

ISSN 2414-3146

Received 29 January 2025 Accepted 31 January 2025

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; triazolium salt; heterocyclic ionic compound.

CCDC reference: 2420832

Structural data: full structural data are available from iucrdata.iucr.org

4-(4-*tert*-Butylbenzyl)-1-neopentyl-1,2,4-triazolium bromide

Daniel R. Albert,^a Michael Gau^b and Edward Rajaseelan^a*

^aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and ^bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. *Correspondence e-mail: edward.rajaseelan@millersville.edu

The title 1,2,4-triazolium salt, $C_{18}H_{28}N_3^+ \cdot Br^-$, crystallizes in the monoclinic space group *Pc*. The extended structure exhibits a short intermolecular interaction between a heterocyclic C–H group and a bromide ion (H···Br = 2.57 Å). Additional weaker interactions exist between the other heterocyclic C–H group, an alkyl C–H group and bromide ions.

Structure description

Asymmetric 1,2,4-triazolium cations are precursors for the synthesis of *N*-heterocyclic carbenes (NHCs) and are also of interest due to their utility as cations in ionic liquids (ILs) (Dwivedi *et al.*, 2014; Nelson, 2015; Strassner *et al.*, 2013; Riederer *et al.*, 2011; Chianese *et al.*, 2004). The crystal structures of several triazolium salts have been reported (Peña Hueso *et al.*, 2022; Kumasaki *et al.*, 2021; Ponjan *et al.*, 2020; Guino-o *et al.*, 2015; Maynard *et al.*, 2023). We have synthesized many imidazolium and triazolium salts as precursors in the synthesis of NHC complexes of rhodium and iridium (Castaldi *et al.*, 2021; Gnanamgari *et al.*, 2007; Idrees *et al.*, 2017; Lerch *et al.*, 2024; Nichol *et al.*, 2011; Newman *et al.*, 2021; Rushlow *et al.*, 2022).

The molecular structure of the title complex, $C_{18}H_{28}N_3^+ \cdot Br^-$, **2** (Fig. 1), consists of a triazolium cation and a bromide counter-ion. The bond lengths in the triazolium ring indicate aromaticity with C–N bonds exhibiting distances in the range of 1.292 (9)–1.368 (9) Å and an N–N bond distance of 1.376 (8) Å; the N–C–N bond angles range from 107.9 (5) to 112.1 (6)°. The bulky neopentyl and 4-tertbutyl benzyl substituents on the nitrogen atoms are in the expected *anti*-conformation with respect to the triazolium ring.

In the extended structure of **2**, several $C-H \cdots Br^-$ interactions are observed for heterocyclic C-H groups and an alkyl C-H group (Table 1). The non-classical hydrogen-bonding interactions are shown as dotted red lines in Fig. 2. The shortest non-

Figure 1 The molecular structure of 2 with displacement ellipsoids drawn at the 50% probability level.

standard hydrogen-bonding interaction occurs between the most acidic hydrogen atom (C1-H1) and the bromide anion.

Synthesis and crystallization

1-Neopentyl triazole (1) was synthesized as previously described (Mata *et al.*, 2003). All other compounds used in the syntheses as shown in Fig. 3 were obtained from Sigma-Aldrich and used as received. The synthesis was performed under nitrogen using reagent-grade solvents, which were used as received without further purification. NMR spectra were recorded at room temperature in CDCl₃ on a 400 MHz Varian spectrometer and referenced to the residual solvent peak (δ in p.p.m.). The title compound (2) crystallized as colorless needles by slow diffusion of pentane into a CH₂Cl₂ solution.

1-Meopentyl-4-(4-*tert*-butylbenzyl)-1,2,4-triazolium bromide (2): 1-neopentyl-1,2,4-triazole (1) (1.67 g, 11.98 mmol) and 4-*tert*-butylbenzyl bromide (5.34 g, 23.49 mmol) were

Figure 2

Crystal packing of **2** viewed along the *b*-axis direction. $C-H\cdots Br$ nonclassical hydrogen-bonding interactions are shown as dotted red lines.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots Br1^{i}$	0.95	2.57	3.446 (6)	154
$C2-H2\cdots Br1^{ii}$	0.95	2.75	3.550 (6)	143
$C3-H3B\cdots Br1^{iii}$	0.99	2.78	3.599 (7)	141

Symmetry codes: (i) $x, -y, z - \frac{1}{2}$; (ii) x, y + 1, z; (iii) $x, -y + 1, z - \frac{1}{2}$.

Table 2Experimental details.

-	
Crystal data	
Chemical formula	$C_{18}H_{28}N_3^+ \cdot Br^-$
M _r	366.34
Crystal system, space group	Monoclinic, Pc
Temperature (K)	100
a, b, c (Å)	14.9741 (2), 6.3842 (1), 10.0741 (1)
β (°)	90.435 (1)
$V(A^3)$	963.03 (2)
Z	2
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	2.90
Crystal size (mm)	$0.32 \times 0.06 \times 0.01$
Data collection	
Diffractometer	Rigaku XtaLAB Synergy-S
Absorption correction	Multi-scan [SCALE3 ABSPACK in <i>CrysAlis PRO</i> (Rigaku OD, 2024)]
Truine Truen	0.676. 1.000
No. of measured, independent and	14617, 3683, 3564
observed $[I > 2\sigma(I)]$ reflections	, ,
R _{int}	0.067
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.135, 1.15
No. of reflections	3683
No. of parameters	206
No. of restraints	2
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.77, -0.87
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.31 (4)

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

added to degassed toluene (20 ml) and the mixture was refluxed in the dark for 72 h. After cooling, ether (75 ml) was added and the white solid that formed was filtered, washed with ether and air dried. Yield: 3.26 g (74%). ¹H NMR: CDCl₃, δ (p.p.m.) 11.92 (s, 1 H, N-C₅H-N), 8.62 (s, 1 H, N-C₃H-N), 7.55 (d, 2H, H_{arom}), 7.44 (d, 2H, H_{arom}), 5.84 [s, 2H, N-CH₂ of CH₂C₆H₄C(CH₃)₃], 4.28 [s, 2 H, CH₂ of CH₂C(CH₃)₃], 1.29 [s, 9 H, CH₃ of C₆H₄C(CH₃)₃], 1.04 [s, 9 H,

Reaction scheme for synthesis of **2**.

CH₃ of CH₂C(CH₃)₃]. ¹³C NMR: δ 153.26 [C_{arom} of C-C(CH₃)₃], 143.5 (N-C₃H-N), 142.61 (N-C₅H-N), 129.09, 128.82, 126.70 (C_{arom}), 63.64 [N-CH₂ of CH₂C(CH₃) ₃], 51.87 [N-CH₂ of CH₂C₆H₄C(CH₃)₃], 34.78 [C of C₆H₄C(CH₃)₃], 32.68 [C of CH₂C(CH₃)₃], 31.17 [CH₃ of C₆H₄C(CH₃)₃], 27.27 [CH₃ of CH₂C(CH₃)₃].

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2. The final model was refined as an inversion twin with a Flack parameter of 0.31 (4).

Acknowledgements

David Paul Walton assisted in the development of the synthesis approach for the title compound.

References

- Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). *IUCrData*, **6**, x211142.
- Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). *Organometallics*, **23**, 2461–2468.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dwivedi, S., Gupta, S. & Das, S. (2014). *Curr. Organocatal.* (1), 13–39.
 Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007).
 Organometallics, 26, 1226–1230.

- Guino-o, M. A., Talbot, M. O., Slitts, M. M., Pham, T. N., Audi, M. C. & Janzen, D. E. (2015). *Acta Cryst.* E71, 628–635.
- Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017). *IUCrData*, **2**, x171081.
- Kumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197–201.
- Lerch, T. G., Gau, M., Albert, D. R. & Rajaseelan. E. (2024). *IUCr-Data*, **9**, x240941.
- Mata, J. A., Peris, E., Incarvito, C. & Crabtree, R. H. (2003). *Chem. Commun.* pp. 184–185.
- Maynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). *IUCrData*, **8**, x230784.
- Nelson, D. J. (2015). Eur. J. Inorg. Chem. pp. 2012-2027.
- Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). *IUCrData*, **6**, x210836.
- Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). *Acta Cryst.* E67, m1860-m1861.
- Peña Hueso, A., Esparza Ruiz, A. & Flores Parra, A. (2022). *IUCr-Data*, **7**, x220172.
- Ponjan, N., Aroonchat, P. & Chainok, K. (2020). Acta Cryst. E76, 137–140.
- Riederer, S. K., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2011). *Dalton Trans.* **40**, 41–43.
- Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). *IUCrData*, **7**, x220685.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Strassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). Inorg. Chem. Commun. 30, 39–41.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2025). **10**, x250092 [https://doi.org/10.1107/S2414314625000926]

4-(4-tert-Butylbenzyl)-1-neopentyl-1,2,4-triazolium bromide

Daniel R. Albert, Michael Gau and Edward Rajaseelan

4-(4-tert-Butylbenzyl)-1-neopentyl-1,2,4-triazolium bromide

Crystal data

 $C_{18}H_{28}N_3^{+} \cdot Br^{-}$ $M_r = 366.34$ Monoclinic, Pc a = 14.9741 (2) Å b = 6.3842 (1) Å c = 10.0741 (1) Å $\beta = 90.435$ (1)° V = 963.03 (2) Å³ Z = 2

Data collection

Rigaku XtaLAB Synergy-S diffractometer Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan [SCALE3 ABSPACK in CrysAlis PRO (Rigaku OD, 2024)] $T_{\min} = 0.676, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.135$ S = 1.153683 reflections 206 parameters 2 restraints Primary atom site location: dual F(000) = 384 $D_x = 1.263 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 11602 reflections $\theta = 2.9-74.4^{\circ}$ $\mu = 2.90 \text{ mm}^{-1}$ T = 100 KNeedle, colorless $0.32 \times 0.06 \times 0.01 \text{ mm}$

14617 measured reflections 3683 independent reflections 3564 reflections with $I > 2\sigma(I)$ $R_{int} = 0.067$ $\theta_{max} = 74.5^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -18 \rightarrow 18$ $k = -7 \rightarrow 6$ $l = -12 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0959P)^2 + 0.2583P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.77$ e Å⁻³ $\Delta\rho_{min} = -0.87$ e Å⁻³ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.31 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

-					
	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.54656 (4)	0.06909(7)	0.65493 (5)	0.0291 (2)	
N1	0.5500 (4)	0.4637 (8)	0.3783 (5)	0.0207 (10)	
N2	0.6783 (3)	0.3713 (9)	0.4539 (5)	0.0223 (9)	
N3	0.6620 (4)	0.5666 (8)	0.5062 (7)	0.0274 (14)	
C1	0.6101 (3)	0.3093 (10)	0.3806 (6)	0.0227 (11)	
H1	0.604702	0.177837	0.337098	0.027*	
C2	0.5849 (4)	0.6176 (10)	0.4576 (7)	0.0265 (12)	
H2	0.555844	0.746944	0.474936	0.032*	
C3	0.4647 (5)	0.4590 (10)	0.3070 (7)	0.0202 (12)	
H3A	0.454105	0.316252	0.271962	0.024*	
H3B	0.467148	0.556569	0.230747	0.024*	
C4	0.3883 (4)	0.5206 (10)	0.3966 (6)	0.0212 (11)	
C5	0.3528 (4)	0.3741 (10)	0.4850 (7)	0.0259 (11)	
Н5	0.378248	0.238097	0.491755	0.031*	
C6	0.2802 (4)	0.4284 (9)	0.5630(7)	0.0274 (14)	
H6	0.256577	0.327384	0.622421	0.033*	
C7	0.2407 (4)	0.6264 (10)	0.5570 (6)	0.0222 (10)	
C8	0.2798 (4)	0.7725 (11)	0.4722 (8)	0.0307 (13)	
H8	0.256487	0.910800	0.468385	0.037*	
C9	0.3527 (4)	0.7196 (9)	0.3927 (7)	0.0288 (13)	
H9	0.377835	0.821754	0.335496	0.035*	
C10	0.1587 (4)	0.6849 (11)	0.6395 (6)	0.0271 (12)	
C11	0.1228 (7)	0.5004 (18)	0.7177 (13)	0.067 (3)	
H11A	0.171894	0.432843	0.766215	0.101*	
H11B	0.095357	0.399365	0.656521	0.101*	
H11C	0.077949	0.549817	0.780724	0.101*	
C12	0.0862 (5)	0.773 (2)	0.5505 (9)	0.070 (3)	
H12A	0.110278	0.890299	0.498836	0.105*	
H12B	0.036538	0.823367	0.604882	0.105*	
H12C	0.064673	0.663981	0.489943	0.105*	
C13	0.1868 (6)	0.8531 (18)	0.7397 (10)	0.057 (2)	
H13A	0.236811	0.801050	0.793659	0.085*	
H13B	0.136364	0.886337	0.797395	0.085*	
H13C	0.205292	0.979608	0.692129	0.085*	
C14	0.7580 (4)	0.2541 (10)	0.4900 (6)	0.0252 (11)	
H14A	0.742071	0.103995	0.496963	0.030*	
H14B	0.778492	0.300990	0.578763	0.030*	
C15	0.8356 (4)	0.2761 (11)	0.3927 (7)	0.0286 (13)	
C16	0.8101 (5)	0.1791 (14)	0.2603 (8)	0.0421 (17)	
H16A	0.792902	0.032522	0.273682	0.063*	
H16B	0.861192	0.185658	0.200193	0.063*	
H16C	0.759767	0.256349	0.221446	0.063*	
C17	0.8590 (5)	0.5087 (15)	0.3764 (10)	0.0461 (18)	
H17A	0.807805	0.583173	0.337805	0.069*	
H17B	0.910499	0.522528	0.317528	0.069*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

H17C	0.873678	0.568915	0.463317	0.069*
C18	0.9139 (4)	0.1561 (13)	0.4534 (8)	0.0374 (15)
H18A	0.928094	0.213916	0.541221	0.056*
H18B	0.966108	0.169448	0.395882	0.056*
H18C	0.897962	0.007942	0.462197	0.056*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0425 (3)	0.0204 (3)	0.0244 (3)	0.0068 (3)	0.0046 (2)	0.0019 (3)
N1	0.022 (2)	0.021 (3)	0.019 (3)	0.0001 (19)	0.002 (2)	0.0024 (19)
N2	0.019 (2)	0.026 (2)	0.021 (2)	0.005 (2)	-0.0004 (17)	0.000 (2)
N3	0.023 (3)	0.025 (3)	0.034 (3)	0.0024 (18)	-0.007 (3)	-0.011 (2)
C1	0.022 (2)	0.025 (3)	0.021 (3)	0.001 (2)	0.0011 (19)	-0.001 (2)
C2	0.026 (3)	0.017 (2)	0.037 (3)	0.002 (3)	0.000 (2)	-0.007 (3)
C3	0.021 (3)	0.016 (2)	0.024 (3)	-0.003 (2)	-0.002 (2)	-0.004 (2)
C4	0.022 (2)	0.022 (3)	0.019 (3)	-0.003 (2)	-0.003 (2)	0.000 (2)
C5	0.032 (3)	0.015 (2)	0.031 (3)	0.003 (2)	0.003 (2)	0.000 (2)
C6	0.025 (3)	0.031 (4)	0.026 (3)	-0.002 (2)	-0.001 (2)	0.006 (2)
C7	0.020 (2)	0.024 (3)	0.023 (3)	-0.001 (2)	0.0019 (19)	0.000 (2)
C8	0.032 (3)	0.025 (3)	0.036 (4)	0.007 (2)	0.010 (3)	0.008 (3)
C9	0.032 (3)	0.019 (3)	0.036 (3)	0.004 (2)	0.004 (2)	0.012 (3)
C10	0.020 (2)	0.038 (3)	0.022 (3)	0.005 (2)	0.001 (2)	-0.001 (2)
C11	0.055 (5)	0.054 (5)	0.094 (8)	0.007 (4)	0.053 (5)	0.013 (6)
C12	0.033 (3)	0.141 (10)	0.037 (4)	0.038 (5)	0.006 (3)	0.017 (5)
C13	0.041 (4)	0.076 (6)	0.053 (5)	0.003 (4)	0.013 (3)	-0.025 (5)
C14	0.023 (2)	0.027 (3)	0.025 (3)	0.006 (2)	0.000(2)	0.003 (2)
C15	0.027 (3)	0.028 (3)	0.031 (3)	0.009 (2)	0.001 (2)	0.008 (3)
C16	0.041 (3)	0.058 (5)	0.028 (4)	0.015 (3)	-0.001 (3)	-0.006 (3)
C17	0.027 (3)	0.046 (4)	0.065 (5)	0.002 (3)	0.007 (3)	0.015 (4)
C18	0.026 (3)	0.046 (4)	0.040 (4)	0.008 (3)	-0.002 (3)	0.006 (3)

Geometric parameters (Å, °)

N1—C1	1.335 (7)	C10—C13	1.530 (11)	
N1—C2	1.368 (9)	C11—H11A	0.9800	
N1—C3	1.460 (8)	C11—H11B	0.9800	
N2—N3	1.376 (8)	C11—H11C	0.9800	
N2-C1	1.316 (8)	C12—H12A	0.9800	
N2-C14	1.453 (7)	C12—H12B	0.9800	
N3—C2	1.292 (9)	C12—H12C	0.9800	
С1—Н1	0.9500	C13—H13A	0.9800	
С2—Н2	0.9500	C13—H13B	0.9800	
С3—НЗА	0.9900	C13—H13C	0.9800	
С3—Н3В	0.9900	C14—H14A	0.9900	
C3—C4	1.514 (9)	C14—H14B	0.9900	
C4—C5	1.399 (9)	C14—C15	1.532 (8)	
C4—C9	1.378 (8)	C15—C16	1.517 (11)	

С5—Н5	0.9500	C15—C17	1.535 (11)
C5—C6	1.391 (9)	C15—C18	1.525 (8)
С6—Н6	0.9500	C16—H16A	0.9800
C6—C7	1.396 (9)	C16—H16B	0.9800
С7—С8	1.397 (9)	C16—H16C	0.9800
C7—C10	1.535 (7)	C17—H17A	0.9800
C8—H8	0.9500	C17—H17B	0.9800
С8—С9	1.400 (9)	C17—H17C	0.9800
С9—Н9	0.9500	C18—H18A	0.9800
C10-C11	1.517 (12)	C18—H18B	0.9800
C10—C12	1.513 (10)	C18—H18C	0.9800
C1—N1—C2	105.4 (5)	H11A—C11—H11B	109.5
C1—N1—C3	125.5 (5)	H11A—C11—H11C	109.5
C2—N1—C3	129.1 (5)	H11B—C11—H11C	109.5
N3—N2—C14	121.3 (5)	C10-C12-H12A	109.5
C1—N2—N3	110.4 (5)	C10-C12-H12B	109.5
C1—N2—C14	128.1 (6)	C10—C12—H12C	109.5
C2—N3—N2	104.1 (5)	H12A—C12—H12B	109.5
N1-C1-H1	126.0	H12A—C12—H12C	109.5
N2-C1-N1	107.9 (5)	H12B—C12—H12C	109.5
N2	126.0	C10-C13-H13A	109.5
N1—C2—H2	123.9	C10—C13—H13B	109.5
N3—C2—N1	112.1 (6)	C10—C13—H13C	109.5
N3—C2—H2	123.9	H13A—C13—H13B	109.5
N1—C3—H3A	109.4	H13A—C13—H13C	109.5
N1—C3—H3B	109.4	H13B—C13—H13C	109.5
N1—C3—C4	111.3 (5)	N2—C14—H14A	108.6
НЗА—СЗ—НЗВ	108.0	N2—C14—H14B	108.6
С4—С3—НЗА	109.4	N2-C14-C15	114.8 (5)
С4—С3—Н3В	109.4	H14A—C14—H14B	107.6
C5—C4—C3	119.9 (6)	C15—C14—H14A	108.6
C9—C4—C3	121.1 (6)	C15—C14—H14B	108.6
C9—C4—C5	119.1 (6)	C14—C15—C17	109.4 (6)
С4—С5—Н5	120.2	C16—C15—C14	109.7 (6)
C6—C5—C4	119.7 (6)	C16—C15—C17	110.9 (7)
С6—С5—Н5	120.2	C16—C15—C18	109.6 (6)
С5—С6—Н6	118.9	C18—C15—C14	106.4 (5)
C5—C6—C7	122.3 (6)	C18—C15—C17	110.7 (6)
С7—С6—Н6	118.9	C15—C16—H16A	109.5
С6—С7—С8	116.9 (5)	C15—C16—H16B	109.5
C6—C7—C10	122.5 (6)	C15—C16—H16C	109.5
C8—C7—C10	120.6 (6)	H16A—C16—H16B	109.5
С7—С8—Н8	119.3	H16A—C16—H16C	109.5
C7—C8—C9	121.4 (6)	H16B—C16—H16C	109.5
С9—С8—Н8	119.3	C15—C17—H17A	109.5
C4—C9—C8	120.6 (6)	C15—C17—H17B	109.5
С4—С9—Н9	119.7	C15—C17—H17C	109.5

119.7	H17A—C17—H17B	109.5
112.3 (6)	H17A—C17—H17C	109.5
107.4 (8)	H17B—C17—H17C	109.5
110.1 (5)	C15—C18—H18A	109.5
110.0 (8)	C15—C18—H18B	109.5
108.8 (8)	C15—C18—H18C	109.5
108.1 (5)	H18A—C18—H18B	109.5
109.5	H18A—C18—H18C	109.5
109.5	H18B—C18—H18C	109.5
109.5		
-79.6 (7)	C3—C4—C9—C8	177.5 (7)
100.4 (7)	C4—C5—C6—C7	-0.2 (10)
1.0 (8)	C5—C4—C9—C8	-2.5 (10)
-65.7 (7)	C5—C6—C7—C8	-2.5 (10)
56.2 (8)	C5—C6—C7—C10	178.0 (6)
175.8 (6)	C6—C7—C8—C9	2.8 (10)
2.6 (7)	C6—C7—C10—C11	-4.4 (10)
-96.1 (7)	C6—C7—C10—C12	-127.4 (8)
0.6 (8)	C6—C7—C10—C13	114.0 (8)
129.5 (6)	C7—C8—C9—C4	-0.3 (12)
-2.2 (8)	C8—C7—C10—C11	176.1 (8)
89.9 (8)	C8—C7—C10—C12	53.1 (10)
-1.9 (7)	C8—C7—C10—C13	-65.6 (8)
-48.7 (9)	C9—C4—C5—C6	2.7 (9)
179.5 (6)	C10—C7—C8—C9	-177.7 (6)
179.1 (7)	C14—N2—N3—C2	-177.2 (6)
-177.3 (6)	C14—N2—C1—N1	177.2 (6)
	119.7 $112.3 (6)$ $107.4 (8)$ $110.1 (5)$ $110.0 (8)$ $108.8 (8)$ $108.1 (5)$ 109.5 109.5 109.5 109.5 $-79.6 (7)$ $100.4 (7)$ $1.0 (8)$ $-65.7 (7)$ $56.2 (8)$ $175.8 (6)$ $2.6 (7)$ $-96.1 (7)$ $0.6 (8)$ $129.5 (6)$ $-2.2 (8)$ $89.9 (8)$ $-1.9 (7)$ $-48.7 (9)$ $179.5 (6)$ $179.1 (7)$ $-177.3 (6)$	119.7 $H17A-C17-H17B$ 112.3 (6) $H17A-C17-H17C$ 107.4 (8) $H17B-C17-H17C$ 110.1 (5) $C15-C18-H18A$ 110.0 (8) $C15-C18-H18B$ 108.8 (8) $C15-C18-H18B$ 108.1 (5) $H18A-C18-H18C$ 109.5 $H18A-C18-H18C$ 109.5 $H18B-C18-H18C$ 109.5 $C5-C6-C7-C8$ 100.4 (7) $C4-C5-C6-C7$ 1.0 (8) $C5-C4-C9-C8$ -65.7 (7) $C5-C6-C7-C10$ 175.8 (6) $C6-C7-C10-C11$ -96.1 (7) $C6-C7-C10-C12$ -0.6 (8) $C6-C7-C10-C13$ 129.5 (6) $C7-C8-C9-C4$ -2.2 (8) $C8-C7-C10-C13$ -19.9 (7) $C8-C7-C10-C13$ -48.7 (9) $C9-C4-C5-C6$ 179.5 (6) $C10-C7-C8-C9$ 179.1 (7) $C14-N2-N3-C2$ -177.3 (6) $C14-N2-C1-N1$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
C1—H1····Br1 ⁱ	0.95	2.57	3.446 (6)	154
C2—H2···Br1 ⁱⁱ	0.95	2.75	3.550 (6)	143
C3—H3B····Br1 ⁱⁱⁱ	0.99	2.78	3.599 (7)	141

Symmetry codes: (i) *x*, -*y*, *z*-1/2; (ii) *x*, *y*+1, *z*; (iii) *x*, -*y*+1, *z*-1/2.