) | 0.046 (4) | 0.065 (5) | 0.002 (3) | 0.007 (3) | 0.015 (4) |
C18 | 0.026 (3) | 0.046 (4) | 0.040 (4) | 0.008 (3) | −0.002 (3) | 0.006 (3) |
N1—C1 | 1.335 (7) | C10—C13 | 1.530 (11) |
N1—C2 | 1.368 (9) | C11—H11A | 0.9800 |
N1—C3 | 1.460 (8) | C11—H11B | 0.9800 |
N2—N3 | 1.376 (8) | C11—H11C | 0.9800 |
N2—C1 | 1.316 (8) | C12—H12A | 0.9800 |
N2—C14 | 1.453 (7) | C12—H12B | 0.9800 |
N3—C2 | 1.292 (9) | C12—H12C | 0.9800 |
C1—H1 | 0.9500 | C13—H13A | 0.9800 |
C2—H2 | 0.9500 | C13—H13B | 0.9800 |
C3—H3A | 0.9900 | C13—H13C | 0.9800 |
C3—H3B | 0.9900 | C14—H14A | 0.9900 |
C3—C4 | 1.514 (9) | C14—H14B | 0.9900 |
C4—C5 | 1.399 (9) | C14—C15 | 1.532 (8) |
C4—C9 | 1.378 (8) | C15—C16 | 1.517 (11) |
C5—H5 | 0.9500 | C15—C17 | 1.535 (11) |
C5—C6 | 1.391 (9) | C15—C18 | 1.525 (8) |
C6—H6 | 0.9500 | C16—H16A | 0.9800 |
C6—C7 | 1.396 (9) | C16—H16B | 0.9800 |
C7—C8 | 1.397 (9) | C16—H16C | 0.9800 |
C7—C10 | 1.535 (7) | C17—H17A | 0.9800 |
C8—H8 | 0.9500 | C17—H17B | 0.9800 |
C8—C9 | 1.400 (9) | C17—H17C | 0.9800 |
C9—H9 | 0.9500 | C18—H18A | 0.9800 |
C10—C11 | 1.517 (12) | C18—H18B | 0.9800 |
C10—C12 | 1.513 (10) | C18—H18C | 0.9800 |
C1—N1—C2 | 105.4 (5) | H11A—C11—H11B | 109.5 |
C1—N1—C3 | 125.5 (5) | H11A—C11—H11C | 109.5 |
C2—N1—C3 | 129.1 (5) | H11B—C11—H11C | 109.5 |
N3—N2—C14 | 121.3 (5) | C10—C12—H12A | 109.5 |
C1—N2—N3 | 110.4 (5) | C10—C12—H12B | 109.5 |
C1—N2—C14 | 128.1 (6) | C10—C12—H12C | 109.5 |
C2—N3—N2 | 104.1 (5) | H12A—C12—H12B | 109.5 |
N1—C1—H1 | 126.0 | H12A—C12—H12C | 109.5 |
N2—C1—N1 | 107.9 (5) | H12B—C12—H12C | 109.5 |
N2—C1—H1 | 126.0 | C10—C13—H13A | 109.5 |
N1—C2—H2 | 123.9 | C10—C13—H13B | 109.5 |
N3—C2—N1 | 112.1 (6) | C10—C13—H13C | 109.5 |
N3—C2—H2 | 123.9 | H13A—C13—H13B | 109.5 |
N1—C3—H3A | 109.4 | H13A—C13—H13C | 109.5 |
N1—C3—H3B | 109.4 | H13B—C13—H13C | 109.5 |
N1—C3—C4 | 111.3 (5) | N2—C14—H14A | 108.6 |
H3A—C3—H3B | 108.0 | N2—C14—H14B | 108.6 |
C4—C3—H3A | 109.4 | N2—C14—C15 | 114.8 (5) |
C4—C3—H3B | 109.4 | H14A—C14—H14B | 107.6 |
C5—C4—C3 | 119.9 (6) | C15—C14—H14A | 108.6 |
C9—C4—C3 | 121.1 (6) | C15—C14—H14B | 108.6 |
C9—C4—C5 | 119.1 (6) | C14—C15—C17 | 109.4 (6) |
C4—C5—H5 | 120.2 | C16—C15—C14 | 109.7 (6) |
C6—C5—C4 | 119.7 (6) | C16—C15—C17 | 110.9 (7) |
C6—C5—H5 | 120.2 | C16—C15—C18 | 109.6 (6) |
C5—C6—H6 | 118.9 | C18—C15—C14 | 106.4 (5) |
C5—C6—C7 | 122.3 (6) | C18—C15—C17 | 110.7 (6) |
C7—C6—H6 | 118.9 | C15—C16—H16A | 109.5 |
C6—C7—C8 | 116.9 (5) | C15—C16—H16B | 109.5 |
C6—C7—C10 | 122.5 (6) | C15—C16—H16C | 109.5 |
C8—C7—C10 | 120.6 (6) | H16A—C16—H16B | 109.5 |
C7—C8—H8 | 119.3 | H16A—C16—H16C | 109.5 |
C7—C8—C9 | 121.4 (6) | H16B—C16—H16C | 109.5 |
C9—C8—H8 | 119.3 | C15—C17—H17A | 109.5 |
C4—C9—C8 | 120.6 (6) | C15—C17—H17B | 109.5 |
C4—C9—H9 | 119.7 | C15—C17—H17C | 109.5 |
C8—C9—H9 | 119.7 | H17A—C17—H17B | 109.5 |
C11—C10—C7 | 112.3 (6) | H17A—C17—H17C | 109.5 |
C11—C10—C13 | 107.4 (8) | H17B—C17—H17C | 109.5 |
C12—C10—C7 | 110.1 (5) | C15—C18—H18A | 109.5 |
C12—C10—C11 | 110.0 (8) | C15—C18—H18B | 109.5 |
C12—C10—C13 | 108.8 (8) | C15—C18—H18C | 109.5 |
C13—C10—C7 | 108.1 (5) | H18A—C18—H18B | 109.5 |
C10—C11—H11A | 109.5 | H18A—C18—H18C | 109.5 |
C10—C11—H11B | 109.5 | H18B—C18—H18C | 109.5 |
C10—C11—H11C | 109.5 | ||
N1—C3—C4—C5 | −79.6 (7) | C3—C4—C9—C8 | 177.5 (7) |
N1—C3—C4—C9 | 100.4 (7) | C4—C5—C6—C7 | −0.2 (10) |
N2—N3—C2—N1 | 1.0 (8) | C5—C4—C9—C8 | −2.5 (10) |
N2—C14—C15—C16 | −65.7 (7) | C5—C6—C7—C8 | −2.5 (10) |
N2—C14—C15—C17 | 56.2 (8) | C5—C6—C7—C10 | 178.0 (6) |
N2—C14—C15—C18 | 175.8 (6) | C6—C7—C8—C9 | 2.8 (10) |
N3—N2—C1—N1 | 2.6 (7) | C6—C7—C10—C11 | −4.4 (10) |
N3—N2—C14—C15 | −96.1 (7) | C6—C7—C10—C12 | −127.4 (8) |
C1—N1—C2—N3 | 0.6 (8) | C6—C7—C10—C13 | 114.0 (8) |
C1—N1—C3—C4 | 129.5 (6) | C7—C8—C9—C4 | −0.3 (12) |
C1—N2—N3—C2 | −2.2 (8) | C8—C7—C10—C11 | 176.1 (8) |
C1—N2—C14—C15 | 89.9 (8) | C8—C7—C10—C12 | 53.1 (10) |
C2—N1—C1—N2 | −1.9 (7) | C8—C7—C10—C13 | −65.6 (8) |
C2—N1—C3—C4 | −48.7 (9) | C9—C4—C5—C6 | 2.7 (9) |
C3—N1—C1—N2 | 179.5 (6) | C10—C7—C8—C9 | −177.7 (6) |
C3—N1—C2—N3 | 179.1 (7) | C14—N2—N3—C2 | −177.2 (6) |
C3—C4—C5—C6 | −177.3 (6) | C14—N2—C1—N1 | 177.2 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Br1i | 0.95 | 2.57 | 3.446 (6) | 154 |
C2—H2···Br1ii | 0.95 | 2.75 | 3.550 (6) | 143 |
C3—H3B···Br1iii | 0.99 | 2.78 | 3.599 (7) | 141 |
Symmetry codes: (i) x, −y, z−1/2; (ii) x, y+1, z; (iii) x, −y+1, z−1/2. |
Acknowledgements
David Paul Walton assisted in the development of the synthesis approach for the title compound.
References
Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142. Google Scholar
Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dwivedi, S., Gupta, S. & Das, S. (2014). Curr. Organocatal. (1), 13–39. CrossRef Google Scholar
Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230. Web of Science CrossRef CAS Google Scholar
Guino-o, M. A., Talbot, M. O., Slitts, M. M., Pham, T. N., Audi, M. C. & Janzen, D. E. (2015). Acta Cryst. E71, 628–635. CSD CrossRef IUCr Journals Google Scholar
Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017). IUCrData, 2, x171081. Google Scholar
Kumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197–201. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lerch, T. G., Gau, M., Albert, D. R. & Rajaseelan. E. (2024). IUCrData, 9, x240941. Google Scholar
Mata, J. A., Peris, E., Incarvito, C. & Crabtree, R. H. (2003). Chem. Commun. pp. 184–185. CSD CrossRef Google Scholar
Maynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784. Google Scholar
Nelson, D. J. (2015). Eur. J. Inorg. Chem. pp. 2012–2027. Web of Science CrossRef Google Scholar
Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836. Google Scholar
Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861. Web of Science CSD CrossRef IUCr Journals Google Scholar
Peña Hueso, A., Esparza Ruiz, A. & Flores Parra, A. (2022). IUCrData, 7, x220172. Google Scholar
Ponjan, N., Aroonchat, P. & Chainok, K. (2020). Acta Cryst. E76, 137–140. Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
Riederer, S. K., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2011). Dalton Trans. 40, 41–43. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). IUCrData, 7, x220685. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Strassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). Inorg. Chem. Commun. 30, 39–41. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.