organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(4-tert-Butyl­benz­yl)-1-neo­pentyl-1,2,4-triazolium bromide

crossmark logo

aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 29 January 2025; accepted 31 January 2025; online 7 February 2025)

The title 1,2,4-triazolium salt, C18H28N3+·Br, crystallizes in the monoclinic space group Pc. The extended structure exhibits a short inter­molecular inter­action between a heterocyclic C—H group and a bromide ion (H⋯Br = 2.57 Å). Additional weaker inter­actions exist between the other heterocyclic C—H group, an alkyl C—H group and bromide ions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Asymmetric 1,2,4-triazolium cations are precursors for the synthesis of N-heterocyclic carbenes (NHCs) and are also of inter­est due to their utility as cations in ionic liquids (ILs) (Dwivedi et al., 2014[Dwivedi, S., Gupta, S. & Das, S. (2014). Curr. Organocatal. (1), 13-39.]; Nelson, 2015[Nelson, D. J. (2015). Eur. J. Inorg. Chem. pp. 2012-2027.]; Strassner et al., 2013[Strassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). Inorg. Chem. Commun. 30, 39-41.]; Riederer et al., 2011[Riederer, S. K., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2011). Dalton Trans. 40, 41-43.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]). The crystal structures of several triazolium salts have been reported (Peña Hueso et al., 2022[Peña Hueso, A., Esparza Ruiz, A. & Flores Parra, A. (2022). IUCrData, 7, x220172.]; Kumasaki et al., 2021[Kumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197-201.]; Ponjan et al., 2020[Ponjan, N., Aroonchat, P. & Chainok, K. (2020). Acta Cryst. E76, 137-140.]; Guino-o et al., 2015[Guino-o, M. A., Talbot, M. O., Slitts, M. M., Pham, T. N., Audi, M. C. & Janzen, D. E. (2015). Acta Cryst. E71, 628-635.]; Maynard et al., 2023[Maynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.]). We have synthesized many imidazolium and triazolium salts as precursors in the synthesis of NHC complexes of rhodium and iridium (Castaldi et al., 2021[Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]; Idrees et al., 2017[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017). IUCrData, 2, x171081.]; Lerch et al., 2024[Lerch, T. G., Gau, M., Albert, D. R. & Rajaseelan. E. (2024). IUCrData, 9, x240941.]; Nichol et al., 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.]; Newman et al., 2021[Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.]; Rushlow et al., 2022[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). IUCrData, 7, x220685.]).

The mol­ecular structure of the title complex, C18H28N3+·Br, 2 (Fig. 1[link]), consists of a triazolium cation and a bromide counter-ion. The bond lengths in the triazolium ring indicate aromaticity with C—N bonds exhibiting distances in the range of 1.292 (9)–1.368 (9) Å and an N—N bond distance of 1.376 (8) Å; the N—C—N bond angles range from 107.9 (5) to 112.1 (6)°. The bulky neopentyl and 4-tertbutyl benzyl substituents on the nitro­gen atoms are in the expected anti-conformation with respect to the triazolium ring.

[Figure 1]
Figure 1
The mol­ecular structure of 2 with displacement ellipsoids drawn at the 50% probability level.

In the extended structure of 2, several C—H⋯Br inter­actions are observed for heterocyclic C—H groups and an alkyl C—H group (Table 1[link]). The non-classical hydrogen-bonding inter­actions are shown as dotted red lines in Fig. 2[link]. The shortest non-standard hydrogen-bonding inter­action occurs between the most acidic hydrogen atom (C1—H1) and the bromide anion.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1i 0.95 2.57 3.446 (6) 154
C2—H2⋯Br1ii 0.95 2.75 3.550 (6) 143
C3—H3B⋯Br1iii 0.99 2.78 3.599 (7) 141
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x, y+1, z]; (iii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of 2 viewed along the b-axis direction. C—H⋯Br non-classical hydrogen-bonding inter­actions are shown as dotted red lines.

Synthesis and crystallization

1-Neopentyl triazole (1) was synthesized as previously described (Mata et al., 2003[Mata, J. A., Peris, E., Incarvito, C. & Crabtree, R. H. (2003). Chem. Commun. pp. 184-185.]). All other compounds used in the syntheses as shown in Fig. 3[link] were obtained from Sigma-Aldrich and used as received. The synthesis was performed under nitro­gen using reagent-grade solvents, which were used as received without further purification. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz Varian spectrometer and referenced to the residual solvent peak (δ in p.p.m.). The title compound (2) crystallized as colorless needles by slow diffusion of pentane into a CH2Cl2 solution.

[Figure 3]
Figure 3
Reaction scheme for synthesis of 2.

1-Meopentyl-4-(4-tert-butyl­benz­yl)-1,2,4-triazolium bro­mide (2): 1-neopentyl-1,2,4-triazole (1) (1.67 g, 11.98 mmol) and 4-tert-butyl­benzyl bromide (5.34 g, 23.49 mmol) were added to degassed toluene (20 ml) and the mixture was refluxed in the dark for 72 h. After cooling, ether (75 ml) was added and the white solid that formed was filtered, washed with ether and air dried. Yield: 3.26 g (74%). 1H NMR: CDCl3, δ (p.p.m.) 11.92 (s, 1 H, N—C5H—N), 8.62 (s, 1 H, N—C3H—N), 7.55 (d, 2H, Harom), 7.44 (d, 2H, Harom), 5.84 [s, 2H, N—CH2 of CH2C6H4C(CH3)3], 4.28 [s, 2 H, CH2 of CH2C(CH3)3], 1.29 [s, 9 H, CH3 of C6H4C(CH3)3], 1.04 [s, 9 H, CH3 of CH2C(CH3)3]. 13C NMR: δ 153.26 [Carom of C—C(CH3)3], 143.5 (N—C3H—N), 142.61 (N—C5H—N), 129.09, 128.82, 126.70 (Carom), 63.64 [N—CH2 of CH2C(CH3)3], 51.87 [N—CH2 of CH2C6H4C(CH3)3], 34.78 [C of C6H4C(CH3)3], 32.68 [C of CH2C(CH3)3], 31.17 [CH3 of C6H4C(CH3)3], 27.27 [CH3 of CH2C(CH3)3].

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. The final model was refined as an inversion twin with a Flack parameter of 0.31 (4).

Table 2
Experimental details

Crystal data
Chemical formula C18H28N3+·Br
Mr 366.34
Crystal system, space group Monoclinic, Pc
Temperature (K) 100
a, b, c (Å) 14.9741 (2), 6.3842 (1), 10.0741 (1)
β (°) 90.435 (1)
V3) 963.03 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.90
Crystal size (mm) 0.32 × 0.06 × 0.01
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S
Absorption correction Multi-scan [SCALE3 ABSPACK in CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])]
Tmin, Tmax 0.676, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14617, 3683, 3564
Rint 0.067
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.135, 1.15
No. of reflections 3683
No. of parameters 206
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.87
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.31 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

4-(4-tert-Butylbenzyl)-1-neopentyl-1,2,4-triazolium bromide top
Crystal data top
C18H28N3+·BrF(000) = 384
Mr = 366.34Dx = 1.263 Mg m3
Monoclinic, PcCu Kα radiation, λ = 1.54184 Å
a = 14.9741 (2) ÅCell parameters from 11602 reflections
b = 6.3842 (1) Åθ = 2.9–74.4°
c = 10.0741 (1) ŵ = 2.90 mm1
β = 90.435 (1)°T = 100 K
V = 963.03 (2) Å3Needle, colorless
Z = 20.32 × 0.06 × 0.01 mm
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
3564 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.067
ω scansθmax = 74.5°, θmin = 3.0°
Absorption correction: multi-scan
[SCALE3 ABSPACK in CrysAlis PRO (Rigaku OD, 2024)]
h = 1818
Tmin = 0.676, Tmax = 1.000k = 76
14617 measured reflectionsl = 1212
3683 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0959P)2 + 0.2583P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.77 e Å3
3683 reflectionsΔρmin = 0.87 e Å3
206 parametersAbsolute structure: Refined as an inversion twin
2 restraintsAbsolute structure parameter: 0.31 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54656 (4)0.06909 (7)0.65493 (5)0.0291 (2)
N10.5500 (4)0.4637 (8)0.3783 (5)0.0207 (10)
N20.6783 (3)0.3713 (9)0.4539 (5)0.0223 (9)
N30.6620 (4)0.5666 (8)0.5062 (7)0.0274 (14)
C10.6101 (3)0.3093 (10)0.3806 (6)0.0227 (11)
H10.6047020.1778370.3370980.027*
C20.5849 (4)0.6176 (10)0.4576 (7)0.0265 (12)
H20.5558440.7469440.4749360.032*
C30.4647 (5)0.4590 (10)0.3070 (7)0.0202 (12)
H3A0.4541050.3162520.2719620.024*
H3B0.4671480.5565690.2307470.024*
C40.3883 (4)0.5206 (10)0.3966 (6)0.0212 (11)
C50.3528 (4)0.3741 (10)0.4850 (7)0.0259 (11)
H50.3782480.2380970.4917550.031*
C60.2802 (4)0.4284 (9)0.5630 (7)0.0274 (14)
H60.2565770.3273840.6224210.033*
C70.2407 (4)0.6264 (10)0.5570 (6)0.0222 (10)
C80.2798 (4)0.7725 (11)0.4722 (8)0.0307 (13)
H80.2564870.9108000.4683850.037*
C90.3527 (4)0.7196 (9)0.3927 (7)0.0288 (13)
H90.3778350.8217540.3354960.035*
C100.1587 (4)0.6849 (11)0.6395 (6)0.0271 (12)
C110.1228 (7)0.5004 (18)0.7177 (13)0.067 (3)
H11A0.1718940.4328430.7662150.101*
H11B0.0953570.3993650.6565210.101*
H11C0.0779490.5498170.7807240.101*
C120.0862 (5)0.773 (2)0.5505 (9)0.070 (3)
H12A0.1102780.8902990.4988360.105*
H12B0.0365380.8233670.6048820.105*
H12C0.0646730.6639810.4899430.105*
C130.1868 (6)0.8531 (18)0.7397 (10)0.057 (2)
H13A0.2368110.8010500.7936590.085*
H13B0.1363640.8863370.7973950.085*
H13C0.2052920.9796080.6921290.085*
C140.7580 (4)0.2541 (10)0.4900 (6)0.0252 (11)
H14A0.7420710.1039950.4969630.030*
H14B0.7784920.3009900.5787630.030*
C150.8356 (4)0.2761 (11)0.3927 (7)0.0286 (13)
C160.8101 (5)0.1791 (14)0.2603 (8)0.0421 (17)
H16A0.7929020.0325220.2736820.063*
H16B0.8611920.1856580.2001930.063*
H16C0.7597670.2563490.2214460.063*
C170.8590 (5)0.5087 (15)0.3764 (10)0.0461 (18)
H17A0.8078050.5831730.3378050.069*
H17B0.9104990.5225280.3175280.069*
H17C0.8736780.5689150.4633170.069*
C180.9139 (4)0.1561 (13)0.4534 (8)0.0374 (15)
H18A0.9280940.2139160.5412210.056*
H18B0.9661080.1694480.3958820.056*
H18C0.8979620.0079420.4621970.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0425 (3)0.0204 (3)0.0244 (3)0.0068 (3)0.0046 (2)0.0019 (3)
N10.022 (2)0.021 (3)0.019 (3)0.0001 (19)0.002 (2)0.0024 (19)
N20.019 (2)0.026 (2)0.021 (2)0.005 (2)0.0004 (17)0.000 (2)
N30.023 (3)0.025 (3)0.034 (3)0.0024 (18)0.007 (3)0.011 (2)
C10.022 (2)0.025 (3)0.021 (3)0.001 (2)0.0011 (19)0.001 (2)
C20.026 (3)0.017 (2)0.037 (3)0.002 (3)0.000 (2)0.007 (3)
C30.021 (3)0.016 (2)0.024 (3)0.003 (2)0.002 (2)0.004 (2)
C40.022 (2)0.022 (3)0.019 (3)0.003 (2)0.003 (2)0.000 (2)
C50.032 (3)0.015 (2)0.031 (3)0.003 (2)0.003 (2)0.000 (2)
C60.025 (3)0.031 (4)0.026 (3)0.002 (2)0.001 (2)0.006 (2)
C70.020 (2)0.024 (3)0.023 (3)0.001 (2)0.0019 (19)0.000 (2)
C80.032 (3)0.025 (3)0.036 (4)0.007 (2)0.010 (3)0.008 (3)
C90.032 (3)0.019 (3)0.036 (3)0.004 (2)0.004 (2)0.012 (3)
C100.020 (2)0.038 (3)0.022 (3)0.005 (2)0.001 (2)0.001 (2)
C110.055 (5)0.054 (5)0.094 (8)0.007 (4)0.053 (5)0.013 (6)
C120.033 (3)0.141 (10)0.037 (4)0.038 (5)0.006 (3)0.017 (5)
C130.041 (4)0.076 (6)0.053 (5)0.003 (4)0.013 (3)0.025 (5)
C140.023 (2)0.027 (3)0.025 (3)0.006 (2)0.000 (2)0.003 (2)
C150.027 (3)0.028 (3)0.031 (3)0.009 (2)0.001 (2)0.008 (3)
C160.041 (3)0.058 (5)0.028 (4)0.015 (3)0.001 (3)0.006 (3)
C170.027 (3)0.046 (4)0.065 (5)0.002 (3)0.007 (3)0.015 (4)
C180.026 (3)0.046 (4)0.040 (4)0.008 (3)0.002 (3)0.006 (3)
Geometric parameters (Å, º) top
N1—C11.335 (7)C10—C131.530 (11)
N1—C21.368 (9)C11—H11A0.9800
N1—C31.460 (8)C11—H11B0.9800
N2—N31.376 (8)C11—H11C0.9800
N2—C11.316 (8)C12—H12A0.9800
N2—C141.453 (7)C12—H12B0.9800
N3—C21.292 (9)C12—H12C0.9800
C1—H10.9500C13—H13A0.9800
C2—H20.9500C13—H13B0.9800
C3—H3A0.9900C13—H13C0.9800
C3—H3B0.9900C14—H14A0.9900
C3—C41.514 (9)C14—H14B0.9900
C4—C51.399 (9)C14—C151.532 (8)
C4—C91.378 (8)C15—C161.517 (11)
C5—H50.9500C15—C171.535 (11)
C5—C61.391 (9)C15—C181.525 (8)
C6—H60.9500C16—H16A0.9800
C6—C71.396 (9)C16—H16B0.9800
C7—C81.397 (9)C16—H16C0.9800
C7—C101.535 (7)C17—H17A0.9800
C8—H80.9500C17—H17B0.9800
C8—C91.400 (9)C17—H17C0.9800
C9—H90.9500C18—H18A0.9800
C10—C111.517 (12)C18—H18B0.9800
C10—C121.513 (10)C18—H18C0.9800
C1—N1—C2105.4 (5)H11A—C11—H11B109.5
C1—N1—C3125.5 (5)H11A—C11—H11C109.5
C2—N1—C3129.1 (5)H11B—C11—H11C109.5
N3—N2—C14121.3 (5)C10—C12—H12A109.5
C1—N2—N3110.4 (5)C10—C12—H12B109.5
C1—N2—C14128.1 (6)C10—C12—H12C109.5
C2—N3—N2104.1 (5)H12A—C12—H12B109.5
N1—C1—H1126.0H12A—C12—H12C109.5
N2—C1—N1107.9 (5)H12B—C12—H12C109.5
N2—C1—H1126.0C10—C13—H13A109.5
N1—C2—H2123.9C10—C13—H13B109.5
N3—C2—N1112.1 (6)C10—C13—H13C109.5
N3—C2—H2123.9H13A—C13—H13B109.5
N1—C3—H3A109.4H13A—C13—H13C109.5
N1—C3—H3B109.4H13B—C13—H13C109.5
N1—C3—C4111.3 (5)N2—C14—H14A108.6
H3A—C3—H3B108.0N2—C14—H14B108.6
C4—C3—H3A109.4N2—C14—C15114.8 (5)
C4—C3—H3B109.4H14A—C14—H14B107.6
C5—C4—C3119.9 (6)C15—C14—H14A108.6
C9—C4—C3121.1 (6)C15—C14—H14B108.6
C9—C4—C5119.1 (6)C14—C15—C17109.4 (6)
C4—C5—H5120.2C16—C15—C14109.7 (6)
C6—C5—C4119.7 (6)C16—C15—C17110.9 (7)
C6—C5—H5120.2C16—C15—C18109.6 (6)
C5—C6—H6118.9C18—C15—C14106.4 (5)
C5—C6—C7122.3 (6)C18—C15—C17110.7 (6)
C7—C6—H6118.9C15—C16—H16A109.5
C6—C7—C8116.9 (5)C15—C16—H16B109.5
C6—C7—C10122.5 (6)C15—C16—H16C109.5
C8—C7—C10120.6 (6)H16A—C16—H16B109.5
C7—C8—H8119.3H16A—C16—H16C109.5
C7—C8—C9121.4 (6)H16B—C16—H16C109.5
C9—C8—H8119.3C15—C17—H17A109.5
C4—C9—C8120.6 (6)C15—C17—H17B109.5
C4—C9—H9119.7C15—C17—H17C109.5
C8—C9—H9119.7H17A—C17—H17B109.5
C11—C10—C7112.3 (6)H17A—C17—H17C109.5
C11—C10—C13107.4 (8)H17B—C17—H17C109.5
C12—C10—C7110.1 (5)C15—C18—H18A109.5
C12—C10—C11110.0 (8)C15—C18—H18B109.5
C12—C10—C13108.8 (8)C15—C18—H18C109.5
C13—C10—C7108.1 (5)H18A—C18—H18B109.5
C10—C11—H11A109.5H18A—C18—H18C109.5
C10—C11—H11B109.5H18B—C18—H18C109.5
C10—C11—H11C109.5
N1—C3—C4—C579.6 (7)C3—C4—C9—C8177.5 (7)
N1—C3—C4—C9100.4 (7)C4—C5—C6—C70.2 (10)
N2—N3—C2—N11.0 (8)C5—C4—C9—C82.5 (10)
N2—C14—C15—C1665.7 (7)C5—C6—C7—C82.5 (10)
N2—C14—C15—C1756.2 (8)C5—C6—C7—C10178.0 (6)
N2—C14—C15—C18175.8 (6)C6—C7—C8—C92.8 (10)
N3—N2—C1—N12.6 (7)C6—C7—C10—C114.4 (10)
N3—N2—C14—C1596.1 (7)C6—C7—C10—C12127.4 (8)
C1—N1—C2—N30.6 (8)C6—C7—C10—C13114.0 (8)
C1—N1—C3—C4129.5 (6)C7—C8—C9—C40.3 (12)
C1—N2—N3—C22.2 (8)C8—C7—C10—C11176.1 (8)
C1—N2—C14—C1589.9 (8)C8—C7—C10—C1253.1 (10)
C2—N1—C1—N21.9 (7)C8—C7—C10—C1365.6 (8)
C2—N1—C3—C448.7 (9)C9—C4—C5—C62.7 (9)
C3—N1—C1—N2179.5 (6)C10—C7—C8—C9177.7 (6)
C3—N1—C2—N3179.1 (7)C14—N2—N3—C2177.2 (6)
C3—C4—C5—C6177.3 (6)C14—N2—C1—N1177.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.952.573.446 (6)154
C2—H2···Br1ii0.952.753.550 (6)143
C3—H3B···Br1iii0.992.783.599 (7)141
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z; (iii) x, y+1, z1/2.
 

Acknowledgements

David Paul Walton assisted in the development of the synthesis approach for the title compound.

References

First citationCastaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.  Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDwivedi, S., Gupta, S. & Das, S. (2014). Curr. Organocatal. (1), 13–39.  CrossRef Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGuino-o, M. A., Talbot, M. O., Slitts, M. M., Pham, T. N., Audi, M. C. & Janzen, D. E. (2015). Acta Cryst. E71, 628–635.  CSD CrossRef IUCr Journals Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017). IUCrData, 2, x171081.  Google Scholar
First citationKumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197–201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLerch, T. G., Gau, M., Albert, D. R. & Rajaseelan. E. (2024). IUCrData, 9, x240941.  Google Scholar
First citationMata, J. A., Peris, E., Incarvito, C. & Crabtree, R. H. (2003). Chem. Commun. pp. 184–185.  CSD CrossRef Google Scholar
First citationMaynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.  Google Scholar
First citationNelson, D. J. (2015). Eur. J. Inorg. Chem. pp. 2012–2027.  Web of Science CrossRef Google Scholar
First citationNewman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeña Hueso, A., Esparza Ruiz, A. & Flores Parra, A. (2022). IUCrData, 7, x220172.  Google Scholar
First citationPonjan, N., Aroonchat, P. & Chainok, K. (2020). Acta Cryst. E76, 137–140.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationRiederer, S. K., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2011). Dalton Trans. 40, 41–43.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). IUCrData, 7, x220685.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). Inorg. Chem. Commun. 30, 39–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146